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Abstract

General value functions (GVFs) provide a reinforcement learning (RL) framework
for learning predictive knowledge that can improve policy learning. Traditionally,
the predictive questions that learned GVFs have to answer were hand-designed to be
relevant to the task at hand. However, useful questions can also be automatically
discovered by an auxiliary network that is trained via a meta-gradient approach
which directly optimizes for the RL loss. Recent work introduced object-centric
GVFs, which use a slot-based representation as input to this question network to
facilitate discovery of GVFs that make predictions about objects in environments
with visual observations. In this work, we explore several improvements over this
architecture and propose to leverage only the meta-gradient information to steer
object discovery towards task-relevant features.

1 Introduction

General value functions (GVFs) (Sutton et al., 2011) can be used to derive predictive knowledge about
the environment in a reinforcement learning (RL) setting. Akin to value functions that describe
expected cumulative rewards in an Markov decision processes (MDP) setting, GVFs describe the
expected cumulative sum of other scalar quantities than rewards. These quantities, or cumulants
can either be hand-crafted (Sutton et al., 2011; Jaderberg et al., 2016) or learned in a goal-directed
manner (Veeriah et al., 2019; Kearney et al., 2022; Nath et al., 2023). GVFs can be used as auxiliary
tasks that facilitate representation learning for the main task (Veeriah et al., 2019) or they can
directly be used as state inputs (Kearney et al., 2022). However, simultaneous learning of policies,
cumulants and discount factors that together specify GVFs is a difficult optimization problem. If,
however, we restrict the problem space to involve only on-policy GVFs, the problem of cumulant
discovery becomes tractable, because we do not need any importance sampling. Nath et al. (2023)
describe an approach of learning GVFs from visual observations to be used directly as state inputs.
Their approach focuses on learning a limited number of GVFs, each associated with a single object.
The set of objects is derived using slot attention (Locatello et al., 2020) and the overall architecture
has been shown to work well.

However, this process is heavily dependent on the good separation of objects of slot attention, which
may not always develop in most domains. Additionally, slot attention can only distinguish objects by
pixel-matching using a reconstruction loss, and as a result, objects that differ by any other topology
will not be properly distinguished by slot attention. In our work, we remove reconstructive slot
attention training altogether, and only use the encoder of slot attention to capture task-specific
features in the slots. We show that this simpler architecture performs on par with the architecture
from Nath et al. (2023) that trains the slot attention module via reconstruction.

The main contributions of our paper are as follows:
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• We demonstrate that adding discount prediction, aligning learned GVFs and cumulants via
the Hungarian algorithm, and using Huber TD losses instead of mean-squared TD losses to
the overall architecture of Nath et al. (2023) improves its performance.

• Using a reconstructive objective for learning object-centric cumulants is not essential for
good performance in limited GVF regime; similar performance can be obtained even in the
absence of the full slot attention framework, using just the meta-gradients from the main
RL loss.

2 Background

Auxiliary tasks learned in parallel with the main RL task can aid representation learning by providing
an additional learning signal, for instance via modeling predictive knowledge. This can be useful
particularly in sparse or noisy reward environments and prevent over-fitting to the current rewards.

General Value Functions (GVFs): A natural candidate for predicting auxiliary tasks are
GVFs (Sutton et al., 2011). They are value functions which instead of discounted returns pre-
dict discounted sums of “cumulants” that are specified as a function of the environment state. Just
like the usual value functions in RL, GVFs can be learned using Temporal Difference (TD) Errors.
Given an MDP, the GVF for a particular state-action pair (s, a) would be:

QGV F (s, a; π, γ, c) = E[Gt|st, at, At+1:T −1 ∼ π]

where, Gt is the discounted sum of cumulants with discounting factor γ, over a trajectory length T .
The definition assumes that we are following a policy π and the returns are calculated based on the
cumulants c, which can be arbitrary. Sutton et al. (2011) showed the utility of using GVFs to learn
predictive knowledge about the environment.

Using GVFs as Auxiliary Tasks: Jaderberg et al. (2016) popularized the idea of using GVFs as
auxiliary tasks as a way to improve representation learning in RL. The auxiliary tasks designed for
that work were hand-crafted like pixel-control, feature-control based on changes in pixel intensities,
and feature activations, respectively. However, to fully appreciate the utility of using GVFs as
auxiliary tasks, we need to automatically discover good cumulants for these GVFs. Veeriah et al.
(2019) developed an approach for automatically discovering such cumulants, which employs meta-
gradients (Xu et al., 2018) to automatically learn task-specific cumulants driven by the main RL
loss. They show that learning cumulants this way actually can help in learning the main task much
faster. This phenomenon of discovering useful cumulants is called discovery.

Discovery of Cumulants: The term discovery denotes the automatic acquisition of cumulants
that assist in the primary task, termed useful cumulants. The proposed approach of Veeriah et al.
(2019) alternates between steps for discovery of pertinent predictive questions in the form of cumulant
functions that are beneficial for mastering the primary task and estimation of corresponding answers
in the form of GVFs. The key concept underlying cumulant discovery lies in leveraging a question
network with meta-learnable parameters, which allows the agent to autonomously discover questions.
The main network is an RL agent’s value network with additional heads for estimating predictive
answers in the form of general values. The loss of the main network is composed of the RL TD loss
and the TD losses of the GVFs. Veeriah et al. (2019) propose the following meta-gradient method
for discovery of useful GVF:

1. perform a fixed number of updates of the main network’s parameters using cumulants of
the question network with frozen parameters, retaining the computational graph for the
sequence of updates.

2. evaluate the RL TD loss with the latest set of main network parameters
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Figure 1: Sketch of the proposed architecture and gradient backpropagation pathways. The question
network including the slot attention encoder gets updated with the meta-gradients from the main
network. This encourages not only the cumulants to be task-specific, but slot formation is also
influenced by the main RL loss, which helps slot attention focus on task-relevant features.

3. backpropagate the RL loss through the differentiable graph of main network updates into
the question network’s parameters (via the cumulants in the GVF TD losses).

This approach drives the discovery of cumulants that directly minimize the task TD loss. Learned
scalar GVFs can themselves be useful to generate a compact set of features that can be used to
directly learn the main task. Kearney et al. (2022) extended the agent’s representation with learned
GVFs for control within RL. In essence, they concatenate the GVF predictions based on the learning
process of the control agent and directly employ these predictions as features for enhancing the
control policy.

More recently, Nath et al. (2023) developed a framework for learning cumulants in a limited GVF
regime. This is achieved by attaching each GVF prediction to individual objects in the environment.
Slot Attention (Locatello et al., 2020) has been shown to successfully learn to identify and localize
objects within an image into a set of distinct slots. This paper utilizes slot attention to tie each
cumulant prediction to these generated slots. This forces the learned GVFs to carry significantly
more abstract information, thereby potentially expediting performance improvements in challenging
tasks.

3 Methodology

Similar to Nath et al. (2023), we use a two-network architecture, consisting of a question network that
maps an object-centric slot representation (Locatello et al., 2020)

{
Slot1

t , . . . , SlotK
t

}
, Sloti

t ∈ RD to
cumulants ci ∈ R, each defining a general value function Qi

t = ci
t + γQi

t+1, and a main network that
is trained to predict the RL task value Qt = rt + γQt+1 and the GVFs Qi

t.

Question Network: The question network, depicted in Figure 1 on the left, processes batches
of state observations unrolled from the replay buffer as inputs. Utilizing a slot attention mecha-
nism, these inputs are transformed into slots, representing discovered objects from the images, each
carrying object features. Slots are then separately mapped to corresponding GVF cumulants via
a shared network. The network architecture is the same as in Nath et al. (2023). However, Nath
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et al. (2023) train the slot attention module separately via a reconstruction objective using an au-
toencoder architecture and metagradients are only used to learn the cumulant network. This was
done in phases interspersed with meta-gradient update steps. Although using the reconstruction
loss enabled the slot attention module to capture objects well, the objects captured need not be
task-specific, and thus it can capture irrelevant objects as well. We propose to instead also train
the slot attention module leveraging information from the back-propagated meta-gradients. This
encourages slot discovery to focus more on the features relevant to the main task.

The cumulant network consists of shared per-slot feed-forward layers that output scalar cumulants.
Given the iterative competition of randomly initialized slots in the slot attention module, the re-
sulting slot-based representation and the resulting cumulants can be arbitrarily permuted. Similar
to the set-prediction experiments in Locatello et al. (2020), we align cumulants with GVF heads of
the main network by using the Hungarian Algorithm (Kuhn, 1955) to minimize the overall GVF
loss. We observed this detail to be essential for stabilizing convergence of the model, since both the
cumulants and GVF heads used in the GVF losses are updated continuously during training.

In addition to learning cumulants for each GVF, we also added discount prediction (Veeriah et al.,
2019) to the architecture from Nath et al. (2023).

Main network In the architecture depicted in Figure 1, the main network, located on the right
side, manages the training process for the representation, GVFs and the main RL model. In the
main network, a convolutional neural network (CNN) provides a representation ϕ of the input image,
followed by K GVF prediction heads. The concatenation of predicted general values V i

t is projected,
concatenated with ϕ, and then passed through layer normalization Ba et al. (2016) for stable learning.
Lastly, a linear layer outputs a prediction of the RL value function.

The primary difference from Nath et al. (2023) in the main network is the use of the Huber TD
loss for training the GVFs instead of the mean-squared TD loss, since it is more robust to outliers.
Because GVFs are trained off-policy, they can diverge more quickly. We found that using the Huber
loss alleviates this problem somewhat and helps to keep the magnitude of GVFs bounded. This also
allows the use of action value GVFs because of the lower occurrence of divergent GVFs.

Training We leverage the same training protocol as Nath et al. (2023), with the following mod-
ifications. The main network parameters θ are trained via Huber TD losses of the last layer’s RL
value head and the Huber TD losses of the GVF heads instead of the corresponding mean-squared
error terms. In the question network, we also train the slot-attention parameters via meta-gradients
instead of the reconstruction objective.

4 Experiments

We compare performances of our proposed method — OC GVFs (no reconstruction) — with object-
centric GVF (OC-GVF) (Nath et al., 2023), Discovery using Auxiliary Tasks (Dis-Aux) Veeriah
et al. (2019), random GVFs and the double DQN baseline on on CollectObjects (Nath et al., 2023)
and MiniGrid Dynamic Obstacles (Chevalier-Boisvert et al., 2023). We also present an adaptation
of OC-GVF that uses all of our proposed changes, except that the slot-attention module is trained
with reconstruction instead of meta-gradients.

From Figure 2, we observe that adding discount prediction, alignment using the Hungarian algorithm
and Huber Loss has improved the performance of the original OC-GVFs (Nath et al., 2023), with our
implementation showing improved policy convergence and less variance across both Collect Objects
and MiniGrid Dynamic Obstacles.
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Figure 2: Performance of proposed algorithms in comparison to the baselines. All algorithms are
compared across 10 independent runs, with the shaded area representing standard error. These plots
highlight that the meta gradient alone is enough to achieve good performance in these environments,
and can sometimes work even better than reconstruction loss as in (a).

5 Discussion

We study several improvements to the method for GVF discovery proposed by Nath et al. (2023).
Several architectural choices make convergence more robust and allow leveraging the task-driven
meta-gradient instead of an unsupervised reconstruction loss to train the slot-attention module. In
our experiments, we show that our design choices improve the performance of the original method
and that meta-gradients can be used to train the slot attention module. One limitation is that
slots discovered via meta-gradients may be less task-agnostic than the object-centric representation
learned via an unsupervised reconstruction objective, limiting the potential for transfer learning.
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