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Abstract

Reinforcement learning agents perform poorly when faced with unseen dynamics.
Recent work on Behaviour Foundation Models (BFMs) has produced agents capa-
ble of solving many unseen tasks in an environment assuming consistency between
the dynamics described by the pre-training dataset and the testing environment. In
this preliminary work, we relax this assumption and ask: can BFMs return perfor-
mant policies for tasks in environments with different dynamics to that seen during
training? We build on work that compensates for differences in dynamics by modi-
fying the reward function the agent is trained against. We show that if the BFM’s
policy is prompted correctly, we can elicit behaviour required to solve a specific set
of dynamics generalisation problems. We report some preliminary experiments on
the ExORL benchmark and discuss next steps.

1 Introduction

Reinforcement Learning (RL) agents [43] struggle to adapt to novel contexts [28]. Recent work
on Behaviour Foundation Models (BFMs) has shown agents can be pre-trained to solve many
unseen tasks in an environment, subject to an assumed consistency between the dynamics of the
pre-training dataset and testing environment [47, 38, 35, 25]. In this preliminary work, we relax this
assumption and ask: can BFMs return policies for tasks in environments with different dynamics
to that seen during training? Our response builds on past work that compensates for differences in
dynamics by modifying the reward function the agent is trained against [15]. The key idea is that
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Figure 1: Contextual behaviour foundation models. (a) A BFM is pre-trained to solve any downstream
task in a source environment. (b) An exploratory policy collects data in the test-time dynamics, and a binary
classifier is trained to infer transitions that are not possible in the source environment and relabels them
with low reward. (c) The BFMs policy is conditioned on the relabelled rewards to return a policy with
high-reward on the test-time dynamics.
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because a BFM is pre-trained to return a policy for any reward function, it should have a policy
that is performant under a range of changed dynamics if these changed dynamics can be codified as
reward functions. Following [15], we find performant policies on unseen dynamics by updating the
rewards used to prompt the BFM’s policy such that trajectories that are possible and high reward
in the test domain are elicited (Figure 1). We demonstrate the effectiveness of our approach with
some preliminary experiments and discuss future work that will further test the method.

2 Preliminaries

Contextual markov decision processes. A Contextual Markov Decision Process (CMDP)
is defined by {C, S, A, R, ρ, γ, M(c)}. C is the set of contexts, S and A are sets of states and
actions, R : S × A → R is a reward-function, γ is a discount factor, and ρ is the initial state
distribution [20]. M is a function that maps a context c ∈ C to a Markov Decision Process (MDP)
M(c) = {S, A, R, ρ, γ, T c} with a context-dependent transition function T c : S × A × C → S. A
policy π : S → ∆(A) is optimal in context c for reward function R if it maximises the expected
discounted future reward i.e. π∗

c,R = arg maxπ E(γtR(st, at)|s0, a0, π, c).

Behaviour foundation models. BFMs use unsupervised RL to pre-train an adaptive policy to
solve any downstream task in an environment. Different BFM backbones have been explored with
most leveraging successor measures [6, 46, 47, 25] or successor features [4, 7, 35]. We use a forward-
backward (FB) BFM as our backbone because of its strong empirical zero-shot RL performance,
though for this work the type of BFM we use is unimportant as discussed in Section 3. We recall the
pertinent FB properties below, and refer the reader to [46] for a detailed explanation of its training
protocol.

FB approximates the successor measures of near-optimal policies for any task. The successor measure
Mπ(s0, a0, ·) over S is the cumulative discounted time spent in each future state st+1 after starting in
state s0, taking action a0, and following policy π thereafter. Let ρ be an arbitrary state distribution,
and Rd be a representation space. FB representations are composed of a forward model F : S × A ×
Rd → Rd, a backward model B : S × A → Rd, and set of polices (πz)z∈Rd . They are trained such
that

{
Mπz (s0, a0, X) ≈

∫
X

F (s0, a0, z)⊤B(s, a)ρ(ds) ∀ s0 ∈ S, a0 ∈ A, X ⊂ S, z ∈ Rd,

πz(s) ≈ arg maxa F (s, a, z)⊤z ∀ (s, a) ∈ S × A, z ∈ Rd.
(1)

The task vector z for some downstream task Rtest is inferred with a small number of reward-labelled
states from Dlabelled:

ztest ≈ E(s,a)∼Dlabelled [Rtest(s, a)B(s, a)], (2)

and passed as an argument to πz. If ztest lies within the task sampling distribution Z used during
pre-training, then πz(s) ≈ arg maxa Qπz

rtest
(s, a), and hence this policy is approximately optimal for

rtest.

Problem 1 (Fast dynamics generalisation) We are interested in pre-training an agent in one
context such that it is able to generalise to unseen contexts in the CMDP. We select one context for
training Ctrain = {ctrain ∈ C}, and use all other contexts for testing i.e. Ctest = {c ∈ C|c ̸= ctrain}.
For pre-training, the agent has access to a dataset of transitions D = {(si, ai, ri, si+1)ctrain}|D|

i=1
generated by an unknown, but highly exploratory, behaviour policy in the training context. At
test time, the agent is provided a smaller dataset of reward-free transitions from each test context
dc = {(si, ai, si+1)c}|d|

i=1 ∀ c ∈ Ctest. The agent must use these transitions to adapt its policy to
the test contexts. Ideally, the agent should maximise the expected discounted return across all test
contexts.
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3 Method

To solve Problem 1 we will make two assumptions. The first follows previous work on zero-shot
dynamics generalisation [15].

Assumption 1 Assume every transition with non-zero probability across Ctest will have non-zero
probability in the training context:

T c(st+1|st, at) > 0 ⇒ T ctrain(st+1|st, at) > 0 ∀ st, st+1 ∈ S, at ∈ A, c ∈ Ctest, (3)

Intuitively, Assumption 1 says a wider range of behaviours are possible in training context than in
any of the test contexts, and if it did not hold, then the optimal policy for a test context may involve
behaviour that is not possible in the training context, so it is unclear how a near-optimal policy
could be derived from the training context alone. Our second assumption relates to the optimality
of our pre-trained adaptive policy.

Assumption 2 For some context c ∈ Ctest, reward function R, and pre-trained adaptive policy
πz, assume there exists some z such that πz ≈ π∗

c,R.

For Assumption 2 to hold, the trajectory followed by π∗
c,R must exist in D, and our BFM must be

optimised for R by sampling z = E(s,a)∼dc
[R(s, a)B(s, a)] from Z during pretraining. The former

is satisfied if Assumption 1 holds and the pre-training dataset is sufficiently diverse i.e. it has been
collected by an exploratory behaviour policy. If the latter does not hold, the dimensionality of the
representation space Rd can be increased until it does.

Dynamics generalisation using rewards. By Assumption 2 our BFM is capable of returning
a near-optimal policy at test-time if it’s policy is conditioned on the correct z. Recall that FB infers
z via a reward-weighted average of state-action pairs (Equation 2). Intuitively, one can think of
Equation 2 as defining a goal-reaching task, where the goal is the state-action pair (sg, ag) with
highest expected reward under R. If we were to naively infer z from the reward-labelled states in
dctrain , the agent may attempt to reach (sg, ag) by traversing states that are inaccessible under T ctest .
Our task is therefore to provide the agent with an augmented set of reward-labelled states with high
reward for transitions possible under T ctest and low reward otherwise.

Inferring the reward augmentation with classifiers. The above idea is closely related to those
instantiated by DARC [15]. DARC learns a policy in a training context which receives both high
reward and has high likelihood under the changed dynamics in the test context. The is achieved
by augmenting the reward in the source environment with ∆r(st, at, st+1) = log p(st+1|st, at) −
log q(st+1|st, at) which penalises transitions with high likelihood in the training context, but not in
the test context (see [15] for a full derivation and theoretical guarantees). In practice ∆r is estimated
with two binary classifiers such that

∆r(st, at, st+1) = log p(test|st, at, st+1) − log p(test|st, at)
− log p(train|st, at, st+1) + log p(train|st, at) (4)

where red terms are the difference in logits from the classifier conditioned on (st, at, st+1) and the
blue terms are the difference in the logits from the classifier conditioned on (st, at).

We can use the same protocol for amending the rewards used to infer task z. Provided the dataset
of transitions from a test context dctest and from the train context D, we train two binary classifiers
to predict whether the state-action (st, at) and (st, at, st+1) came from the train context or test
context. Then we relabel state-actions in D by adding ∆r from Equation 4. z is then inferred using
this augmented dataset of rewards via Equation 2. We call the FB model that uses augmented
rewards to infer z for test dynamics: Contextual FB (CFB). Implementation details are provided in
Appendix 2, and related work is pushed to Appendix A for brevity.
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Table 1: Performance on Point-mass maze under changed dynamics. Scores are the IQM of 10
rollouts where ± captures the 95% confidence interval. The max achievable score is 1000. NB: FB and CFB
are identical in the train context because ∆r = 0 for all transitions.

Context Task Obstacle FB CFB Oracle (TD7)

Train
reach top left - 930 ± 10 930 ± 10 985 ± 7
reach top right - 810 ± 33 810 ± 10 905 ± 12
reach bottom right - 405 ± 33 405 ± 33 901 ± 10

Test
reach top left Top-Left 250 ± 31 890± 10 965 ± 11
reach top right Top-Middle 112 ± 5 676 ± 28 812 ± 24
reach bottom right Middle-Right 88 ± 13 395 ± 42 889 ± 18

4 Preliminary Experiments

Setup. We create a modified version of the point-mass maze environment from the ExORL bench-
mark [51]–Figure 2. BFMs are pre-trained with the RND dataset [8] from unmodified dynamics,
and evaluated on three test mazes with unseen obstacles that change the environment dynamics–see
and Figure 2 for a visualisation of the modified environment instances and Appendix B for a fuller
description. We rollout an RND agent in each of these modified environments to create the dynamics
inference datasets.

Baselines. We use vanilla FB (i.e. without reward augmentation) as our BFM baseline, and Offline
TD7 [18] as our oracle. FB does not see data from test environments and so rollouts the pre-trained
policy for the task naive to any changes in the environment dynamics. TD7 is trained directly on
modified environment datasets until convergence, and so represents the max performance one could
expect to extract from the modified dynamics dataset.

Results. We report the aggregate performance of CFB and our baselines in Table 1. On the
training context, all methods perform well on all tasks, though FB and CFB perform worse on
reach bottom right (the hardest of the three targets) than the rest. On the test contexts, FB’s
performance drops significantly as its policy attempts to use gaps in parts of the maze that are now
blocked by obstacles. CFB returns a policy that avoids the obstacle and receives higher reward. The
methods never perform as well as the oracle, but this is inline with previous work that evaluates
BFMs on this benchmark [47, 25].

Next Steps. In follow-up work we plan to evaluate the performance of CFB on locomotion tasks
from the ExORL benchmark i.e. walker, cheetah and quadruped. We plan on creating environments
analogous to the crippled MuJoCo tasks explored in several other works on dynamics generalisation
[15, 33, 42]. We will test whether a pre-trained BFM can provide policies that generalise to robots
with inhibited joint movement at test time. We also plan to test how sensitive CFB’s performance
is to the size of dataset recovered from the test contexts.

5 Conclusions

In this preliminary work we asked: can BFMs return policies for tasks in environments with dif-
ferent dynamics to that seen during training? We respond to this question by building on past
work that compensates for differences in dynamics by modifying the reward function. Using two
binary classifiers, we augment the rewards in the BFM’s pre-training dataset so as to up-weight
transitions that are likely under the test-time dynamics and down-weight those that are unlikely.
In preliminary experiments on Point-mass maze from the ExORL benchmark, we showed that this
reward-modification is enough to elicit performant behaviour from the BFM on a specific set of
dynamics generalisation problems. We propose some future experiments to further test the method.
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Appendices
A Related Work

Dynamics generalisation in RL. Dynamics generalisation in RL is a well-established problem
[28, 32]. Common remedies include: data augmentation [39, 3, 50, 22, 21, 29], domain randomisation
[45, 14, 26, 27, 36], learning context-aware policies [42, 30, 5], and meta-learning [11, 40, 16, 33, 34].
Our work is most similar to DARC [15] which augments rewards to tackle dynamics generalisation.
Where DARC is concerned with generalising to one unseen test context, our method may be able
to generalise to any unseen context as long as Assumptions 1 and 2 are satisfied.

Behaviour foundation models. The BFM machinery builds upon successor representations
[13], universal value function approximators [41], successor features [4] and successor measures [6].
Modern methods use these ideas in the context of universal successor features (USF) [7] or forward-
backward (FB) representations [46, 47, 25]. The USF features can be learned with diversity-based
methods [31, 23], laplacian eigenfunctions [48], inverse curiosity modules [37], or contrastive learning
[12]. Some works train RL foundation models with Transformers [10, 9, 19, 24, 40, 49, 52], but these
methods do not have robust mechanism for conditioning on unseen tasks at test time. [38] use
BFMs to perform fast imitation learning. This is a related idea, but, as with any imitation learning
method, they require access to expert trajectories at test-time where we do not.

B Experimental Protocol

We conduct our experiments in a modified version of the Point-mass maze environment from the
ExORL benchmark [51] and DeepMind Control Suite [44].

B.1 Point-mass Maze

Point-mass Maze is a 2D maze with four rooms where the task is to move a point-mass to one of the
rooms. The state and action spaces are 4 and 2-dimensional respectively; the state space consists
of x, y positions and velocities of the mass, the action space is the x, y tilt angle. ExORL provides
four reaching tasks reach top left, reach top right, reach bottom left and reach bottom
right. The mass is always initialised in the top left and the reward is proportional to the distance
from the goal. We modify the reward function to be dense and proportional to the distance from
the goal. We create three modified versions of the environment, visualised in Figure 2 and described
below.

Top Left An obstacle is placed in the top left quadrant of the maze near where the mass spawns.
The target is reach top left.

Figure 2: Point mass-maze with changed dynamics. Train is the unmodified version of point mass-
maze from the ExORL benchmark; we use the RND dataset to pre-train our BFMs. Top-Left, Top-
Middle, and Middle-Right introduce an obstacle that change the environment dynamics. The agent is
initialised at • and tasked with reaching ⊛.
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Top Middle The maze cross is extended to close the entrance to the top right quadrant from the
top left quadrant. The target is reach top right.

Middle Right The maze cross is extended to close the entrance to the bottom right quadrant
from the top right quadrant. The target is reach bottom right.

B.2 Datasets

We train our BFM using the RND dataset [8] from the ExORL benchmark. For Top Left, Top
Middle, and Middle Right we create our on exploratory datasets by training an RND agent for
5 million timesteps and saving all observed transitions. We uniformly sub-sample 10,000 transitions
from these to create our dynamics inference datasets for each test context. The state-occupancies
are visualised in Figure 3.

Figure 3: Point-mass Maze datasets. Train is the original RND dataset from the ExORL benchmark
collected on unmodified dynamics. Top-Left, Top-Middle, and Top-Right are datasets we curated by
running RND for 5 million steps in each modified environment.

B.3 Training and Evaluation Protocol

Training. FB and CFB are pre-trained for 1 million learning steps using the ExORL RND dataset.
TD7 is trained for 1 million steps on the test context

Evaluation. We evaluate the cumulative reward achieved by CFB and our baselines on each task
across 5 seeds. We report scores as per the best practice recommendations of [1] by taking the IQM
of 10 rollouts on the test task per seed, and averaging across seeds.

C Implementation Details

C.1 Context Classifiers

Following [15], we implement a residual parameterisation of the transition classifier. Using
ftrans(st, at, st+1), fsa(st, at) ∈ R2 to denote the outputs of the classifiers, the predictions are com-
puted as:

qsa(·|st, at) = SoftMax(fsa(st, at)) (5)
qtrans(·|st, at, st+1) = SoftMax(ftrans(st, at, st+1) + fsa(st, at)). (6)

We apply Gaussian noise with σ = 1 to the inputs of both classifiers. Hyperparameters are reported
in Table 2. They are trained to minimise the standard cross-entropy loss:

Ltrans = −EDtest [log qtrans(test|st, at, st+1)] − EDtrain [log qtrans(train|st, at, st+1)] (7)
Lsa = −EDtest [log qsa(test|st, at)] − EDtrain [log qsa(train|st, at)] (8)
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Table 2: Context Classifier Hyperparameters.

Hyperparameter Value
Hidden dimension 256
Hidden layers 2
Learning rate 3e-4
Batch size 256
Training dataset size 1e6
Learning steps 1e4

C.2 Forward-Backward Representations

C.2.1 Architecture

The forward-backward architecture described below follows the implementation by [47] exactly, other
than the batch size which we reduce from 1024 to 512. We did this to reduce the computational
expense of each run without limiting performance. The hyperparameter study in Appendix J of [47]
shows this choice is unlikely to affect FB performance. All other hyperparameters are reported in
Table 3.

Forward Representation F (s, a, z). The input to the forward representation F is always pre-
processed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors P 1
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F are feedforward MLPs that embed their inputs into a 512-dimensional space. These
embeddings are concatenated and passed through a third feedforward MLP F which outputs a
d-dimensional embedding vector.

Backward Representation B(s). The backward representation B is a feedforward MLP that
takes a state as input and outputs a d-dimensional embedding vector.

Actor π(s, z). Like the forward representation, the inputs to the policy network are similarly
preprocessed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors P 1

π

and P 2
π . P 1

π and P 2
π are feedforward MLPs that embed their inputs into a 512-dimensional space.

These embeddings are concatenated and passed through a third feedforward MLP which outputs a
a-dimensional vector, where a is the action-space dimensionality. A Tanh activation is used on the
last layer to normalise their scale. As per [17]’s recommendations, the policy is smoothed by adding
Gaussian noise σ to the actions during training.

Misc. Layer normalisation [2] and Tanh activations are used in the first layer of all MLPs to
standardise the inputs.

C.2.2 z Sampling

FB representations require a method for sampling the task vector z at each learning step. [47]
employ a mix of two methods, which we replicate:

1. Uniform sampling of z on the hypersphere surface of radius
√

d around the origin of Rd,

2. Biased sampling of z by passing states s ∼ D through the backward representation z = B(s).
This also yields vectors on the hypersphere surface due to the L2 normalisation described
above, but the distribution is non-uniform.

We sample z 50:50 from these methods at each learning step.

C.3 TD7

We adopt the original implementation and hyperparameters from https://github.com/sfujim/TD7
commit c1c280d. Hyperparameters are reported in Table 4.

https://github.com/sfujim/TD7
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Table 3: FB Hyperparameters.

Hyperparameter Value
Latent dimension d 50 (100 for maze)
F hidden layers 2
F hidden dimension 1024
B hidden layers 3
B hidden dimension 256
PF hidden layers 2
PF hidden dimension 1024
Pπ hidden layers 2
Pπ hidden dimension 1024
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3
Learning steps 1,000,000
Batch size 512
Optimiser Adam
Learning rate 0.0001
Discount γ 0.98 (0.99 for maze)
Activations (unless otherwise stated) ReLU
Target network Polyak smoothing coefficient 0.01
z-inference labels 10,000
z mixing ratio 0.5

Critic(s). TD7 employs double Q networks. The critics are feedforward MLPs that take a state-
action pair (s, a) as input and output a value ∈ R1.

Actor. The actor is a standard feedforward MLP taking the state s as input and outputting an
a-dimensional vector, where a is the action-space dimensionality. The policy is smoothed by adding
Gaussian noise σ to the actions during training.

Encoders. TD7 has a state encoder f and a state-action encoder g. f takes the state outputs a
latent state z ∈ R256 . g takes as input the latent state z and action a and outputs a second latent
embedding.
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Table 4: TD7 Hyperparameters.

Hyperparameter Value
Hidden layers (for all networks) 2
Hidden dimension (for all networks) 256
Latent dimension z 256
Target policy noise σ N (0, 0.22)
Target policy noise clipping c (-0.5, 0.5)
Policy update frequency 2
Probability smoothing α 0.4
Minimum priority 1
Behaviour cloning weight λ 0.1
Checkpoint criteria minimum
Early assessment episodes 1
Late assessment episodes 20
Early time steps 750k
Criteria reset weight 0.9
Early time steps 750k
Criteria reset weight 0.9
Optimiser Adam
Learning rate 3e-4
Discount γ 0.99
Seed steps 25k
Activations (unless otherwise stated) ELU
Batch size 256
Target update frequency 250
Exploration noise N (0, 0.12)


