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Abstract

Adaptive learning in dynamic environments presents significant challenges in rein-
forcement learning, especially when the environment’s rules change unpredictably.
This study introduces an enhanced Deep Q-Network (DQN) architecture designed
to effectively handle non-stationary environments, with a focus on the Wisconsin
Card Sorting Test (WCST) as a representative problem. Unlike conventional DQN
approaches that struggle with rule changes, our method integrates rule context di-
rectly into the state space, allowing the agent to adapt its strategy dynamically.
We detail the modifications to the traditional DQN architecture, which include ex-
tending the input state with rule-specific information and adapting the network
to process these extended states efficiently. Experimental results demonstrate that
our adaptive DQN significantly outperforms traditional DQN models in terms of
flexibility and accuracy in the WCST, showcasing its potential to generalize across
different types of non-stationary environments. This approach not only enhances
the agent’s performance but also contributes to the broader application of deep
reinforcement learning in complex, changing systems.

1 Introduction

Adapting to dynamic environments is a cornerstone challenge in the field of reinforcement learning
(RL). Traditional RL methods often assume stationary environments, where the underlying dy-
namics and reward structures do not change over time. However, many real-world applications,
from financial markets to adaptive control systems, are inherently non-stationary, where rules and
conditions can shift unpredictably. This non-stationarity can severely hinder the performance of
conventional RL agents due to their inability to adapt to new environmental conditions without
retraining from scratch.

The Wisconsin Card Sorting Test (WCST) is a classical psychological test that exemplifies a non-
stationary environment. In the WCST, subjects must discover the sorting rule (e.g., color, shape, or
number) based on feedback and adapt their strategy when the rule changes without warning. This
test has been a benchmark in cognitive psychology to assess executive function and flexibility in task
switching, and it poses unique challenges for RL algorithms due to its rule-changing dynamics. The
Wisconsin Card Sorting Test serves as a psychological assessment tool aimed at gauging cognitive
flexibility in individuals exhibiting decision-making deficits, often indicative of frontal lobe dysfunc-
tion.It has long stood as a benchmark in cognitive psychology, challenging individuals’ cognitive
flexibility, working memory, and problem-solving abilities, (Bock & Alexandre (2019)). Introduced
by Heaton (1981), the WCST requires the participant to sort a set of cards according to implicit
rules and based on the limited corrective feedback provided by the examiner. The participant’s re-
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sponses can be analyzed to produce separate indices of sources of difficulty on the test. The value of
the WCST, therefore, lies in its sensitivity for detecting and characterizing aspects of executive dys-
function. The WCST consists of two identical sets of 64 response cards that differ on three possible
perceptual sorting dimensions: color (red, blue, yellow, or green), form (crosses, circles, triangles, or
stars), and number of figures (one, two, three, or four). Four target cards that represent the range of
dimensions (one red triangle, two green stars, three yellow crosses, and four blue circles) are placed
in a prescribed order in front of the participant. On each trial, a response is requested that assigns
the current target card to one of four simultaneously presented key cards. The task is selecting on
each trial the key card that shares the feature with to be prioritized rule contingent target feature
(Kopp et al. (2023)). This matching is done in reference to four predefined cards. Crucially, the
rule governing the matching process must be deduced through trial and error, and it may change
unexpectedly (see fig. 1). The test evaluates the subject’s capacity to adapt to such rule changes.
Traditionally, performance on the WCST has been analyzed through manual scoring methods or
basic reinforcement learning (RL) algorithms. However, these approaches often struggle to capture
the dynamic and non-stationary nature of the WCST, which involves rule changes that challenge
the adaptability of the participant. Over the years, researchers have employed various approaches
to tackle this intricate problem, ranging from heuristic-based strategies to rule-based models. How-
ever, despite the diverse methodologies employed, a notable gap exists in the exploration of Deep
Reinforcement Learning (Deep RL) techniques to enhance WCST performance.

Traditional Deep Q-Networks (DQN), introduced by Mnih et al. (2013), revolutionized the field of
RL through their ability to combine deep neural networks with Q-learning, achieving superhuman
performance in various Atari 2600 games. However, the standard DQN architecture also struggles
with tasks like the WCST where the environment’s rules can change within a single episode. These
challenges are primarily due to the static nature of the learned policies in standard DQN frameworks,
which do not account for the environment’s dynamic aspects. Recent advances have sought to
extend DQN architectures to better handle such environments. Techniques such as meta-learning,
which aims to train models on a variety of tasks that enable fast adaptation to new tasks (Finn
et al. (2017)), and modular networks that dynamically reconfigure their structure in response to
environmental changes, offer promising directions. However, these methods can be complex and
computationally intensive.

In this paper, we propose a novel approach to enhancing DQN for dynamic environments by inte-
grating the rule context directly into the state representation. This method allows the DQN agent
to maintain awareness of the current rule as part of its decision-making process, thereby adapt-
ing its policy in response to changes without the need for retraining or human intervention. We
demonstrate the effectiveness of our approach through extensive experiments on a simulated WCST
environment, comparing our results against traditional DQN models to highlight the benefits of our
method. Code is available on github 1.

The paper is structured as follows: Section 2 reviews related work in the domain of adaptive rein-
forcement learning and its application to non-stationary environments. Section 3 and 4 describes our
enhanced DQN architecture and the modifications made to adapt it to the WCST. Section 5 presents
our experimental setup, results, and a discussion of our findings. Finally, Section 6 concludes the
paper with a summary of our contributions and potential avenues for future research.

2 Related work

The Wisconsin Card Sorting Test (WCST) has been a subject of extensive study in both neuroscience
and artificial intelligence, serving as a benchmark to assess the ability of systems to learn and adapt
to changing rules and conditions. Several approaches have been undertaken to tackle the WCST,
each offering insights into handling non-stationary problems with varying degrees of success.

1https://github.com/dfangnon/NS-DQN_WCST
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Early work in adapting RL to non-stationary environments often involved modifying traditional
algorithms to better handle changing conditions. Methods such as learning rate adjustments (
Sutton et al. (2016)) and sliding window techniques (Kaelbling (1993)) were proposed to update
the agent’s knowledge base continuously without discarding the relevance of past learning. More
sophisticated approaches, like the use of ensemble techniques (Dietterich et al. (2002)), have been
utilized to maintain multiple hypotheses of potential environment dynamics simultaneously.

With the advent of Deep Q-Networks (DQN) by Mnih et al. (2013), there was a shift towards
integrating deep learning with RL, leading to significant performance gains in several benchmark
tasks. However, the application of DQN to non-stationary environments exposed its limitations due
to the static nature of its learning architecture. Researchers have proposed several enhancements to
DQN for dynamic settings, such as the use of recurrent neural networks (RNNs) to capture temporal
dependencies within the environment (Tschiatschek et al. (2018)) and the incorporation of external
memory units to store past experiences selectively.

Steinke et al. (2019) proposed a hybrid method combining machine learning algorithms and cognitive
theories to address the challenges posed by the WCST. Their approach, while innovative, relied on
predefined rule sets and lacked the continuous adaptability required for non-stationary environments.
Our method improves upon this by using a DQN that adjusts its strategy in response to real-time
changes, reflecting more closely the demands of continuously evolving tasks.

Qin et al. (2022) introduced a technique for non-stationary representation learning in sequential
linear bandits, which could be beneficial for tasks like WCST that require adaptation to evolving
rules. Their algorithm efficiently transfers learned representations across changing tasks, which
is theoretically appealing. However, unlike our approach, it does not integrate these capabilities
within a neural framework, potentially limiting its applicability in deep learning contexts where
direct integration with neural networks can enhance performance and adaptability.

Our method synthesizes insights from these diverse approaches, embedding rule adaptability within
the neural architecture itself. This not only simplifies the model’s structure by eliminating the
need for external rule management mechanisms but also enhances its responsiveness to changing
environmental conditions. By integrating the rule context directly into the state inputs of the DQN,
our approach offers a robust solution to the challenges of non-stationary environments, demonstrating
superior performance and flexibility compared to traditional models.

Figure 1: The patient must place each response card under 1 of the 4 reference cards, and is then
told by the experimenter whether the choice was right or wrong. On the basis of this feedback, the
patient must discover the correct sorting rule: color, number, or form Dehaene & Changeux (1991)

3 RL model for non-stationary environments

3.1 Reinforcement learning

Reinforcement learning is one of the machine learning methods, which learns to perform serial actions
according to situations in order to maximize the reward signal by trial-and-error search (Sutton &
Barto (1999)). Unlike supervised learning which learns from a training set of labeled examples,
reinforcement learning learns from its own experience of interaction with all kinds of situations;
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in addition, reinforcement learning differs from unsupervised learning as it aims to maximize the
reward signal rather than find the hidden structure of the data. In recent decades, reinforcement
learning has been proved effective in solving decision-making problems.

3.2 Markov Decision Process and RL algorithms in non-stationary environments

Technically speaking, the non-stationarity of the building environment mainly refers to the fact that
the state transition probability P and reward function R are non-stationary. They are changing
along with some internal or external factors. To be more concrete, even though the instant states
(e.g., indoor air temperature) are similar in different periods, the building state evolutions can be
different. It is insufficient to describe such a control problem as a stable MDP. Thus, Padakandla
et al. (2020) defined MDP in non-stationary environments as below:

Given a family of MDPs {Mθ}θ∈N+
, where θ takes values from a finite index set Θ, Mθ =

⟨S, A, Pθ, Rθ⟩ with the same state and action spaces and different transition probability distributions
and reward functions. Each MDP in the family is called a context.

3.3 Non-Stationary MDP Formulation for WCST

Given a set of possible rules Θ = θ1, θ2, θ3 that dictate the matching criterion (e.g., color, shape,
number), the environment can be described by a family of MDPs Mθ, θ ∈ Θ. Each MDP, Mθ =
⟨S, A, Pθ, Rθ⟩, shares the same state and action spaces but has different transition probabilities and
reward functions depending on the rule θ in effect.

• Transition Probabilities and Rule Dynamics: The state transition probabilities are
influenced by the active rule, reflecting how the rule change affects the environment’s dy-
namics:

P (st+1 = s′ | st = s, at = a, θt = θ) =


Pθ0 (s′ | s, a) if t < T1

Pθ1 (s′ | s, a) if T1 ≤ t < T2
...

Where θt represents the rule active at time t, and Ti denotes the timestep at which a rule
change occurs, transitioning from one context (rule) to another.

• Reward Function: Similarly, the reward function is contingent upon the current rule,
underscoring how rewards are aligned with the rule-based objectives:

R(s, a, θ) =


Rθ0(s, a) if t < T1

Rθ1(s, a) if T1 ≤ t < T2
...

• Rule Change Mechanism: The rule change is modeled as a stochastic process governed
by a probability ρ(θ′ | θ), determining the likelihood of transitioning from rule θ to θ′:

θt+1 ∼ ρ (θ′ | θt) .

According to the literature concerning the test, the rules are changed periodically, after two
or three consecutive wins in the same order. It should be noted here that our method has
increased the complexity of the test: a) the rules change randomly at a given probability,
not after a certain number of wins as in other cases by default; b) moreover, the rules are
changed in random order and not in a set order. So we specify here that this is a more
complex variant of the test.
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This mathematical framework allows us to explicitly incorporate the rule dynamics into the learning
process of the DQN agent, facilitating the development of strategies that are robust to the changing
conditions of the task.

4 Methodology

4.1 Deep Q Network

Deep Q Network (DQN) combines Q-learning and deep neural network. As mentioned before, Q-
learning is a value-based method. It learns a lookup table called a Q-table to store Q-values for
specific state-action (s, a) pairs. Thus, Q-learning is also called tabular Q-learning. The Q-values
are updated by the experience tuple (st, at, rt, st+1) every iteration the agent interacts with the
environment. The update rule is based on the Bellman equation:

Q(s, a) = Q(s, a) + α (r + γ maxa′ Q (s′, a′) − Q(s, a))

where α is the learning rate and γ is the discount factor. Tabular Q-learning methods suffer from
explosive memory for tracking tremendous state-action pairs when faced with MDP with large size.

4.2 Enhancements to the DQN Architecture for WCST (Our WCST NS-DQN)

• Integration of Rule Context into the State Space: The state vector in our DQN
model is augmented by appending the current rule as an additional feature. This inclu-
sion transforms the state space S into an extended space S′, where each state s′ ∈ S′ is
represented as:

s′ = (s, r)

Here, s denotes the original state from the environment, and r is an integer representing the
current rule. This augmentation allows the network to be sensitive to the context set by the
current rule, enabling it to adapt its policy based on the rule’s constraints and objectives.

• Architectural Changes: To process the augmented state space effectively, we have made
modifications to the architecture of the neural network used in the DQN. The input layer
is resized to accept the dimensionality of S′, and the architecture is adapted as follows:
- The input layer now has n+1 units, where n is the number of features in the original state
space, and the additional unit is for the rule feature.
- Additional neurons in subsequent layers to manage the increased complexity and maintain
the network’s capacity for learning detailed patterns.

The core of the DQN learning process remains the optimization of the Q-value function, which
estimates the value of taking an action a in a given state s under policy π. The Q-values are
updated using the Bellman equation as follows:

Qnew (s, a) = Q(s, a) + α
[
r + γ max

a′
Q (s′, a′) − Q(s, a)

]
Where: α is the learning rate, r is the reward received after taking action a in state s, γ is the
discount factor, s′ is the new state after action a is taken, maxa′ Q (s′, a′) represents the highest
Q-value achievable from the new state s′.

By integrating the rule context into the state space and adjusting the DQN architecture, our en-
hanced model not only responds adaptively to rule changes within the WCST but also improves
decision-making accuracy in dynamic, non-stationary environments. These capabilities are essential
for tasks where rules and objectives evolve over time, necessitating a flexible and context-aware
learning approach.
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5 Experiments

5.1 WCST Environment Description

The Wisconsin Card Sorting Test (WCST) presents a dynamic environment mimicking a psycholog-
ical test used to evaluate executive function and cognitive flexibility. Participants must sort cards
by different attributes color, shape, or number without being explicitly informed of the current sort-
ing rule. The environment simulates this by requiring agents to determine the sorting rule from
environmental cues and rewards.

The environment is defined by the following components:

• Action Space: The agent can take one of four discrete actions at each step, each corre-
sponding to selecting one of four possible card categories for sorting.

• State Space: A multi-dimensional vector represents the observable attributes of the current
card, including color, shape, and number. These features are numerically encoded and form
the input state vector for the agent’s decision-making process.

• Rule Dynamics: The underlying rule that dictates the correct card category changes
unpredictably after a series of successful sorts. This rule change is not communicated directly
to the agent; instead, the agent must deduce the change from the rewards and penalties
received from its actions.

Observation and Reward Structure: At each step, the agent receives an observation that
includes the features of the presented card and a reward signal. The reward signal is binary, with
a positive reward for a correct match according to the current, but unknown, rule, and a negative
reward for an incorrect match. The immediate change in reward following a sequence of correct
actions signals a rule change, prompting the agent to adapt its strategy.

This WCST environment is an abstract simulation designed to challenge and train cognitive adapt-
ability. Success in this environment relies on the agent’s ability to quickly adapt to changing rules—a
capacity that stands at the core of flexible, intelligent behavior and is crucial for navigating non-
stationary, real-world scenarios.

5.2 Agent Evaluation and Comparative Analysis

To validate the performance of our Non-Stationary Deep Q-Network (NS-DQN) agent, we bench-
marked its performance against a baseline DQN agent and a random agent. The key metrics for
evaluation were cumulative reward, accuracy, and error rate across multiple episodes.

5.2.1 Evaluation Metrics:

• Cumulative Reward: The sum of rewards obtained by the agent throughout an episode,
serving as a measure of overall effectiveness in rule identification and adaptation.

• Accuracy: The proportion of the agent’s actions that resulted in positive feedback, reflect-
ing the ability to correctly identify and sort cards based on the current rule.

• Error Rate: The frequency of incorrect actions taken by the agent, indicating the chal-
lenges faced in rule discernment and execution of the task.

5.2.2 Agent Descriptions:

• Random Agent: Acts without any learning or strategy, choosing actions uniformly at
random, providing a baseline for the minimum expected performance.
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• Baseline DQN Agent: Employs a standard DQN architecture without enhancements for
non-stationary environments, offering a comparison against a well-established benchmark.

• NS-DQN Agent: Our proposed agent that integrates rule context into the state represen-
tation and adapts its neural network architecture to accommodate the dynamic nature of
the WCST environment.

5.3 Results and Discussion

In this section, we evaluate the performance of each agent within the non-stationary environment,
training them across three distinct episode counts until convergence is observed: 100, 500, and 1000
episodes.

The results depicted in the figures 2 below highlight the individual performance of each agent,
assessed by the cumulative rewards earned over the respective number of episodes. It is evident
from the data that the baseline DQN agent significantly outperforms the random agent. However,
our novel agent, designated as WCST NS-DQN, demonstrates superior performance over the baseline
DQN in all episode intervals. These findings are corroborated by the comparative analysis presented
in figure 3.

Figure 2: The performance of the three agents over 500 episodes in the non-stationary environment

From the figure 3 below, the cumulative reward achieved by the WCST NS-DQN agent consistently
surpassed that of the baseline DQN, as well as the random agent, which performed as expected with
the lowest cumulative reward. Notably, the NS-DQN agent demonstrated a remarkable increase in
accuracy and a significant reduction in the error rate when compared to its counterparts.

The baseline DQN agent showed limitations in adapting to the changing rules, as indicated by its
moderate accuracy and higher error rate compared to the NS-DQN agent.

The random agent’s performance served as a critical control, ensuring that the improvements ob-
served in the WCST NS-DQN agent were due to its architectural enhancements and not random
chance.

These results highlight the NS-DQN agent’s superior ability to navigate the complex, non-stationary
landscape of the WCST environment. Its performance accentuates the importance of architectural
considerations in the development of RL agents for dynamic problem spaces.

Figure 3: The performance of the three agents over 100, 500 & 1000 episodes in the non-stationary
environment
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Table 1: Performance comparison of agents on WCST Over varying episodes.

Episodes Metrics Random Agent Baseline DQN Agent WCST NS - Agent
100 Accuracy 24.35 38.93 41.14

Error Rate 75.65 61.07 58.77
Number of wins 800 1289 1375

500 Accuracy 24.66 52.56 71.42
Error Rate 75.34 47.34 28.38

Number of wins 4097 8765 11839
1000 Accuracy 25.34 57.9 77.19

Error Rate 74.71 42.13 22.64
Number of wins 8422 19358 25569

The table 1 provides a comparative analysis of three different agents in terms of accuracy, error
rate, and the number of wins over a series of episodes on the Wisconsin Card Sorting Test (WCST).
It showcases the performance evolution as the number of episodes reflecting the agent’s experience
increases. For a baseline comparison, a random agent is used, which presumably selects actions
without learning or strategy, resulting in low accuracy and a high error rate across all episodes. This
agent’s performance is static and does not improve with more episodes, as evidenced by the relatively
consistent accuracy and error rates. The Baseline DQN Agent shows a marked improvement over
the random agent. As the number of episodes increases, there is a notable improvement in accuracy
and a reduction in the error rate. This progression suggests that the DQN agent is learning from
its experience, refining its policy to improve its decision-making process. The WCST NS (Non-
Stationary) - Agent, which is the focus of the study, shows a superior performance to both the random
agent and the Baseline DQN Agent. Starting at 100 episodes, it already surpasses the Baseline DQN
Agent with a higher accuracy and lower error rate. This trend continues as the number of episodes
grows, indicating that the NS-DQN agent is effectively adapting to the non-stationary environment
and learning more efficiently. By 1000 episodes, the NS-DQN agent’s accuracy exceeds 77%, with
an error rate that has decreased to approximately 22%, substantially outperforming the baseline
agents.

The consistent improvement in accuracy and reduction in error rate, coupled with an increasing
number of wins, demonstrate that the NS-DQN agent’s learning mechanism is more suited to the
complexities of the WCST environment. Its capability to adapt to changing rules without explicit
notification significantly enhances its performance, highlighting the efficacy of incorporating non-
stationarity into the learning algorithm.

6 Conclusion

In conclusion, our study presented a novel approach to the Wisconsin Card Sorting Test (WCST)
through the Non-Stationary Deep Q-Network (NS-DQN). This method’s ability to integrate the
changing rule context directly into the state space represents a significant advancement in handling
non-stationary environments. The enhanced DQN model not only demonstrates superior adaptabil-
ity and learning efficiency but also shows remarkable improvements in decision-making capabilities.
The comparative analysis between the NS-DQN agent, a baseline DQN agent, and a random agent
across a spectrum of episodes illustrates the effectiveness of our approach. The NS-DQN agent
consistently outperformed the baseline DQN agent with higher accuracy, lower error rates, and a
greater number of wins. These results underscore the potential of NS-DQN in environments where
adaptability to dynamic changes is crucial.
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