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Abstract

Most reinforcement learning (RL) research is conducted with the presumption that
there is a meaningful reward signal that is available to an agent at every moment
in time, in any environment that the agent might find itself in. This reward signal
is most often generated by a human explicitly programming a function that maps
the agent’s state observations and actions to rewards. If defining a reward function
is a precondition to an agent’s interaction in many different new environments,
then RL in the real-world will not work. How might we scale up the diversity
and complexity of intelligent and meaningful agent behaviours if each new goal or
task requires significant human effort to define reward signals? Specifically, reward
signals that, when leveraged as an optimization target for an RL algorithm, causes
some behaviour towards some goals or purposes that human observers perceive as
intelligent. This is The Reward Problem, it is unique and distinct from the RL
Problem (i.e. given a reward signal, how do you optimize for it in a data efficient
way?) The Reward Problem is unavoidable and critical to address immediately if
we care at all about using RL algorithms in the real-world, especially for problems
that we do not know how to solve ourselves.

1 Heeding The Bitter Lesson

Consider The Bitter Lesson (Sutton, 2019): “we have to learn the bitter lesson that building in
how we think we think does not work in the long run.” The implication here is that we should do
everything in our power to remove ourselves from the solution space, as we are the limiting factor.
This perspective is not new, in fact it was one of the earliest theories in the entire field of computing
science. In 1945, Turing referred to it as ‘the human brake’, and said: “once the human brake is
removed the increase in speed is enormous” (Hicks, 2008). Turing saw the incredible benefits of the
future of computing. The promise of artificial intelligence is that much more complicated processes
can be performed than could be handled by humans alone. And yet, in much RL research, we find
ourselves at an impasse. We have to heed the warning of the bitter lesson, and remove the human
brake. We have to stop designing and implementing reward functions by hand, and we have to come
up with creative solutions to do so. We must apply the bitter lesson to reward design.

1.1 The success of reward design

This being said, reward design backstops many RL success stories. For example, Silver et al. (2016)
discuss in two brief sentences the reward function that they used to master the game of Go with
deep neural networks and tree search. In short, it is zero for all time steps, +1 for winning, and -1
for losing. In a sense, this simple reward function, when combined with deep RL and search, was all
that was needed. But, the complexity of the reward function is hidden in the details; the winning
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and losing terminal state of Go is not actually clear and agreed upon state, and some decision on
an appropriate approximation was required.1

As another example of the success of reward design, consider OpenAI’s recent 5v5 Dota success
(OpenAI Five). In the accompanying research paper (Berner et al., 2019), the authors describe how
they tried to “assign reward for behaviours that [they] thought lead to the goal of winning the game,
without over crafting the reward to [their] own expectations”. The reward that they designed and
used was a linear combination of multiple signals from the game, weighted in proportion to their
subjective opinion of importance balanced with empirical results. The authors assured readers that
the signals and weights were designed by Dota experts at the start of the research project, and they
“have only been tweaked a handful of times since.” They also share their experience training an agent
with a simpler reward function. They ran an experiment where the agent was only rewarded for
winning and penalized for losing: “it trained an order of magnitude slower, and somewhat plateaued
in the middle, in contrast to the smooth learning curves with shaped rewards.”

As a final example, consider the recent success from Sony AI in outracing champion Gran Turismo
drivers with Deep RL. As they say in the paper (Wurman et al., 2022), “we construct a reward
function that enables the agent to be competitive while adhering to racing’s important, but under-
specified, sportsmanship rules”. As they say: “the agent is given progress reward for the speed
with which it advanced around the track and penalties if it went out of bounds, hit a wall or lost
traction.” These are human communicable preferences, transformed into code by a designer and
developer, and iterated on, because as they found, “shaping rewards allowed the agent to quickly
receive positive feedback for staying on the track and driving fast.” To their credit, they discuss
in detail how observing resulting agent behaviour led them to modify the reward function over the
course of their research project: “Progress reward alone is not enough to incentivize the agent to win
the race. If the opponent was fast enough, the agent would learn to follow it and accumulate large
rewards without risking potentially catastrophic collisions. Adding rewards specifically for passing
helped the agent learn to overtake other cars.” The take home message from each of these examples
is reiterated in the paper from Sony (emphasis my own): “we spent a lot of time trying to figure out
what things we needed to change in order to get that superhuman performance”.

2 Why are things different now?

We have been working with human programmed reward functions, because we have been using
programmed environments that we humans have designed and built. But, we do not program the
world. So, asking the question “Where does the reward come from?” is not disingenuous. It points
to an underlying concern about ‘how the world is’ when paired with the fact that we desire agents
that do things in the real world. So, it is a question of curiosity: how might we program suitable
rewards? Is it doable at all? If so, where will these rewards come from?

The question of where the reward comes from fundamental to RL research as most RL research
focuses on the implications of reward on behaviour. It is a question posed without malice or intent
to distract or offend. RL research ought to concern itself with questions about the source of numerical
reward signals, and questions pertaining to the maximisation of those signals.

One might also ask: Where does the question “Where does the reward come from?” itself come
from? It is not a new question posed in this paper, rather it is one that has been developing in
parallel alongside progress in RL research for many years. In a 2007 paper, Doya mentioned that
even then “the designing process takes a lot of trial and error” (Doya, 2007). The question was
stated plainly as the title of a 2009 paper which explored how reward functions emerge and whether
they ought to be considered as intrinsic or extrinsic to the agent (Singh et al., 2009).

1See the Tromp-Taylor rule set (https://senseis.xmp.net/?TrompTaylorRules) used for computer Go, which gives
a computable score for any game in a well-defined way and which was used to train AlphaGo and successors. Most
rule sets agree in most cases but there are some rare edge cases.

https://senseis.xmp.net/?TrompTaylorRules
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3 What is reward and where does it come from?

The Sutton and Barto textbook on Reinforcement Learning (RL) states plainly that: “Reinforcement
learning is learning what to do so as to maximise a numerical reward signal” (pg. 1, Sutton & Barto
(2018)). This reward signal is the definition of the RL problem, and it is the ‘primary basis for
altering a policy’; the policy is the mapping from the state that agent is currently in to the next
action the agent will take. The book goes on to describe how the rewards are basically given directly
by the environment. This implicates the environment designer in the design of the reward. Where
else is the reward to come from?

Previous research has advanced the position that the reward need not come from the environment.
The environment is what is external to the agent, and all the environment does is proceed from state
to next state, sometimes in response to the actions of the agent (if they are affectual) and sometimes
without any regard for the agent(s) within. In this paradigm, the agent evaluates the reward within
itself, in response to the changing environment (Oudeyer et al., 2007; Singh et al., 2009). The agent
has no ability to directly modify the reward function within its own lifetime, rather, the function is
constructed within an outer loop of evolutionary optimization.

One might ask at this juncture if we ought to prefer reward that is external from the agent and comes
from the environment, or alternatively, if agent derived reward is preferable? In such a circumstance,
it can help to consider the benefits and detriments of either alternative. If reward is external to
the agent, and is functionally a component of the environment, this allows for fair comparison of
the performance of multiple agents against the single ground-truth definition of the external reward.
If, on the other hand, reward is part of the agent, this comparison is no longer possible. But, the
benefit is that environment design need not include reward design, and, with any luck, the reward
signal will be easier for the agent to interpret.

Does it matter where the reward comes from? I believe so, as does the RL textbook. In fact, Sutton
& Barto (2018) state clearly that: “the success an RL application strongly depends on how well the
reward signal frames the goal of the application’s designer and how well the signal assesses progress
in reaching that goal.” It goes on, “for these reasons designing a reward signal is a critical part of
any application of reinforcement learning”. So, it is clear that the message up until now is that the
reward signal is a design component of the environment, and that it is of paramount importance to
the success of agents trained with RL. This has led many RL researchers to ask the same question:
“how do we design the part of the agent’s environment that is responsible for computing each scalar
reward and sending it to the agent at each timestep?” (pg. 469, Sutton & Barto (2018)).

As the case studies in the previous section emphasise, just designing any reward function in an
environment is one thing. But, designing a reward signal so that as an agent learns its behaviour
approaches what the application designer actually wants is a much more challenging task. Not
only challenging, but one that is of great import if RL is to be used in real-world applications
given concerns about value alignment, and reward (mis)design and the undesirable and dangerous
behaviours learned through reward hacking and specification gaming (Knox et al., 2022; Brown
et al., 2021; Krakovna et al., 2020; Christian, 2021).

3.1 Rewards come from humans

Where does reward come from? Humans. But, why? Why do rewards come from humans? This
question can be answered two ways. The first is by answering the question: Why do we care to build
agents which optimise human designed reward functions at all? The answer is alignment: we’d like
agents that behave in accordance with human preferences. The second way to answer the question
is a little more philosophical: Why don’t rewards come from somewhere other than humans? This
is addressed in more depth a little later on, but briefly, the answer is largely for historical reasons
and convenience. Humans are the best source of reward design we have for now.

It might be helpful to consider a historical perspective to gain an appreciation of where the rewards
have come from in previous RL research. The question of where the reward comes from is valid in
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the recent and complex environments of Dota and Go described above, but it is also valid in more
classic, simple domains such as Mountain Car and Cart Pole. In a Cart Pole environment, the agent
must move a cart left and right to balance a pole vertically. The code for this reward is explicitly
defined as part of the environment in both the original pole.c and in the more recent Cart Pole
implementation in Gymnasium. The reward is similar in both, and boils down to the longer the
pole remains upright, the better the agent performs.

So, in the Cart Pole environment, where has the reward come from? The reward has come from
humans. Some human(s) designed the dynamics of the environment (Barto et al., 1983). They
decided what was good and what was better, and what was bad. They designed a reward signal
around those decisions. They Implemented a function that computed that reward signal. That
function provided reward to the agent at every timestep.

Assuming that ’the human(s) involved’ answers the ’where’ question, we can also ask ‘how’ questions.
How did the human(s) convert their subjective opinion of quality into a reward signal interpretable
by the agent? In the Cart Pole example, humans designed it by coding a computable reward signal
for a specific goal in a specific environment. The same method of coding a computable reward
function is what is used in many other environments in Gymnasium (Towers et al., 2023), and
bsuite (Osband et al., 2020), and Chess, Go, etc. The prevailing trend in RL research is for the
humans involved to decide what ‘good behaviour’ looks like and then program a reward function
that an agent modulates its policy to maximise. This is considered a success when the resulting
behaviour is deemed meaningful or intelligent by the humans involved.

This rather brutish coding method is not the only answer to the ‘how’ question. It is one way to
construct an agent-facing proxy of human preference. It is not the only method by which a human
expresses their subjective assessment of intelligent behaviour. It is useful when it is easy to codify a
human preference of good behaviour. Inverse RL is another answer to the ‘how’ question. In inverse
RL, the goal of the agent is to find a reward function from a set of expert demonstrations that could
result in expert behaviour (Ng et al., 2000; Abbeel & Ng, 2004). That is, if an agent is provided
with optimal trajectories which include only states and actions (i.e. no rewards) through some
environment, can that agent recover a reward function that would cause such expert behaviours?
This reward function could then be used to find a good policy – as in apprenticeship learning. Or,
alternatively, some approximation of the expert policy could be learned directly using a supervised
learning technique such as behavioural cloning (Pomerleau, 1988; Sammut et al., 1992). In this way,
the agent could learn an implicit reward function based on the expert trajectories, without ever
explicitly modelling the function itself.

Other answers to the ‘how’ question include Advice and Teaching (Chernova & Thomaz, 2014), and
methods for interactively shaping an agent’s behaviour based directly on human feedback, as in
TAMER (Knox & Stone, 2009). These methods are useful when it is easy and relatively low cost to
elicit human preferences. But, as humans are sometimes noisy, lazy, and/or inconsistent, often these
methods build a human reward model to smooth out the human-delivered reward signal. There are
many more methods for learning reward functions (Sumers et al., 2023), including: 1) learning from
observed actions and inferring rewards, 2) learning from feedback such as comparisons, sketches,
or clickers (as in TAMER), 3) learning from language-based instructions (e.g. converting human
instructions into accomplishable goals), 4) learning from descriptions in existing bodies of text (e.g.
reading the instructions for a video game to understand how to get a high score), 5) learning through
pedagogy as in conversational active teaching and querying in uncertain contexts, and 6) learning
from a large set of expressed human preferences (Christiano et al., 2017).

So, the reward comes from humans, and there are many methods that we can convert our preferences
over a set of agent behaviours. And, many of the resulting reward functions would ultimately
lead to the same, or similar, behaviour. Recently, there has been some work developing principles
of reward design, preferring reward functions that are quickly learnable, or more-easily human
interpretable (Sowerby et al., 2022).
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In addition to questions of ‘where’ and ‘how’, once we appreciate that rewards for agents come from
humans, it is natural to ask: “Who do these rewards come from?” Historically, ‘RL researchers
and their design decisions have answered the’ who’ question. Rewards for agents have come from
expert game designers (as in Chess, Go, Shogi, Stratego, and Diplomacy), or researchers in RL and
in control theory. More recently, as in the Gran Turismo example above, the rewards come from
domain experts. As in the Christiano et al. (2017) paper, the rewards might be learned from a
large set of non-domain expert preferences. There are important socio-technical considerations and
questions of impact and ethics when we consider who is designing and developing reward functions
and who is impacted by the behaviour of agents which learn from these reward signals, especially if
these groups of individuals do not overlap.

3.2 What rewards are there in the real world?

As we design and build general agents these agents will interact in the real world. And, we hope
these agents will act intelligently and meaningfully in the real world. In RL research, we are moving
from a set of environments (e.g. Dota, Cart Pole, Chess, Go, Gran Turismo) to one massive complex
environment: the real world. Given that we do not have access to change the reward function for
the real world, how ought we proceed? To answer this question, it is important to restate what we
are ultimately interested in: agents that behave intelligently as they interact in the real world.

To make progress towards, we can start by optimising for what we are ultimately interested in. This
implies that agents ought to interact in the real world sooner rather than later. It also implies that
we ought to build mechanisms whereby agents have an opportunity to behave intelligently while
humans observe them either during or post-interaction. These situations ought to be those where
humans can express their opinion of more or less intelligent behaviour, but for which it is hard
to encode such an opinion. If the opinion were easy to express as a reward-delivery function in
such a way that an agent maximising the signal would exhibit intelligent behaviour, then such an
alternative approach might be preferred.

4 Where might the reward come from in the future?

The rewards of the future might come from multiple sources. They might come from multiple humans
in a collective community, or the reward functions might evolve due to an evolutionary process
within the agent. Agents might collect trajectories in an environment without a pre-specified reward
function, and then attempt to compute optimal policies for a collection of reward functions (Jin
et al., 2020). Alternatively, the reward function might be based on an internal monologue within
the agent itself, or other agents in the environment might propose reward functions for each other.
These ideas may sound far fetched, but there is already research that explores non-human sources of
reward signals (Schmidhuber, 2010; Singh et al., 2010; Niekum et al., 2011; 2010; Eysenbach et al.,
2018; Wang et al., 2019).

Evolution may be a way forward, and it has led to what many consider to be intelligent behaviour in
humans. So, can agents use search and learning to find reward functions which lead to meaningful
behaviour? Would such agents be able to generate reward signals in one way or another without
direct or indirect human interaction? I think such a reasonable approach could work, but it might
take quite a long time. As well, natural selection has generated biological reward signals in accor-
dance with some fitness functions (e.g. stay fit and have fun) – Where do these come from? Primary
motivators potentially (e.g. get food and find friends) – But, this begs the question: What are the
constraints and primary motivators on these artificial agents? Where do they come from?

However, considering these angles opens up interesting research questions. For example, what might
other reward functions look like for the Atari Learning Environment? Could alternative reward
functions lead to faster learning or better transfer between games? Then again, in the end, who is
to say that the resulting behaviours would be intelligent, meaningful, or interesting? Humans would
be the ultimate subjective assessor of such qualities.
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I believe that rewards will continue to come from humans, as they always have. Reward is defined
by human subjective assessment, just as it has been in every RL environment that I know of – please
correct me if you know otherwise. Thus, we want better ways to convert subjective assessment (e.g.
human preferences) into reward signals that RL agents can optimise for. One promising approach
is to build massive datasets and learn models of reward signals from that data. If we have these
datasets, is RL even necessary? Couldn’t we just do imitation learning? Imitation learning might
tell us what actions to take in similar situations. But, learning the underlying rewards might give
us more information about something more fundamental.

5 How do we get subjective preference data from humans?

Ask them. To elicit preferences, we will need to design new and interesting methods to ask humans
many different questions. For example, we can ask: 1) to define goal states that they want agents
to reach, 2) to define trajectories through states that they want agents to traverse, 3) to definite
tasks they wants agents to perform, 4) to observe trajectories, describe what was accomplished,
and assess success, 5) to describe what they expect an intelligent agent might do, 6) to rank a
set of trajectories. While many of these questions lead to illumination of a human’s preference over
behaviours, we might also use answers from humans to safely guide the efficient exploration of agents
– RL works best when the agent can receive reward, that is base competencies lead to rewarding
states. There are many more modes of interaction which could enable agents to learn how to behave
from humans, and I believe that RL research in this area is absolutely fundamental to understanding
intelligence.

Converting human preferences into reward models is a hard modelling problem. To understand
why, consider what happens if people act irrationally or inconsistently – I’d argue this is a common
occurrence. People often disagree with each other and sometimes disagree with themselves from
one day to the next. While this does not preclude us from attempting to model human preferences,
it makes doing so an important research challenge and one that should include mechanisms for
continual learning, continual adaptation, and alignment with shifting preferences and values.

6 More Recent Examples

There are many recent examples of leveraging human preferences for training of RL models. In Fan
et al. (2022), the authors noted that the cost of meticulously crafting dense rewards was too high.
They note that agents developed in popular RL benchmarks often rely on these task-specific reward
functions to guide random exploration. Therefore they used a combination of programmatic tasks,
human brainstorming, and large language models (GPT-3, (Brown et al., 2020)), to construct tasks
and data to learn a dense, language-conditioned, open-vocabulary, multi-task reward function from
YouTube videos and their transcripts. This function computes a correlation between a language
goal and a 16-frame video snippet. This correlation was then used as a reward function to train a
strong multi-task RL agent.

Similarly, Ziegler et al. (2019) and Ouyang et al. (2022) both follow a similar pattern of using human
preferences to optimise a policy with a reward model using reinforcement learning from human
feedback or RLHF. Both of these works used a large pre-trained language model and a dataset of
human preferences illustrating how RL can be a complimentary learning component to supervised
learning. In these works, the reward is derived from human labelers who rank outputs from a model
from best to worst. These rankings are used to train a reward model which can calculate a reward
for an output to an unseen input. Rewards are used to update the underlying policy using the
proximal policy optimization RL algorithm. There are many more works extending RLHF research
in various ways for adapting language models to particular use cases (Nakano et al., 2022; Wu et al.,
2021; Menick et al., 2022). As we continue to see performance improvements from RL fine-tuning of
language models, there are even advances to remove the human-preference elicitation step by using
RL from AI feedback, or using models to rank the quality of a set of samples (Bai et al., 2022).
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7 Countering Conterpoints

I think it is valuable to consider alternative viewpoints to those presented in this article. As such, I
attempt to address several of the objections that have been raised in this section.

First, RL is focused on researching algorithms regardless of the reward function, any reward will do
and we should not concern ourselves with where it comes from. To this, I often ask how one knows
if an algorithm will work on any reward function if it is not tested on functions that might elicit
interesting behaviours. As well, how can the universality of an algorithm be claimed, when the only
evidence of success is in circumstances when the signal was not only known but designed and defined
by the interrogator. This response is often met with the retort that it is better to study questions in
RL in isolated settings, with easy-to-code and understand reward functions first. To which I’d argue
that toy problems are misleading and actively delay and distract from addressing the hard problem
of satisfying human preferences by behaving interestingly and meaningfully in the real-world.. I
further stress that this mindset incentives working on solving classes of reward functions that are
very unlikely to appear in the real-world.

Others have said that asking questions like “where does the reward come from?” is like asking “where
do the labels in supervised learning come from?” Why don’t we ask similar questions to researchers
in supervised learning? I’d argue that labels most often have come from humans, but automated
labelling exists and is becoming more common. As well, I’d argue that with Model and Dataset
cards, these questions are more well interrogated in Supervised Learning than in RL research. When
I point this out, I’ve heard the response that perhaps designing reward functions is ‘not our problem’
– to this, I’d say: Whose problem is it? We are all involved in the interaction with the machine
learning systems that we design, develop, and disseminate, should we not feel responsible for the
reward function that results in the behaviour exhibited by the agents we train? The follow up that
I have heard at this point is something like: “will the reward always come from humans?” to which
I reiterate: perhaps, but not necessarily. We could imagine agents that reward each other, or even
design each others’ reward functions, but it is probably important what humans think while humans
are around.

What about when humans were not around? Before humans existed, there was likely some form of
reinforcement learning. And it is likely that RL will exist after humans do. In such cases, do human
subjective preferences really matter? Likely not, in the same way that if the only living organism
on earth was a single tree, and it fell down, the sound made would not matter. But, starting about
20,000 years ago, what humans thought started to be relevant for other intelligent beings near earth,
and that is going to continue for the foreseeable future. What about intelligent systems far from
earth? They might be doing RL well out of range of our pesky subjective preferences. But, if we ever
come into contact with them, if we ever share an environment, we might impose our assessments of
intelligence and meaningfulness on their behaviours in the real-world.

8 Concluding Thoughts

There are two questions that often get conflated in RL research:

• What should an agent do to maximise a given reward signal?

• How do we translate our soft specifications for intelligent behaviours into reward signals for
agent maximisation?

The first question is “The RL Problem”: given a reward signal, how do you optimise for it in a data
efficient way? This question views RL as a common model of an intelligent agent, and it assumes
that we agree on the problem to solve. That is, we have a reward signal. It assumes that the solution
to the problem can be learned by maximising a given reward signal, and RL can be used to maximise
the signal.
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The second question is “The Reward Problem”. It is the question of where the reward comes from,
how it is designed, who designs it, and why it might be useful to design in one manner versus another.
The Reward Hypothesis speculates that all goals may be representable by a reward function. But,
even if that is true it doesn’t mean that the reward function can be learned; finding a reward function
which represents a goal may be intractable, and some ways of specifying goals may be preferable (Roy
et al., 2021). The Reward Hypothesis also doesn’t imply that the reward function can be learned
from; a reward function may be so sparse that a rewarding state is never reached for all eternity –
RL doesn’t work as well when the reward is difficult to acquire for the agent, or when the reward is
difficult to codify or curate data to support on the human-side. Finally, intelligent and meaningful
behaviour can depend (as much of it does) on human interaction, or “we’ll know it when we see it”.
The only evaluation you can not get rid of is interaction with humans.

I’d argue that we’ve spent a great deal of time and energy on the first question, and not nearly
enough on the second question. The reward problem is unavoidable and fundamental if we care at
all about using our RL algorithms.

Acknowledgements

This work started as many do as a collection of deep discussions with brilliant people. Thank you
for the engagement and interaction to: Doina Precup, Will Dabney, Patrick Pilarski, David Abel,
Brad Knox, Gheorghe Comanici, Daniel Kasenberg, Ashley Edwards, Danijar Hafner, Joe Marino,
Anna Koop, Adam Santoro, Blake Richards, Chrisantha Fernando, Jonas Degrave, Juliette Love,
Max Schwazer, Marc Bellemare, Tim Harley and many others who shared comments and questions
throughout the preparation of this work. All errors and omissions are mine alone.

References
Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In

Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Yang Bai, Desen Zhou, Songyang Zhang, Jian Wang, Errui Ding, Yu Guan, Yang Long, and Jingdong
Wang. Action quality assessment with temporal parsing transformer, 2022.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics,
(5):834–846, 1983.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Daniel S. Brown, Jordan Schneider, Anca D. Dragan, and Scott Niekum. Value alignment verifica-
tion, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, et al. Language models are few-shot learners, 2020.

Sonia Chernova and Andrea L Thomaz. Robot learning from human teachers. Morgan & Claypool
Publishers, 2014.

Brian Christian. The alignment problem: How can machines learn human values? Atlantic Books,
2021.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep re-
inforcement learning from human preferences. Advances in neural information processing systems,
30, 2017.

Kenji Doya. Reinforcement learning: Computational theory and biological mechanisms. HFSP
journal, 1(1):30, 2007.



RLJ | RLBRew Workshop @ RLC 2024

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function, 2018.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Mar Hicks. Repurposing turing’s" human brake". IEEE Annals of the History of Computing, 30(4):
108–108, 2008.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for
reinforcement learning. In International Conference on Machine Learning, pp. 4870–4879. PMLR,
2020.

W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the fifth international conference on Knowledge capture, pp. 9–16,
2009.

W. Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone. Reward
(mis)design for autonomous driving, 2022.

Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom Everitt, Ramana
Kumar, Zac Kenton, Jan Leike, and Shane Legg. Specification gaming: the flip side of AI ingenu-
ity — deepmindsafetyresearch.medium.com. https://deepmindsafetyresearch.medium.com/
specification-gaming-the-flip-side-of-ai-ingenuity-c85bdb0deeb4, 2020. [Accessed 29-
04-2024].

Jacob Menick, Maja Trebacz, Vladimir Mikulik, John Aslanides, Francis Song, Martin Chadwick,
Mia Glaese, Susannah Young, Lucy Campbell-Gillingham, Geoffrey Irving, and Nat McAleese.
Teaching language models to support answers with verified quotes, 2022.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloun-
dou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman.
Webgpt: Browser-assisted question-answering with human feedback, 2022.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
pp. 2, 2000.

Scott Niekum, Andrew G Barto, and Lee Spector. Genetic programming for reward function search.
IEEE Transactions on Autonomous Mental Development, 2(2):83–90, 2010.

Scott Niekum, Lee Spector, and Andrew Barto. Evolution of reward functions for reinforcement
learning. In Proceedings of the 13th annual conference companion on Genetic and evolutionary
computation, pp. 177–178, 2011.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, Benjamin Van Roy, Richard Sutton,
David Silver, and Hado Van Hasselt. Behaviour suite for reinforcement learning, 2020.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

https://deepmindsafetyresearch.medium.com/specification-gaming-the-flip-side-of-ai-ingenuity-c85bdb0deeb4
https://deepmindsafetyresearch.medium.com/specification-gaming-the-flip-side-of-ai-ingenuity-c85bdb0deeb4


RLJ | RLBRew Workshop @ RLC 2024

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon, and Christopher Pal. Direct behavior
specification via constrained reinforcement learning. arXiv preprint arXiv:2112.12228, 2021.

Claude Sammut, Scott Hurst, Dana Kedzier, and Donald Michie. Learning to fly. In Machine
Learning Proceedings 1992, pp. 385–393. Elsevier, 1992.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
transactions on autonomous mental development, 2(3):230–247, 2010.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from. In Proceedings
of the annual conference of the cognitive science society, pp. 2601–2606. Cognitive Science Society,
2009.

Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. Intrinsically motivated
reinforcement learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental
Development, 2(2):70–82, 2010.

Henry Sowerby, Zhiyuan Zhou, and Michael L Littman. Designing rewards for fast learning. arXiv
preprint arXiv:2205.15400, 2022.

Theodore R Sumers, Mark K Ho, Robert D Hawkins, and Thomas L Griffiths. Show or tell?
exploring when (and why) teaching with language outperforms demonstration. Cognition, 232:
105326, 2023.

Richard Sutton. The bitter lesson. Incomplete Ideas (blog), 13(1):38, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023. URL https://zenodo.org/record/8127025.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, and Paul Chris-
tiano. Recursively summarizing books with human feedback, 2021.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al.
Outracing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):
223–228, 2022.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

https://zenodo.org/record/8127025

