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Abstract

We study pre-training representations for decision-making using video data, which
is abundantly available for tasks such as game agents and software testing. Even
though significant empirical advances have been made on this problem, a theoretical
understanding remains absent. We initiate the theoretical investigation into prin-
cipled approaches for representation learning and focus on learning the latent state
representations of the underlying MDP using video data. We study two types of
settings: one where there is iid noise in the observation, and a more challenging set-
ting where there is also the presence of exogenous noise, which is non-iid noise that
is temporally correlated, such as the motion of people or cars in the background.
We study three commonly used approaches: autoencoding, temporal contrastive
learning, and forward modeling. We prove upper bounds for temporal contrastive
learning and forward modeling in the presence of only iid noise. We show that these
approaches can learn the latent state and use it to do efficient downstream RL with
polynomial sample complexity. When exogenous noise is also present, we establish a
lower bound result showing that the sample complexity of learning from video data
can be exponentially worse than learning from action-labeled trajectory data. This
partially explains why reinforcement learning with video pre-training is hard. We
evaluate these representational learning methods in three visual domains, yielding
results that are consistent with our theoretical findings.

1 Introduction
Representations pre-trained on large amounts of offline data have led to significant advances in
machine learning domains such as natural language processing (Liu et al., 2019; Brown et al., 2020)
and multi-modal learning (Lin et al., 2021; Radford et al., 2021). This has naturally prompted a
similar undertaking in reinforcement learning (RL) with the goal of training a representation model
that can be used in a policy to solve a downstream RL task. The natural choice of data for RL
problems is trajectory data, which contains the agent’s observation along with actions taken by
the agent and the rewards received by it (Sutton & Barto, 2018). A line of work has proposed
approaches for learning representations with trajectory data in both offline (Uehara et al., 2021;
Islam et al., 2022) and online learning settings (Nachum et al., 2018; Bharadhwaj et al., 2022).
However, unlike text and image data, which are abundant on the internet or naturally generated
by users, trajectory data is comparatively limited and expensive to collect. In contrast, video
data, which only contains a sequence of observations (without any action or reward labeling), is
often plentiful, especially for domains such as gaming and software. This motivates a line of work
considering learning representations for RL using video data (Zhao et al., 2022). But is there a
principled foundation underlying these approaches? Are representations learned from video data as
useful as representations learned from trajectory data? We initiate a theoretical understanding of
these approaches to show when and how these approaches yield representations that can be used to
solve a downstream RL task efficiently.

Consider a representation learning pipeline shown in Figure 1. We are provided videos, or equiv-
alently a sequence of observations, from agents navigating in the world. We make no assumption
about the behavior of the agent in the video data. They can be trying to solve one task, many
different tasks, or none at all. This video data is used to learn a model ϕ that maps any given
observation to a vector representation. This representation is subsequently used to perform down-
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Figure 1: A flowchart of our video pre-training phase. Left: We assume access to a large set of
videos (or, unlabeled episodes). Center: A representation learning method is used to train a model
ϕ which maps an observation to a vector representation. Right: This representation can be used in
a downstream task to do reinforcement learning or visualize the latent world state.

stream RL — defining a policy on top of the learned representation and only training the policy for
the downstream task. We can also use this representation to define a dynamics model or a critique
model. The representation can also help visualize the agent state space or dynamics for the purpose
of debugging.

A suitable representation for performing RL efficiently is aligned with the underlying dynamics of the
world. Ideally, the representation captures the latent agent state, which contains information about
the world relevant to decision-making while ignoring any noise in the observation. For example,
in Figure 1, ignoring noise such as the motion of geese in the background is desirable if the task
involves walking on the pavement. We distinguish between two types of noise: (1) temporally
independent noise that occurs at each time step independent of the history, (2) temporally dependent
noise, or exogenous noise, that can evolve temporally but in a manner independent of the agent’s
actions (such as the motion of geese in Figure 1).

A range of approaches have been developed that provably recover the latent agent state from observa-
tions using trajectory data (Misra et al., 2020; Efroni et al., 2022) which contains actions. However,
for many domains there is relatively little trajectory data that exists naturally, making it expensive
to scale these learning approaches. In contrast, video data is more naturally available but these
prior provable approaches do not work with video data. On the other hand, it is unknown whether
approaches that empirically work with video data provably recover the latent representation and lead
to efficient RL. Motivated by this, we build a theoretical understanding of three such video-based
representation learning approaches: autoencoder which trains representations by reconstructing ob-
servations, forward modeling which predicts future observations, and temporal contrastive learning
which trains a representation to determine if a pair of observations are causally related or not.

Our first theoretical result shows that in the absence of exogenous noise, forward modeling and tem-
poral contrastive learning approaches both provably work. Further, they lead to efficient downstream
RL that is strictly more sample-efficient than solving these tasks without any pre-training. Our sec-
ond theoretical result establishes a lower bound showing that in the presence of exogenous noise,
any compact and frozen representation that is pre-trained using video data cannot be used to do
efficient downstream RL. In contrast, if the trajectory data was available, efficient pre-training would
be possible. This establishes a statistical gap showing that video-based representation pre-training
can be exponentially harder than trajectory-based representation pre-training.

We empirically test our theoretical results in three visual domains: GridWorld (a navigation do-
main), ViZDoom basic (a first-person 3D shooting game), and ViZDoom Defend The Center (a
more challenging first-person 3D shooting game). We evaluate the aforementioned approaches along
with ACRO (Islam et al., 2022), a representation pre-trained using trajectory data and designed to
filter out exogenous noise. We observe that in accordance with our theory, both forward modeling
and temporal contrastive learning succeed at RL when there is no exogenous noise. However, in the
presence of exogenous noise, their performance degrades. Specifically, we find that temporal con-
trastive learning is especially prone to fail in the presence of exogenous noise, as it can rely exclusively
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on such noise to optimally minimize the contrastive loss. While we find that forward modeling is
somewhat robust to exogenous noise, however, as exogenous noise increases, its performance quickly
degrades as well. While any finite-sample guarantees for the autoencoding method remain an open
question, empirically, we find that the performance of autoencoder-based representation learning is
unpredictable. On the other hand, ACRO continues to perform well, highlighting a disadvantage of
video pre-training. The code for all experiments will be made available at <url-redacted>.

2 Representation Learning for RL using Video Dataset
We assume access to a dataset D of n videos D = {(x(i)

1 , x
(i)
2 , · · · , x

(i)
H )}n

i=1 where x
(i)
j is the jth

observation (or frame) of the ith video. We are provided a decoder class Φ = {ϕ : X → [N ]},
and our goal is to learn a decoder ϕ ∈ Φ that captures task-relevant information in the underlying
state ϕ⋆(x) while throwing away as much exogenous noise as possible. Instead of proposing a new
algorithm, we analyze the following three classes of well-known video-based representation learning
methods. Our goal is to understand whether these methods provably learn useful representations.

Autoencoder. This approach first maps a given observation x to an abstract state ϕ(x) using a
decoder ϕ ∈ Φ, and then uses it to reconstruct the observation x with the aid of a reconstruction
model class Z = {z : [N ] → X }. Formally, we optimize the following loss:

ℓauto(z, ϕ) = 1
nH

n∑
i=1

H∑
h=1

∥z(ϕ(x(i)
h )) − x

(i)
h ∥2

2. (1)

In practice, autoencoders are typically implemented using a Vector Quantized bottleneck trained in
a Variational AutoEncoder manner, which is called the VQ-VAE approach (Oord et al., 2017).

Forward Modeling. This approach is similar to the autoencoder approach but instead of
reconstructing the input observation, we reconstruct a future observation using a model class
F = {f : [N ] × [K] → ∆(X )} where N is the output size of the decoder class Φ and K ∈ N is
a hyperparameter representing the forward time steps from the current observation. We collect a
dataset of multistep transitions Dfor = {(x(i), k(i), x′(i))}n

i=1 sampled iid using the video dataset D
where the observation x(i) is sampled randomly from the ith video, k(i) ∈ [K], and x′(i) is the frame
k(i)-steps ahead of x(i) in the ith video. We distinguish between two types of sampling procedures,
one where k(i) is always a fixed given value k ∈ [K], and one where k(i) ∼ Unf ([K]). Given the
dataset Dfor, we optimize the following loss:

ℓfor(f, ϕ) = 1
n

n∑
i=1

ln f
(

x′(i) | ϕ(x(i)), k(i)
)

. (2)

Temporal Contrastive Learning. Finally, this approach trains the decoder ϕ to learn to separate
a pair of temporally causal observations from a pair of temporally acausal observations. We collect
a dataset of Dtemp = {(x(i), k(i), x′(i), z(i))}⌊n/2⌋

i=1 tuples using the multistep transitions dataset Dfor.
We use 2 multistep transitions to create a single datapoint for Dtemp to keep the datapoints inde-
pendent. To create the ith datapoint for Dtemp, we use the multistep transitions (x(2i), k(2i), x′(2i))
and (x(2i+1), k(2i+1), x′(2i+1)) and sample z(i) ∼ Unf({0, 1}). If z(i) = 1, then our ith datapoint
is a causal observation pair (x(2i), k(2i), x′(2i), z(i)), otherwise, it is an acausal observation pair
(x(2i), k(2i), x(2i+1), z(i)). Depending on how we sample k, we collect a different dataset Dfor, and
accordingly a different dataset Dtemp. Given the dataset Dtemp, we optimize the following loss using
a regression model g belonging to a model class G = {g : X × [K] × X → [0, 1]}:

ℓtemp(g, ϕ) = 1
⌊n/2⌋

⌊n/2⌋∑
i=1

(
z(i) − g(ϕ(x(i)), k(i), x′(i))

)2
. (3)

Practical Implementations. We use the aforementioned description of methods for theoretical
analysis. However, their practical implementations differ in a few notable ways. Most importantly
we either use a continuous vector representation ϕ : X → Rd for modeling Φ, or apply a Vector
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Quantized (VQ) bottleneck (Oord et al., 2017) on top of the vector representation to model a
discrete-representation decoder. We also optimize the loss using minibatches and use square loss
for training forward modeling and SimCLR loss (Chen et al., 2020) for contrastive learning. We
experimentally show that our theoretical findings extend to these practical implementations.

3 Is Video Based Representation Learning Provably Correct?
In this section, we present our main theoretical results. We first prove that both forward modeling
and temporal contrastive methods succeed when there is no exogenous noise. We then establish
a lower bound showing that video-based representation learning is exponentially harder than
trajectory-based representation learning. We defer all proofs to the Appendix and only provide a
sketch here.
3.1 Upper Bound in Block MDP Setting
We start by stating our theoretical setting and our main assumptions.

Theoretical Setting. We assume a Block MDP setting and access to a dataset D ={
(x(i)

1 , x
(i)
2 , · · · , x

(i)
H )
}n

i=1
of n independent and identically distributed (iid) videos sampled from

data distribution D. We denote the probability of a video as D(x1, x2, · · · , xH). We assume that D
is generated by a mixture of Markovian policies ΠD, i.e., the generative procedure for D is to sample
a policy π ∈ ΠD with some probability and then generate an entire episode using it. We assume
that observations encode time steps. This can be trivially accomplished by simply concatenating
the time step information to the observation. We also assume that the video data has good state
space coverage and that the data is collected by noise-free policies.
Assumption 1 (Requirements on Data Collection). There exists an ηmin > 0 such that if s is a
state reachable at time step h by some policy in Π, then D (ϕ⋆(xh) = s) ≥ ηmin. Further, we assume
that every data collection policy π ∈ ΠD is noise-free, i.e., π(a | xh) = π(a | ϕ⋆(xh)) for all (a, xh).

Justification for Assumption 1 In practice, we expect this assumption to hold for tasks such
as gaming, or software debugging, where video data is abundant and, therefore, can be expected
to provide good coverage of the underlying state space. This assumption is far weaker than the
assumption in batch RL which also requires actions and rewards to be labeled, which makes it more
expensive to collect data that has good coverage (Chen & Jiang, 2019). Further, unlike imitation
learning from observations (ILO) (Torabi et al., 2019), we don’t require that these videos provide
demonstrations of the desired behavior. E.g., video streaming of games is extremely common on the
internet, and one can get many hours of video data this way. However, this data wouldn’t come with
actions (which will be mouse or keyboard strokes) or reward labeling, and the game levels or tasks in
the data can be different or even unrelated to the downstream tasks we want to solve. As such, the
video data do not provide demonstrations of the desired task. Further, as the video data is typically
generated by humans, we can expect the data collection policies to be noise-free, as these policies are
realized by humans who would not make decisions based on noise. E.g., a human player is unlikely to
turn left due to the background motion of leaves that is unrelated to the game’s control or objective.

We analyze the temporal contrastive learning and forward modeling approaches and derive upper
bounds for these methods in Block MDPs. While autoencoder-based approaches sometimes do well
in practice, it is an open question whether finite-sample bounds exist for them and we leave their
theoretical analysis to future work and instead evaluate them empirically. In addition to the decoder
class Φ, we assume a function class F to model f for forward modeling and G to model g for temporal
contrastive learning. We make a realizability assumption on these function classes.
Assumption 2 (Realizability). There exists f⋆ ∈ F , g⋆ ∈ G and ϕfor, ϕtemp ∈ Φ such that f⋆(X ′ |
ϕfor(x), k) = Pfor(X ′ | x, k) and g⋆(z | ϕtemp(x), k, x′) = Ptemp(z = 1 | x, k, x′) on the appropriate
support, and where Pfor and Ptemp are respectively the Bayes classifier for the forward modeling and
temporal contrastive learning methods.

Justification for Assumption 2. Realizability is a typical assumption made in theoretical analysis
of RL algorithms (Agarwal et al., 2020). Intuitively, the assumption states that the function classes
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are expressive enough to represent the Bayes classifier of their problem. In practice, this is usually
not a concern as we will use expressive deep neural networks to model these function classes. We
will empirically show the feasibility of this assumption in our experiments.

Finally, we assume that our data distribution has the required information to separate the latent
states. We state this assumption formally below and then show settings where this is true.
Assumption 3 (Margin Assumption). We assume that the margins βfor and βtemp defined below:

βfor = inf
s1,s2∈S,s1 ̸=s2

Ek

[
∥Pfor(X ′ | s1, k) − Pfor(X ′ | s2, k)∥TV

]
βtemp = inf

s1,s2∈S,s1 ̸=s2

1
2Ek,s′ [|Ptemp(z = 1 | s1, k, s′) − Ptemp(z = 1 | s2, k, s′)|] ,

are strictly positive, and where in the definition of βtemp, we sample s′ from the video data distribution
and k is sampled according to our data collection procedure.

Justification for Assumption 3. This assumption states that we need margins (βfor) for forward
modeling and (βtemp) for temporal contrastive learning. A common scenario where these assumptions
are true is when for any pair of different states s1, s2, there is a third state s′ that is reachable from
one but not the other. If the video data distribution D supports all underlying transitions, then
this immediately implies that ∥Pfor(X ′ | s1, k) − Pfor(X ′ | s2, k)∥TV > 0 which implies βfor > 0.
This scenario occurs in almost all navigation tasks. Specifically, it occurs in the three domains we
experiment with. While it is less clear, under this assumption we also have βtemp > 0.

We now state our main result for forward modeling under Assumption 1-3.
Theorem 1 (Forward Modeling Result). Fix ϵ > 0 and δ ∈ (0, 1) and let A be any prov-
ably efficient RL algorithm for tabular MDPs with sample complexity nsamp(S, A, H, ϵ, δ). If
n is poly {S, H, 1ηmin, 1βfor, 1ϵ, ln(1δ), ln |F|, ln |Φ|} for a suitable polynomial, then forward
modeling learns a decoder ϕ̂ : X → [|S|]. Further, running A on the tabular MDP with
nsamp(S, A, H, T, ϵ/2, δ/4) episodes returns a latent policy φ̂. Then there exists a bijective mapping
α : S → [|S|] such that with probability at least 1 − δ we have:

∀s ∈ S, Px∼q(·|s)

(
ϕ̂(x) = α(s) | ϕ⋆(x) = s

)
≥ 1 − 4S3H2

η2
minβfor

√
1
n

ln
(

|F| · |Φ|
δ

)
,

and the learned observation-based policy φ̂ ◦ ϕ̂ : x 7→ φ̂(ϕ̂(x)) is ϵ-optimal, i.e.,

V (π⋆) − V (φ̂ ◦ ϕ̂) ≤ ϵ.

Finally, the number of online episodes used in the downstream RL task is given by
nsamp(S, A, H, ϵ◦/2, δ◦/4) and doesn’t scale with the complexity of function classes Φ and F .

The result for temporal contrastive is identical to Theorem 1 but instead of βfor we have βtemp and
instead of F we have G. These upper bounds provide the desired result which shows that not only
can we learn the right representation and near-optimal policy but also do so without online episodes
scaling with ln |Φ|. Typically, the function class for forward modeling F is much more complex than
G, however, as we show in Appendix C.5, the margin for forward modeling βfor is larger than for
contrastive learning βtemp leading to a trade-off between these two approaches.

3.2 Learning from Video is Exponentially Harder than Learning from Trajectory
Data

When online RL is possible, there exist algorithms Misra et al. (2020); Efroni et al. (2022) that
can learn an accurate latent state decoder ϕ̂ with high probability and use it to learn near-optimal
policies. These methods train the decoder using online trajectory data. This begs the following
question: Is it possible to learn a latent state decoder that is useful for performing RL using offline
video data? As the next result shows, this is not always the case.
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Theorem 2 (Lower Bound for Video). Suppose |S|, |A|, H ≥ 2. Then, for any ε ∈ (0, 1), any
algorithm A1 that outputs a state decoder ϕ with ϕh : X → [L], L ≤ 214ε−1, ∀h ∈ [H] given a
video dataset D sampled from some MDP and satisfies assum:data-collection, and any online RL
algorithm A2 uses that state decoder ϕ in its interaction with such an MDP (i.e., A2 only observes
states through ϕ) and output a policy π̂, there exists an MDP instance M in a class of MDPs which
satisfies assum:margin and is PAC learnable with Õ(poly(|S|, |A|, H, 1ε)) complexity, such that

VM (π⋆
M ) − VM (π̂) > ε,

regardless of the size of the video dataset D for algorithm A1 and the number of episodes of interaction
for algorithm A2.

The basic idea behind that hard instance construction is that, without the action information, it
is impossible for the learning agent to distinguish between endogenous states and exogenous noise.
For example, consider an image consisting of N × N identical mazes but where the agent controls
just one maze. Other mazes contain other agents which are exogenous for our purpose. In the
absence of actions, we cannot tell which maze is the one we are controlling and must memorize the
configuration of all N × N mazes which grow exponentially with N . Another implication from that
hard instance is – if the margin condition (Assumption 3) is violated, the exponentially large state
decoder is also required for the regular block MDP without exogenous noise; a detailed discussion
can also be found in Section C.3. We also discuss settings where we may be able to efficient-learning
with just video data with additional assumptions in Appendix C.4.

4 Experimental Results and Discussion
We empirically evaluate the above video-based representation learning methods on three visual envi-
ronments: a gridworld environment and two VizDoom environments. We defer the results on one of
the Vizdoom environments along with additional experimental details and results to appendix:exps.
Our main goal is to validate our theoretical findings by evaluating these methods in the presence
and absence of exogenous noise and comparing their performance with a trajectory-based method.

4.1 Experimental Details

GridWorld. We consider navigation in a 12 × 12 Minigrid environment (Chevalier-Boisvert et al.,
2023). The agent (red triangle) can only observe an area around itself, and the goal is to reach
the key quickly (fig:gridworld-reconstruction). The position of the agent and key randomizes each
episode.

ViZDoom Defend the Center This is a first-person shooting game (Wydmuch et al., 2018;
Kempka et al., 2016), in which the player needs to kill a variety of monsters to score (fig:vizdoom-
dtc-reconstruction). The episode ends when the monster is killed or after 500 steps.

Exogenous Noise. For all domains, the observation is an RGB image. We add exogenous noise
to it by superimposing 10 generated diamonds of a particular size. The color and position of
these diamonds are our exogenous state. At the start of each episode, we randomly generate these
diamonds, after which they move in a deterministic path. We also test the setting in which there
is exogenous noise in the reward. We compute a score based on just the exogenous noise and add it
to the reward presented to the agent. However, the agent is still evaluated on the original reward.

Model and Learning. Our decoder class Φ is a convolutional neural network. We use a deconvo-
lutional neural network to model f and h. We experimented with both using a vector representation
for ϕ and also using a VQ-bottleneck to discretize the embeddings. We use PPO to do downstream
RL and keep ϕ frozen during the RL training. We also visualize the learned representations by
training a decoder on them and fixing ϕ to reconstruct the input observations. We then look at the
generated images to see what information from the observation is preserved by the representation.

ACRO. We also evaluate the learned representations against ACRO (Islam et al., 2022) which
uses trajectory data. This approach learns representation ϕ by predicting action given a pair of
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observations E [ln p(ah | ϕ(xh), xh+k, k)]. ACRO is designed to filter out exogenous noise as this
information is not predictive of the action. Our goal is to test if we get much better representations
if we have access to trajectory data instead of video data.

(a) No Noise (b) Only Observation Noise (c) Only Reward Noise (d) Both

Figure 2: RL experiments in the GridWorld environment.

(a) Original (b) Forward Model (c) Autoencoder (d) Contrastive

Figure 3: Decoded image reconstructions for different methods in the GridWorld environment. We
train a reconstruction model on top of frozen learned representations ϕ trained with a given video-
based method. Top row: shows an example from the setting where there is no exogenous noise.
Bottom row: shows an example with exogenous noise (colored diamond shapes).

4.2 Empirical Results and Discussion
We present our main empirical results in Fig. 2 and Fig. 4 and discuss the results below.

(a) No Noise (b) Only Observation Noise (c) Only Reward Noise (d) Both

Figure 4: RL experiments using different latent representations for the ViZDoom Defend the Center
environment.
Forward modeling and temporal contrastive both work when there is no exogenous
noise. In accordance with Theorem 1, we observe that in the case of both GridWorld (Figure 2)
and ViZDoom Defend the Center (Figure 4), these approaches learn a decoder ϕ that lead to
success with RL in the absence of any exogenous noise. For GridWorld, we find support for this
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(a) Original (b) Forward Modeling (c) Autoencoder (d) Temporal Contrastive

Figure 5: Decoded image reconstructions for different methods in ViZDoom Defend the Center.

result with VQ bottleneck during representation learning (Fig. 2(a)) whereas for ViZDoom Defend
the Center, we find support for this result even without the use of a VQ bottleneck (Fig. 4(a)).
These results are further supported via qualitative evaluation through image decoding from the
learned latent representations (Fig. 3) which show that these representations can recover critical
elements like walls. We find that autoencoder performs well in ViZDoom Defend the Center but
not in gridworld, which aligns with a lack of any theoretical understanding of autoencoders.

Performance with exogenous noise. We find that in the presence of exogenous noise (Fig-
ure 2, Figure 4), representations from forward modeling achieve a lower performance specially in
gridworld, whereas temporal contrastive representations completely fail. One hypothesis for the stark
failure of temporal contrastive learning is that the agent can tell whether two observations are causal
or not, by simply focusing on the noisy diamonds that move in a predictive manner. Therefore, the
contrastive learning loss can be reduced by focusing entirely on the exogenous noise. Whereas, for-
ward modeling is more robust as it needs to predict future observations, and the agent’s state is more
helpful for doing that than noise. This shows in the reconstructions (Figure 3(b)(d), Figure 5(b)(d)).
As expected, the reconstructions for forward modeling continue to capture state-relevant informa-
tion, whereas for temporal contrastive they focus on noise and miss relevant state information.
In Appendix C.6, we formally prove that there exists an instance where forward modeling can re-
cover the latent state for low-levels of exogenous noise, whereas temporal contrastive cannot do so
for any level of exogenous noise.

(a) ACRO (b) Forward Modeling

Figure 6: RL performance with varying size for exoge-
nous noise in the GridWorld environment.

Comparison with ACRO. Finally, we
draw a comparison between the perfor-
mance of video-pretrained representation
and ACRO which uses trajectory data.
ACRO achieves the strongest performance
across all tasks (Figure 2, Figure 4). Ad-
ditionally, we also observe that as we in-
crease the size of the exogenous noise
elements in the observation space (Fig-
ure 6), the performance of forward model-
ing, the overall best video-based approach,
degrades more drastically compared to
ACRO. This agrees with our theoretical
finding (Theorem 2) that learning representations from video-based data is significantly harder than
trajectory-based data when exogenous noise is present.

5 Conclusion
Videos are a naturally available source of data for training representations for RL. In this work,
we study whether existing video-based representation learning methods are provably effective for
downstream RL tasks. We provide both upper and lower bounds for these methods in two theo-
retical settings and provide empirical validation of our findings on three visual domains. Using our
theoretical tools to develop better video-based representation learning methods and extending our
analysis to other formal settings are natural future work directions.
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Appendix
A Preliminaries and Overview

In this section, we provide a formal overview of our learning setup and problem statement.

Mathematical Notation. We use [N ] for N ∈ N to define the set {1, 2, · · · , N}. We assume all
sets to be countable. For a given set U , we denote its cardinality by |U| and define ∆(U) as the
space of all distributions over U . We denote the uniform distribution over U by Unf(U). Finally,
poly{·} denotes a term that scales polynomially in the listed quantities.

Block MDPs. We study episodic RL in Block Markov Decision Processes (Block MDP) (Du et al.,
2019). A Block MDP is defined by the tuple (X , S, A, T, R, q, µ, H) where X is a set of observations
that can be infinitely large, S is a finite set of latent states, and A is a set of finite actions. The
transition dynamics T : S × A → ∆(S) define transitions in the latent state space. The reward
function R : S × A → [0, 1] assigns a reward R(s, a) if action a is taken in the latent state s. When
the agent visits a state s, it receives an observation x ∼ q(· | s) sampled from an emission function
q : S → ∆(X ). This emission process contains temporally independent noise but no exogenous
noise. Finally, µ ∈ ∆(S) is the distribution over the initial latent state and H is the horizon
denoting the number of actions per episode. The agent interacts with a block MDP environment by
repeatedly generating an episode (x1, a1, r1, · · · , xH , aH , rH) where s1 ∼ µ and for all h ∈ [H] we
have xh ∼ q(· | sh), rh = R(sh, ah), and sh+1 ∼ T (· | sh, ah), and all actions {ah}H

h=1 are taken by
the agent. The agent never directly observes the latent states (s1, s2, · · · , sH).

A key assumption in Block MDPs is that two different latent states cannot generate the same
observation. This is called the disjoint emission property and holds in many game and OS settings.
Formally, this property allows us to define a decoder ϕ⋆ : X → S that maps an observation to the
unique state that can generate it. The agent does not have access to ϕ⋆. If the agent had access to
ϕ⋆, one could map each observation from an infinitely large space to the finite latent state space,
which allows the use of classical finite RL methods (Kearns & Singh, 2002).

Exogenous Block MDPs (Ex-Block MDP). We also consider RL in Exogenous Block MDPs
(Ex-Block MDPs) that extend Block MDPs to include exogenous noise (Efroni et al., 2022). An
Ex-Block MDP is defined by (X , S, Ξ, A, T, Tξ, R, q, H, µ, µξ) where X , S, A, T, R, H and µ have the
same meaning and type as in Block MDPs. The additional quantities include Ξ which is the space
of exogenous noise and can be infinitely large. We use the notation ξ ∈ Ξ to denote the exogenous
noise. For the setting in fig:main-fig, the exogenous noise variable ξ captures variables such as the
position of geese, the position of leaves on the trees in the background, and lighting conditions.
The exogenous noise ξ changes with time according to the transition function Tξ : Ξ → ∆(Ξ) and
is at start sampled from µξ. Note that unlike the agent state s ∈ S, the exogenous noise ξ ∈ Ξ,
evolves independently of the agent’s action and does not influence the evolution of the agent’s state.
The emission process q : S × Ξ → ∆(X ) in Ex-Block MDP uses both the current agent state and
exogenous noise, to generate the observation at a given time. For example, the image generated
by the agent’s camera contains information based on the agent’s state (e.g., agent’s position and
orientation), along with exogenous noise (e.g., the position of geese). Similar to the Block MDP, we
assume there exists unknown decoders ϕ⋆ : X → S and ϕ⋆

ξ : X → ξ that can map an observation to
the current agent state s and exogenous ξ respectively.

Provable RL. We assume access to a policy class Π = {π : X → A} where a policy π ∈ Π allows
the agent to take actions. For a given policy π, we use Eπ [·] to denote expectation taken over an
episode generated by sampling actions from π. We define the value of a policy V (π) = Eπ

[∑H
h=1 rh

]
as the expected total reward or expected return. Our goal is to learn a near-optimal policy π̂, i.e.,
supπ∈Π V (π) − V (π̂) ≤ ϵ with probability at least 1 − δ for a given tolerance parameter ϵ > 0
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and failure probability δ ∈ (0, 1), using number of episodes that scale polynomially in 1ϵ, 1δ, and
other relevant quantities. We will call such an algorithm as provably efficient. There exist several
provably efficient RL approaches for solving Block MDPs (Mhammedi et al., 2023; Misra et al.,
2020), and Ex-Block MDPs (Efroni et al., 2022). These approaches typically assume access to a
decoder class Φ = {ϕ : X → [N ]} and attempt to learn ϕ⋆ using it. These algorithms don’t use any
pre-training and instead directly interact with the environment and learn a near-optimal policy by
using samples that scale with poly(S, A, H, ln |Φ|, 1ϵ, 1δ). Crucially, the dependence on ln |Φ| cannot
be removed. The decoder class Φ and all other function classes in this work are assumed to have
bounded statistical complexity measures. For simplicity, we will assume that these function classes
are finite and derive guarantees that scale logarithmically in their size (e.g., ln |Π|).1

Representation Pre-training using Videos. RL algorithms for the above settings require online
episodes that scale with ln |Φ| which is expensive for real-world problems where Φ is represented
by a complex neural network. Offline RL approaches Uehara et al. (2021) offer a substitute for
expensive online interactions but require access to labeled episodes (with actions and rewards) that
are not naturally available in many settings such as games and software. In contrast, we focus on
pre-training the decoder ϕ using video data which is naturally available in these settings.

Problem Statement. We are given two hyperparameters ϵ > 0 and δ ∈ (0, 1) and a sufficiently
large dataset of videos. We are also given a decoder class Φ = {ϕ : X → [N ]} containing decoders
that map an observation to one of the N possible abstract states. During the pre-training phase, we
learn a decoder ϕ ∈ Φ using the video data. We then freeze ϕ and use it to do RL in a downstream
task. Instead of using any particular choice of algorithm for RL, we assume we are given a provably
efficient tabular RL algorithm A . We convert the observation-based RL problem to a tabular
MDP problem by converting an observation x to its abstract state representation ϕ(x) using the
frozen learned decoder ϕ. The algorithm A uses ϕ(x) instead of x and outputs an abstract policy
φ : [N ] → A. We want that supπ∈Π V (π) − V (φ ◦ ϕ) ≤ ϵ with probability at least 1 − δ, where
φ ◦ ϕ : x 7→ φ(ϕ(x)) is our learned policy. We also require the number of online episodes in the
downstream RL phase to not scale with the size of the decoder class Φ. This allows us to minimize
expensive online episodes while using naturally available offline video data for pre-training.

B Additional Related Work

Representation Learning for Reinforcement Learning A line of research on recurrent state
space models is essentially concerned with the next-frame approach, although typically with con-
ditioning on actions. Moreover, to model uncertainty in the observations, a latent variable with a
posterior depending on the current observation (or even a sequence of future observations) is typically
introduced. (Ke et al., 2019) considered learning such a sequential prediction model which predicts
observations and conditions on actions. They used a latent variable with a posterior depending
on future observations to model uncertainty. These representations were used for model-predictive
control and improved imitation learning. Dreamer (Hafner et al., 2019; 2023) uses the next-frame
objective but also conditions on actions. The IRIS algorithm (Micheli et al., 2023) uses the next-
frame objective but uses the transformer architecture, again conditioning on actions. The InfoPower
approach (Bharadhwaj et al., 2022) combines a one-step inverse model with a temporal contrastive
objective. Sobal et al. (2022) explored using semi-supervised objectives for learning representations
in RL, yet used action-labeled data. Wang et al. (2022) used a decoupled recurrent neural network
approach to learn to extract endogenous states, but relied on action-labeled data to achieve the fac-
torization. Deep Bisimulation for Control (Zhang et al., 2020) introduced an objective to encourage
observations with similar value functions to map to similar representations.

Self-prediction methods such as BYOL-explore (Guo et al., 2022) proposed learning reward-free
representations for exploration, but depended on open-loop prediction of future states conditioned
on actions . An analysis paper studied a simplified action-free version of the self-prediction objective

1Our theoretical analyses can be extended to other complexity metrics such as Rademacher complexity.
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(Tang et al., 2023) and showed results in the absence of using actions, although this has not been
instantiated empirically to our knowledge.

A further line of work from theoretical reinforcemnt learning has examined provably efficient ob-
jectives for discovering representations. Efroni et al. (2022) explored representation learning in the
presence of exogenous noise, establishing a sample efficient algorithm. However Efroni et al. (2022)
and the closely related work on filtering exogenous noise required actions (Lamb et al., 2022; Is-
lam et al., 2022). Other theoretical work on learning representations for RL has required access to
action-labeled data (Misra et al., 2020).

Representation Learning from Videos Self-supervised representation learning from videos
has a long history. Srivastava et al. (2015) used recurrent neural networks with a pixel prediction
objective on future frames. Parthasarathy et al. (2022) explored temporal contrastive objectives for
self-supervised learning from videos. They also found that the features learned well aligned with
human perceptual priors, despite the model not being explicitly trained to achieve such alignment.
Aubret et al. (2023) applied temporal contrastive learning to videos of objects being manipulated in
a 3D space, showing that this outperformed standard augmentations used in computer vision.

Using Video Data for Reinforcement Learning The VIPER method (Escontrela et al., 2023)
uses a pre-trained autoregressive generative model over action-free expert videos as a reward signal
for training an imitation learning agent. The Video Pre-training (VPT) algorithm (Baker et al.,
2022) trained an inverse kinematics model on a small dataset of Minecraft videos and used the
model to label a large set of unlabeled Minecraft videos from the internet. This larger dataset was
then used for imitation learning and reinforcement learning for downstream tasks. Zhao et al. (2022)
explicitly studied the challenges in using videos for representation learning in RL, identifying five
key factors: task mismatch, camera configuration, visual feature shift, sub-optimal behaviors in the
data, and robot morphology. Goo & Niekum (2019) learn reward functions for multi-step tasks from
videos by leveraging a single video segmented with action labels (one-shot learning). Sikchi et al.
(2022) propose a two-player ranking game between a policy and a reward function to satisfy pairwise
performance rankings between behaviors. Their proposed method achieves state-of-the-art sample
efficiency and can solve previously unsolvable tasks in the learning from observation (no actions)
setting.

Recently some approaches have also considered recovering latent actions from video data using an
encoder-decoder approach (Ye et al., 2022). In general, the lower bound in Theorem 2 applies to
these methods and they do not provably work in the hard instances with exogenous noise. For
example, the latent actions can capture exogenous noise instead of actions, if the former is more
predictive of changes in the observations. However, in simpler cases such as 3D games, where the
agent’s action is typically most predictive of changes in observations, or in settings with no exogenous
noise, one can expect these approaches to do well.

C Proofs of Theoretical Statements

We state our setting and general assumptions before presenting method specific results. We also
include a table of notations in tab:notation.

We are given a dataset D =
{

(x(i)
1 , x

(i)
2 , · · · , x

(i)
H )
}n

i=1
of n independent and identically distributed

(iid) unlabeled episodes. We will use the word video and unlabeled episodes interchangeably. We
assume the underlying data distribution is D. We denote the probability of an unlabeled episode
as D(x1, x2, · · · , xH). We assume that D is generated by a mixture of Markovian policies ΠD, i.e.,
the generative procedure for D is to sample a policy π ∈ ΠD with probability Θπ and then generate
an entire episode using it. For this reason, we will denote D = Θ ◦ ΠD where Θ is the mixture
distribution. We assume no direct knowledge about either ΠD or Θ, other than that the set of
policies in ΠD are Markovian. We define the underlying distribution over the action-labeled episode
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Notation Description

[N ] Denotes the set {1, 2, · · · , N}
∆(U) Denotes the set of all distributions over a set U
Unf(U) Uniform distribution over U
supp(P) Support of a distribution P ∈ ∆(U), i.e., supp(P) = {x ∈ U | P(x) > 0}.
X Observation space
S Latent endogenous state
A Action space
T : S → A → ∆(S) Transition dynamics
R : S × A → [0, 1] Reward function
µ Start state distribution
H Horizon indicating the maximum number of actions per episode
ϕ⋆ : X → S Endogenous state decoder

Table 1: Description for mathematical notations.

as D(x1, a1, x2, · · · , xH , aH), of which the agent only gets to observe the (x1, x2, · · · , xH). We will
use the notation D to refer to any distribution that is derived from the above joint distribution.

We assume that observations encode time steps. This can be trivially accomplished by simply
concatenating the time step information to the observation. This also implies that observations
from different time steps are different. Because of this property, we can assume that the Markovian
policies used to realize D were time homogenous, i.e., they only depend on observation and not
observation and timestep pair (this is because we include timesteps in the observation). Therefore,
for all h ∈ [H] and k ∈ N we have:

D(xh+k = x′ | xh = x) = D(xk+1 = x′ | x1 = x) (4)

We denote D(xh) to define the marginal distribution over an observation xh, and D(xh, xh+k) to
denote the marginal distribution over a pair of observations (xh, xh+k) in the episode. We similarly
define D(xh, ah) as the distribution over observation action pairs (xh, ah).

We assume that the video data has good coverage. This is stated formally below:
Assumption 4 (State Coverage by D). Given our policy class Π, there exists an ηmin > 0 such
thatif supπ∈Π Pπ(sh = s) > 0 for some s ∈ S, then we assume D (ϕ⋆(xh) = s) ≥ ηmin.

In practice, assum:concentrability can be satisfied since videos are more easily available than labeled
episodes and we can hope that a large diverse collection of videos can provide reasonable coverage
over the underlying state action space. E.g., for tasks like gaming, one can use hours of streaming
data from many users.

Further, we also assume that the data policy depends only on the endogenous state. Recall that for
an observation x ∈ X , its endogenous state is given by ϕ⋆(x) ∈ S.
Assumption 5 (Noise-Free Video Distribution). For any h, π ∈ ΠD, xh ∈ supp Pπ and a ∈ A, we
have

π(a | xh) = π(a | ϕ⋆(xh)).

Justification of Noise-Free Policy. Typically, video data is created by humans. E.g., a human
may be playing a game and the video data is collected by recording the user’s screen. A user is
unlikely to take actions relying on iid or exogenous noise in the observation process. Therefore, the
collected data can be expected to obey the noise-free assumption.

Multi-step transition. We choose to analyze a multi-step variant of standard temporal con-
trastive and forward modeling algorithms that train on a dataset of pairs of observations (x, x′) that
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can be variable time steps apart. As our proof will show, this gives the algorithms more expressibility
and allows them to learn correct representations for some problems that their single-step variants
(i.e., the observations are adjacent) or fixed time-step variants (i.e., the observations are fixed time
steps apart) cannot solve. We will use the variable k to denote the time steps by which these ob-
servations differ. Formally, we will call (x, k, x′) as a multi-step transition where x was observed at
some time step h, and x′ was observed at h + k. For the single-step variant of the algorithms, we
have k = 1. For the fixed multi-step variant, we have k > 1 but k is fixed. Finally, in the general
multi-step variant, we will assume that k is picked from Unf([K]) where K is a fixed upper bound.

Extending episode to H +K. When using k > 1, we may want to collect a multi-step transition
(x, k, x′) where x = xH to allow learning state representation for time step H. However, at this
point, we don’t have time steps left to observe xH+k. We alleviate this by assuming that we can
allow an episode to run till H +K if necessary. In practice, this is not a problem where the algorithm
sets the horizon and not the environment. However, if we cannot go past H, then we can instead
assume that all states are reachable by the time step H − K and so their state representation can
be learned when x is selected at xH−K . In our analysis ahead, we make the former setting that the
episodes can be extended to H + K, but it can be easily rephrased to work with the other setting.

For both the forward model and the temporal contrastive approach, we assume access to a dataset
Dfor =

(
(x(i), k(i), x′(i))

)n

i=1 of pairs of observations. We define a few different distributions that can
be used to generate this set. For a given k ∈ [K], we define a distribution Dk over k-step separate
observations as:

Dk (X = x, X ′ = x′) = 1
H

H∑
h=1

D(xh = x, xh+k = x′) (5)

We can sample (x, k, x′) ∼ Dk(X, X ′) by sampling an episode (x1, x2, · · · , xH) ∼ D, and then
sampling a h ∼ Unf([H]), and choosing x = xh and x′ = xh+k.

We also define a distribution Dunf where we also sample k uniformly over available choices:

Dunf (X = x, k, X ′ = x′) = 1
K

Dk(xh = x, xh+k = x′) (6)

We can sample (x, k, x′) ∼ Dunf(X, X ′) by sampling an episode (x1, x2, · · · , xH) ∼ D, and then
sampling h ∈ [H], and sampling k ∈ [K], and choosing (xh, xh+k) as the selected pair.

We define a useful notation ρ ∈ ∆(X ) as:

ρ(X = x) = 1
H

H∑
h=1

D(xh = x). (7)

The distribution ρ(X) is a good distribution to sample from as it covers states across all time steps.
Finally, because of Assumption 4, we have the following:

∀s ∈ S, ρ(s) ≥ ηmin

H
(8)

This is because we assume every state s ∈ S, is visited at some time step t, and so we have
D(st = s) ≥ ηmin, and ρ(s) = 1

H

∑H
h=1 D(sh = s) ≥ 1

H D(st = s) ≥ ηmin
H .

It can be easily verified that for both Dk(X, X ′) and Dunf(X, X ′), their marginals over X is given by
ρ(X). Both Dk and Dunf satisfy the noise-free property. We prove this using the next two Lemma.s
Lemma 1 (Property of Noise-Free policy). Let π be a policy such that for any x ∈ X , we have
π(a | x) = π(a | ϕ⋆(x)). Then for any h ∈ [H] and k ∈ [K] we have Pπ(xh+k = x′ | xh = x) only
depend on ϕ⋆(x) and this common value is defined by Pπ(xh+k | sh = ϕ⋆(x)).
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Proof. The proof is by induction on k. For k = 1 we have:

Pπ(xh+1 = x′ | xh = x) =
∑
a∈A

T (x′ | x, a)π(a | xh = x) =
∑
a∈A

T (x′ | ϕ⋆(x), a)π(a | xh = ϕ⋆(x)),

and as the right hand side only depends on ϕ⋆(x), the base case is proven. For the general case, we
have:

Pπ(xh+k = x′ | xh = x) =
∑
x̃∈X

Pπ(xh+k = x′, xh+k−1 = x̃ | xh = x)

=
∑
x̃∈X

Pπ(xh+k = x′ | xh+k−1 = x̃)Pπ(xh+k−1 = x̃ | xh = x)

=
∑
x̃∈X

Pπ(xh+k = x′ | xh+k−1 = x̃)Pπ(xh+k−1 = x̃ | xh = ϕ⋆(x)),

where the second step uses the fact that π is Markovian and the last step uses the inductive case
for k − 1.

Lemma 2 (Distribution over Pairs). Let k ∈ [K], x ∈ supp ρ(X), then the distribution Dk(X ′ | x)
only depends on ϕ⋆(x). This allows us to define Dk(X ′ | ϕ⋆(x)) as this common value. Similarly,
the distribution Dunf(X ′ | x, k) depends only on ϕ⋆(x) and k. We define this common value as
Dunf(X ′ | ϕ⋆(x), k).

Proof. For any k we have:

Dk(X = x, X ′ = x′) = 1
H

H∑
h=1

D(xh = x, xh+k = x′)

= 1
H

H∑
h=1

∑
π∈ΠD

ΘπPπ(xh = x, xh+k = x′)

= 1
H

H∑
h=1

∑
π∈ΠD

ΘπPπ(xh = x)P(xh+k = x′ | xh = x)

= 1
H

H∑
h=1

∑
π∈ΠD

ΘπPπ(xh = x)Pπ(xh+k = x′ | sh = ϕ⋆(x)), (using Lemma 1)

= q(x | ϕ⋆(x))
H

H∑
h=1

∑
π∈ΠD

ΘπPπ(sh = ϕ⋆(x))Pπ(xh+k = x′ | sh = ϕ⋆(x))

The marginal Dk(X = x) is given by:

Dk(X = x) = 1
H

H∑
h=1

∑
π∈ΠD

Θπq(x | ϕ⋆(x))Pπ(sh = ϕ⋆(x)) = q(x | ϕ⋆(x))
H

H∑
h=1

Dk(sh = ϕ⋆(x)).

The conditional Dk(X ′ = x′ | X = x) is given by:

Dk(X ′ = x′ | X = x) = Dk(X = x, X ′ = x′)
Dk(x)

=
∑H

h=1
∑

π∈ΠD
ΘπPπ(sh = ϕ⋆(x))Pπ(xh+k = x′ | sh = ϕ⋆(x))∑H

h=1 Dk(sh = ϕ⋆(x))

Therefore, the conditional Dk(X ′ = x′ | X = x only depends on ϕ⋆(x), and we define this common
value as Dk(X ′ = x′ | s = ϕ⋆(x)).
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The proof for Dunf is similar. We can use the property of Dk that we have proven to get:

Dunf(X ′ = x′ | X = x, k) = Dunf(X = x, k, X ′ = x′)∑
x̃∈X Dunf(X = x, k, X ′ = x̃)

= Dk(X = x, X ′ = x′)∑
x̃∈X Dk(X = x, X ′ = x̃)

= Dk(X ′ = x′ | X = x)∑
x̃∈X Dk(X ′ = x̃ | X = x)

= Dk(X ′ = x′ | X = ϕ⋆(x))∑
x̃∈X Dk(X ′ = x̃ | X = ϕ⋆(x)) .

Therefore, Dunf(X ′ = x′ | X = x, k) only depends on ϕ⋆(x). We will define the common values as
Dunf(X ′ = x′ | s = ϕ⋆(x), k).

Lemma 2 allows us to define Dk(x′ | ϕ⋆(x)) and Dunf(x′ | ϕ⋆(x), k), as the distribution only depends
on the latent state.

C.1 Upper Bound for the Forward Model Baseline

Let Dfor = {(x(i), k(i), x′(i))}n
i=1 be a pair of iid multi-step observations. We will collect this dataset

in one of three ways:

1. Single step (k = 1), in this case we will sample (x(i), x′(i)) ∼ Dk(X, X ′). As explained
before, we can get this sample using the episode data. We save (x(i), k, x′(i)) as our sample.

2. Fixed multi-step. We use a fixed k > 1, and sample (x(i), x′(i)) ∼ Dk(X, X ′). We save
(x(i), k, x′(i)) as our sample.

3. Variable multi-step. We sample (x, k, x′) ∼ Dunf(X, k, X ′) and use it as our sample.

We will abstract these three choices using a general notion of Dpr ∈ ∆(X × [K]×X ). In the first two
cases, we assume we have point-mass distribution over k and given this k, we sample from Dk(X, X ′).
We will assume (x(i), k(i), x′(i)) ∼ Dpr. We can create Dfor from the dataset D of n episodes sampled
from D using the sampling procedures explained earlier. Note that as marginals over both Dk(X)
and Dunf(X) is ρ(X), therefore, the marginals over Dpr(X) is also ρ(X). Additionally, we will define
Dpr(k) as the marginal over k which is either point-mass in the first two sampling procedures and
Unf([K]) in the third procedure.

We assume access to two function classes. The first is a decoder class ΦN : X → [N ] where N is a
given number that satisfies N ≥ |S|. The second is a conditional probability class F : [N ] × [K] →
∆(X ).
Assumption 6. (Realizability of Φ and F) We assume that there exists ϕ◦ ∈ ΦN and f◦ ∈ F such
that f◦(x′ | ϕ◦(x), k) = Dpr(x′ | x, k) = Dpr(x′ | ϕ⋆(x), k) for all (x, k) ∼ Dpr(·, ·).

This assumption firstly is non-vacuous as Dpr(x′ | x) = Dpr(x′ | ϕ⋆(x)), and therefore, we can apply
a bottleneck function ϕ and still assume realizability. For example, we can assume that ϕ̃ is the
same as ϕ⋆ up to the relabeling of its output, and f̃(x′ | i) = Dpr(x′ | s).

Let f̂ , ϕ̂ be the empirical solution to the following maximum likelihood problem.

f̂ , ϕ̂ = arg max
f∈F,ϕ∈ΦN

1
n

n∑
i=1

ln f
(

x′(i) | ϕ(x(i)), k(i)
)

(9)

Note that when k is fixed (we sample from Dk), then information theoretically there is no advantage
of condition on k and it can be dropped from optimization.
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As we are in a realizable setting (Assumption 6), we can use standard maximum likelihood guarantees
to get the following result.
Proposition 3 (Generalization Bound). Fix δ ∈ (0, 1), then with probability at least 1 − δ, we have:

E(x,k)∼Dpr

[∥∥∥Dpr(X ′ | x, k) − f̂(X ′ | ϕ̂(x), k)
∥∥∥2

TV

]
≤ ∆2(n; δ),

where ∆2(n; δ) = 2
n ln

(
|Φ|·|F|

δ

)
.

For proof see Chapter 7 of Geer (2000).

Finally, we assume that the forward modeling objective is expressive to allow the separation of states.
While, this seems like assuming that the objective works, our goal is to establish a formal notion of
the margin so we can verify it later in different settings to see when it holds.
Assumption 7. (Forward Modeling Margin). We assume there exists a βfor ∈ (0, 1) such that:

inf
s1,s2∈S,s1 ̸=s2

Ek∼Dpr

[
∥Dpr(X ′ | s1, k) − Dpr(X ′ | s2, k)∥TV

]
≥ βfor

Note that this defines two types of margin depending on Dpr. When k is a fixed value, the margin
is given by:

β
(k)
for = inf

s1,s2∈S,s1 ̸=s2
∥Dpr(X ′ | s1, k) − Dpr(X ′ | s2, k)∥TV .

When we sample k ∼ Unf([K]) then the margin is given by:

β
(u)
for = inf

s1,s2∈S,s1 ̸=s2

1
K

K∑
k=1

∥Dpr(X ′ | s1, k) − Dpr(X ′ | s2, k)∥TV .

We will use the abstract notion βfor for forward margin which will be equal to β
(k)
for or β

(u)
for depending

on our sampling procedure. It is easy to see that β
(u)
for = 1

K

∑K
k=1 β

(k)
for .

We are now ready to state our first main result.
Proposition 4 (Recovering Endogenous State.). Fix δ ∈ (0, 1), then with probability at least 1 − δ

we learn ϕ̂ that satisfies:

Px1,x2∼ρ

(
ϕ⋆(x1) ̸= ϕ⋆(x2) ∧ ϕ̂(x1) = ϕ̂(x2)

)
≤ 2∆(n, δ)

βfor
.

Proof. We start with a coupling argument where we sample x1, x2 independently from Dpr(X) which
is the same as ρ(X).

Ex1,x2∼Dpr,k∼Dpr

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}

∥Dpr(X ′ | x1, k) − Dpr(X ′ | x2, k)∥TV

]
≤ Ex1,x2∼Dpr,k∼Dpr

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}∥∥∥f̂(X ′ | ϕ̂(x1), k) − Dpr(X ′ | x1, k)

∥∥∥
TV

]
+ Ex1,x2∼Dpr,k∼Dpr

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}∥∥∥f̂(X ′ | ϕ̂(x1), k) − Dpr(X ′ | x2, k)

∥∥∥
TV

]
We bound these two terms separately

Ex1,x2∼Dpr,k∼Dpr

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}∥∥∥f̂(X ′ | ϕ̂(x1), k) − Dpr(X ′ | x1, k))

∥∥∥
TV

]
≤
√
Ex1,x2∼Dpr,k∼Dpr

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}]

·

√
Ex1,x2∼Dpr,k∼Dpr

[∥∥∥f̂(X ′ | ϕ̂(x1), k) − Dpr(X ′ | x1, k))
∥∥∥2

TV

]
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=
√
Ex1,x2∼Dpr

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}]

·

√
E(x,k)∼Dpr

[∥∥∥f̂(X ′ | ϕ̂(x) − Dpr(X ′ | x))
∥∥∥2

TV

]
≤ b · ∆,

where b =
√
Ex1,x2∼Dpr

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}]

and the second step uses Cauchy-Schwarz inequality.
It is straightforward to verify that b ∈ [0, 1]. We bound the second term similarly

Ex1,x2∼Dpr,k∼Dpr

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}∥∥∥f̂(X ′ | ϕ̂(x1), k) − Dpr(X ′ | x2, k)

∥∥∥
TV

]
= Ex1,x2∼Dpr

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}∥∥∥f̂(X ′ | ϕ̂(x2), k) − Dpr(X ′ | x2, k)

∥∥∥
TV

]
≤ b · ∆,

where the second step uses the crucial coupling argument that we can replace x1 with x2 because of
the indicator 1

{
ϕ̂(x1) = ϕ̂(x2)

}
, and the last step follows as we reduce it to the first term except

we switch the names of x1 and x2. Combining the two upper bounds we get:

Ex1,x2∼Dpr,k∼Dpr

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}

∥Dpr(X ′ | x1, k) − Dpr(X ′ | x2, k)∥TV

]
≤ 2b · ∆

or, equivalently,

Ex1,x2∼Dpr

1
{

ϕ̂(x1) = ϕ̂(x2)
}
Ek∼Dpr

[
∥Dpr(X ′ | x1, k) − Dpr(X ′ | x2, k)∥TV

]︸ ︷︷ ︸
:=Γ(x1,x2)

 ≤ 2b · ∆

Let Γ(x1, x2) = Ek∼Dpr

[
∥Dpr(X ′ | x1, k) − Dpr(X ′ | x2, k)∥TV

]
. For any two observations, if

ϕ⋆(x1) = ϕ⋆(x2), then ∥Dpr(X ′ | x1) − Dpr(X ′ | x2)∥TV = 0, and therefore, Γ(x1, x2) = 0 be-
cause of Lemma 2. Otherwise, Γ(x1, x2) is at least βfor, by Assumption 6. Combining these two
observations we get:

Γ(x1, x2) ≥ βfor1{ϕ⋆(x1) ̸= ϕ⋆(x2)}

Combining the previous two inequalities we get:

Ex1,x2∼Dpr

[
1
{

ϕ̂(x1) = ϕ̂(x2) ∧ ϕ⋆(x1) ̸= ϕ⋆(x2)
}]

≤ 2b · ∆
βfor

This directly gives

Px1,x2∼Dpr

(
ϕ̂(x1) = ϕ̂(x2) ∧ ϕ⋆(x1) ̸= ϕ⋆(x2)

)
≤ 2b∆

βfor
≤ 2∆

βfor
.

The proof is completed by recalling that marginal Dpr(X) is the same as ρ(X).

Proposition 4 shows that the learned ϕ̂ has one-sided error. If it merges two observations, then with
high probability they are not from the same state. As N = |S|, we will show below that the reverse
is also true.
Theorem 5. If N = |S|, then there exists a bijection α : [N ] → S such that for any s ∈ S we have:

Px∼q(·|s)

(
ϕ̂(x) = α(s) | ϕ⋆(x) = s

)
≥ 1 − 4N3H2∆

η2
minβfor

,

provided ∆ <
η2

minβfor
N2H2 .
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Proof. We define a few shorthand below for any j ∈ [N ] and s̃ ∈ S

P(j, s̃) = Px∼ρ

(
ϕ̂(x) = j ∧ ϕ⋆(x) = s̃

)
ρ(j) = Px∼ρ

(
ϕ̂(x) = j

)
ρ(s̃) = Px∼ρ (ϕ⋆(x) = s̃) .

It is easy to verify that P(j, s̃) is a joint distribution with ρ(j) and ρ(s̃) as its marginals.

Fix i ∈ [N ] and s ∈ S.

Px1,x2∼ρ

(
ϕ̂(x1) = ϕ̂(x2) ∧ ϕ⋆(x1) ̸= ϕ⋆(x2)

)
= Px1,x2∼ρ

(
∪s̃∈S,j∈[N ]

{
ϕ̂(x1) = j ∧ ϕ̂(x2) = j ∧ ϕ⋆(x1) = s̃ ∧ ϕ⋆(x2) ̸= s̃

})
≥ Px1,x2∼ρ

(
ϕ̂(x1) = i ∧ ϕ̂(x2) = i ∧ ϕ⋆(x1) = s ∧ ϕ⋆(x2) ̸= s

)
= Px1∼ρ

(
ϕ̂(x1) = i ∧ ϕ⋆(x1) = s

)
Px2∼ρ

(
ϕ̂(x2) = i ∧ ϕ⋆(x2) ̸= s

)
= Px∼ρ

(
ϕ̂(x) = i ∧ ϕ⋆(x) = s

)(∑
s′∈S

Px∼ρ

(
ϕ̂(x) = i ∧ ϕ⋆(x) = s′

)
− Px∼ρ(ϕ̂(x) = i ∧ ϕ⋆(x) = s)

)

= P(i, s)
(∑

s′∈S
P(i, s′) − P(i, s)

)
= P(i, s) (ρ(i) − P(i, s)) .

Combining this with Proposition 4, we get:

∀i ∈ [N ], s ∈ S, P(i, s) (ρ(i) − P(i, s)) ≤ ∆′ := 2∆
βfor

where we have used a shorthand ∆′ = 2∆/βfor. We define a mapping α : S → [N ] where for any
s ∈ S:

α(s) = arg max
j∈[N ]

P(j, s) (10)

We immediately have:

P(α(s), s) = max
j∈[N ]

P(j, s) ≥ 1
N

N∑
j=1

P(j, s) = 1
N

ρ(s) ≥ ηmin

NH
, (11)

where we use the fact that max is greater than average in the first inequality, and Equation 8.
Further, for every s ∈ S, we have:

P(α(s), s) (ρ(α(s)) − P(α(s), s)) ≤ ∆′.

Plugging the lower bound P(α(s), s) ≥ ηmin
NH , we get:

P(α(s), s) ≥ ρ(α(s)) − NH∆′

ηmin
. (12)

We now show that if ∆′ <
η2

min
2N2H2 , then α(s) is a bijection. Let s1 and s2 be such that α(s1) = α(s2) =

i. Then using the above Equation 12 we get P(i, s1) ≥ ρ(i) − NH∆′

ηmin
and P(i, s2) ≥ ρ(i) − NH∆′

ηmin
. We

have:
ρ(i) =

∑
s̃∈S

P(i, s̃) ≥ P(i, s1) + P(i, s2) ≥ 2ρ(i) − 2NH∆′

ηmin
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This implies 2N∆′

ηmin
≥ ρ(i) but as ρ(i) = ρ(α(s1)) ≥ P(α(s1), s1) ≥ ηmin

NH (Equation 11), we get
2NH∆′

ηmin
≥ ηmin

NH or ∆′ ≥ η2
min

2N2H2 . However, as we assume that ∆′ <
η2

min
2N2H2 , therefore, this is a

contradiction. This implies α(s1) ̸= α(s2) for any two different states s1 and s2. Since we assume
|N | = |S|, this implies α is a bijection.

Fix s ∈ S and let i ̸= α(s). As α is a bijection, let s̃ = α−1(i), we can show that P(i, s) is small:

P(i, s) ≤ ρ(i) − P(i, s̃) = ρ(α(s̃)) − P(α(s̃), s̃) ≤ NH∆′

ηmin
(13)

where we use s ̸= s̃ and Equation 12.

This allows us to show that P(α(s) | s) is high as follows:

P(α(s) | s) = P(α(s), s)
ρ(s) = P(α(s), s)

P(α(s), s) +
∑N

i=1,i̸=α(s) P(i, s)

≥ P(α(s), s)
ρ(α(s)) + N2H∆′

ηmin

,

≥
ρ(α(s)) − NH∆′

ηmin

ρ(α(s)) + N2H∆′

ηmin

= 1 −

(
N2H∆′

ηmin
+ NH∆′

ηmin

)
ρ(α(s)) + N2H∆′

ηmin

≥ 1 − 2N2H2∆′

ηminρ(α(s))

≥ 1 − 2N3H2∆′

η2
min

,

where the first inequality uses eqn:failure-bound and ρ(α(s)) ≥ P(α(s), s), second inequality
uses eqn:abstract-state-converge, and the last step uses ρ(α(s)) ≥ P(α(s), s) ≥ ηmin

NH .

The proof is completed by noting that:

Px∼q(·|s)

(
ϕ̂(x) = α(s)

)
= Px∼ρ

(
ϕ̂(x) = α(s) | ϕ⋆(x) = s

)
= P(α(s) | s).

Let A be a PAC RL algorithm for tabular MDPs. We assume that this algorithm’s sample com-
plexity is given by nsamp(S, A, H, ϵ, δ) where S and A are the size of the state space and action space
of the tabular MDP, H is the horizon, and (ϵ, δ) are the typical PAC RL hyperparameters denoting
tolerance and failure probability. Formally, the algorithm A interacts with a tabular MDP M for
nsamp(S, A, H, ϵ, δ) episodes and outputs a policy φ̂ : S × [H] → A such that with probability at
least 1 − δ we have:

sup
φ∈Ψall

VM(φ) − VM(φ̂) ≤ ϵ,

where Ψall is the space of all policies of the type S × [H] → A.

We assume that we are given knowledge of the desired (ϵ, δ) hyperparameters in the downstream
RL task during the representation pre-training phase so we can use the right amount of data.

Induced Finite MDP. The latent MDP inside a block MDP is a tabular MDP with state space S,
action space A, horizon H, transition dynamics T , reward function R, and a start state distribution
of µ. If we directly had access to this latent MDP, say via the true decoding function ϕ⋆, then we
can apply the algorithm A and learn the optimal latent policy φ⋆ which we can couple with ϕ⋆
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and learn the optimal observation-based policy. Formally, we write this observation-based policy as
φ ◦ ϕ⋆ : X × [H] → A given by φ(ϕ⋆(x), h). We dont have access to ϕ⋆, but we have access to ϕ̂
that with high probability for a given x outputs a state which is same as ϕ⋆(x) up to the learned
α-bijection. We, therefore, define the induced MDP M as the finite MDP with state space Ŝ, action
space A, transition function T̂ , reward function R̂ and start state distribution µ̂. These same as
the latent Block MDP but where the true state s is replaced by α(s). It is this induced M that the
tabular MDP algorithm A will see with high probability.
Proposition 6 (PAC RL Bound). Let A be a PAC RL algorithm for tabular MDPs and nsamp is
its sample complexity. Let ϕ̂ : X → [N ] be a decoder pre-trained using video data and α : S → [N ]
is a bijection such that:

∀s ∈ S, Px∼q(·|s)

(
ϕ̂(x) = α(s)

)
≥ 1 − ϑ,

then let φ̂ be the policy returned by A on the tabular MDP induced by ϕ̂(x). Then we have with
probability at least 1 − δ − nsamp(S, A, H, ϵ, δ)Hϑ:

sup
π∈Π

V (π) − V (φ ◦ ϕ̂) ≤ ϵ + 2H2ϑ

Proof. The algorithm runs for nsamp(S, A, H, ϵ, δ) episodes. This implies the agent visits
nsamp(S, A, H, ϵ, δ)H many latent states. If the decoder maps every such state s to the correct
permutation α(s), then the tabular MDP algorithm is running as if it ran on the induced MDP M.
The probability of failure is bounded by nsamp(S, A, H, ϵ, δ)Hϑ as all these failures are independent
given the state. Further, the failure probability of the tabular MDP algorithm itself is δ. This leads
to the total failure probability of δ + nsamp(S, A, H, ϵ, δ)Hϑ.

Let Π be the set of observation-based policies we are competing with and which includes the optimal
observation-based policy π⋆. We can write supπ∈Π V (π) = VM(φ⋆) where we use the subscript M to
denote that the latent policy is running in the induced MDP M. Further, for any latent policy φ we
have V (φ ◦ α ◦ ϕ⋆) = VM(φ) as the decoder α ◦ ϕ⋆ : x 7→ α(ϕ⋆(x)) give me access to the true state
of the induced MDP M. Then with probability at least 1 − δ, we have:

VM(φ⋆) − VM(φ̂) ≤ ϵ

This allows us to bound the sub-optimality of the learned observation-based policy φ̂ ◦ ϕ̂ as:

sup
π∈Π

V (π) − V (φ̂ ◦ ϕ̂) = V (φ⋆ ◦ α ◦ ϕ⋆) − V (φ̂ ◦ α ◦ ϕ⋆) + V (φ̂ ◦ α ◦ ϕ⋆) − V (φ̂ ◦ ϕ̂)

= VM(φ⋆) − VM(φ̂) + V (φ̂ ◦ α ◦ ϕ⋆) − V (φ̂ ◦ ϕ̂)
≤ ϵ + V (φ̂ ◦ α ◦ ϕ⋆) − V (φ̂ ◦ ϕ̂)

Here we use φ̂ ◦ α ◦ ϕ⋆ to denote an observation-based policy that takes action as φ̂(α(ϕ⋆(x)), h).

We bound V (φ̂ ◦ α ◦ ϕ⋆) − V (φ̂ ◦ ϕ̂) below. Let Eh = {ϕ̂(xh) = α(ϕ⋆(xh))} and E = ∩H
h=1Eh be

two events. We have P(Eh) ≥ 1 − ϑ. Further, using union bound we have P(Ec) = P(∪H
h=1Ec

h) ≤∑H
h=1 P(Ec

h) ≤ Hϑ.

We first prove an upper bound on V (φ̂ ◦ α ◦ ϕ⋆):

V (φ̂ ◦ α ◦ ϕ⋆) = Eφ̂◦α◦ϕ⋆

[
H∑

h=1
rh

]

= Eφ̂◦α◦ϕ⋆

[
H∑

h=1
rh | E

]
Pφ̂◦α◦ϕ⋆(E) + Eφ̂◦α◦ϕ⋆

[
H∑

h=1
rh | Ec

]
Pφ̂◦α◦ϕ⋆(Ec)
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≤ Eφ̂◦α◦ϕ⋆

[
H∑

h=1
rh | E

]
+ H2ϑ

= Eφ̂◦ϕ̂

[
H∑

h=1
rh | E

]
+ H2ϑ

Here we have used the fact that value of any policy is in [0, H] since the horizon is H and the rewards
are in [0, 1].

We next prove a lower bound on V (φ̂ ◦ ϕ̂):

V (φ̂ ◦ ϕ̂) = Eφ̂◦ϕ̂

[
H∑

h=1
rh

]

= Eφ̂◦ϕ̂

[
H∑

h=1
rh | E

]
Pφ̂◦ϕ̂(E) + Eφ̂◦ϕ̂

[
H∑

h=1
rh | Ec

]
Pφ̂◦ϕ̂(Ec)

≥ Eφ̂◦ϕ̂

[
H∑

h=1
rh | E

]
Pφ̂◦ϕ̂(E)

≥ Eφ̂◦ϕ̂

[
H∑

h=1
rh | E

]
− Eφ̂◦ϕ̂

[
H∑

h=1
rh | E

]
Hϑ

≥ Eφ̂◦ϕ̂

[
H∑

h=1
rh | E

]
− H2ϑ

Combining the two upper bounds we get:

V (φ̂ ◦ α ◦ ϕ⋆) − V (φ̂ ◦ ϕ̂) ≤ Eφ̂◦ϕ̂

[
H∑

h=1
rh | E

]
+ H2ϑ − Eφ̂◦ϕ̂

[
H∑

h=1
rh | E

]
+ H2ϑ ≤ 2H2ϑ

Therefore, with probability at least 1 − δ − nsamp(S, A, H, ϵ, δ)Hϑ, learn a policy φ̂ ◦ ϕ̂ such that:

sup
π∈Π

V (π) − V (φ̂ ◦ ϕ̂) ≤ ϵ + 2H2ϑ.

Theorem 7 (Wrapping up the proof.). Fix ϵ◦ > 0 and δ◦ ∈ (0, 1) and let A be any PAC RL
algorithm for tabular MDPs with sample complexity nsamp(S, A, H, ϵ, δ). If n satisfies:

n = O

({
N4H4

η4
minβ2

for
+ N6H8

ϵ2
◦η4

minβ2
for

+
N6H6n2

samp(S, A, H, ϵ◦/2, δ◦/4)
δ2

◦η4
minβ2

for

}
ln
(

|F||Φ|
δ◦

))
,

then forward modeling learns a decoder ϕ̂ : X → N . Further, running A on the tabular MDP with
induced by ϕ̂ with hyperparameters ϵ = ϵ◦/2, δ = δ◦/4, returns a latent policy φ̂. Then there exists
a bijective mapping α : S → [|S|] such that with probability at least 1 − δ we have:

∀s ∈ S, Px∼q(·|s)

(
ϕ̂(x) = α(s) | ϕ⋆(x) = s

)
≥ 1 − 4N3H2∆

η2
minβfor

,

and
V (π⋆) − V (φ̂ ◦ ϕ̂) ≤ ϵ◦

Further, the amount of online interactions in the downstream RL is given by
nsamp(S, A, H, ϵ◦/2, δ◦/4) and doesn’t scale with ln |Φ|.
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Proof. We showed in Theorem 5 that we learn a ϕ̂ such that:

Px∼q(·|s)

(
ϕ̂(x) = α(s) | ϕ⋆(x) = s

)
≥ 1 − 4N3H2∆

η2
minβfor

,

provided ∆ <
η2

minβfor
N2H2 .

Let ϑ = 4N3H2∆
η2

minβfor
. Then from Proposition 6 we learn a φ̂ such that:

V (π⋆) − V (φ̂ ◦ ϕ̂) ≤ ϵ + 2H2ϑ,

with probability at least 1 − δ − nsamp(S, A, H, ϵ, δ)Hϑ. The failure probability δ −
nsamp(S, A, H, ϵ, δ)Hϑ was when condition in Theorem 5 holds which holds with δ probability. Hence,
total failure probability is:

2δ + nsamp(S, A, H, ϵ, δ)Hϑ.

We set δ both in our representation learning analysis and in PAC RL to δ◦/4. We also set ϵ in the
PAC RL algorithm to ϵ◦/2. This means the PAC RL algorithm runs for nsamp(S, A, H, ϵ◦/2, δ◦/4)
episodes.

We enforce ϑ ≤ δ◦
2nsamp(S,A,H,ϵ◦/2,δ◦/4)H . Then the total failure probability becomes:

2δ◦/4) + δ◦/4 + δ◦/2 ≤ δ◦

We also enforce 2H2ϑ ≤ ϵ◦/2. The sub-optimality of the PAC RL policy is given by:

ϵ◦/2 + ϵ◦/2 ≤ ϵ◦

This gives us our derived PAC RL bound.

We now accumulate all conditions:

∆ =

√
2
n

ln
(

4|F||Φ|
δ◦

)
ϑ = 4N3H2∆

η2
minβfor

∆ <
η2

minβfor

N2H2

ϑ ≤ δ◦

2nsamp(S, A, H, ϵ◦/2, δ◦/4)H
2H2ϑ ≤ ϵ◦/2

This simplifies to

∆ ≤ η2
minβfor

N2H2

∆ ≤ δ◦η2
minβfor

8N3H3nsamp(S, A, H, ϵ◦/2, δ◦/4)

∆ ≤ ϵ◦η2
minβfor

16N3H4

Or,

n = O

({
N4H4

η4
minβ2

for
+ N6H8

ϵ2
◦η4

minβ2
for

+
N6H6n2

samp(S, A, H, ϵ◦/2, δ◦/4)
δ2

◦η4
minβ2

for

}
ln
(

|F||Φ|
δ◦

))
This completes the proof.
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C.2 Upper Bound for the Temporal Contrastive Approach

We first convert our video dataset D into a dataset suitable for contrastive learn-
ing. We first split the datasets into ⌊n/2⌋ pairs of videos. For each video pair{(

x
(2l)
1 , x

(2l)
2 , · · · , x

(2k)
H

)
,
(

x
(2l+1)
1 , x

(2l+1)
2 , · · · , x

(2l+1)
H

)}
, we create a tuple (x, x′, k, z) where z ∈

{0, 1} as follows. As in forward modeling, we will either use a fixed value of k, or sample k ∈ Unf([K]).
We denote this general distribution over k by ω ∈ ∆([K]) which is either point mass, or Unf([K]).
We sample k ∼ ω and z ∼ Unf({0, 1}) and h ∈ Unf([H]). We set x = x

(2l)
h . If z = 1, then we

set x′ = x
(2l)
h+k, otherwise, we sample h′ ∼ Unf({0, 1}) and select x′ = x

(2l)
h′ . This way, we collect

a dataset Dcont of ⌊n/2⌋ tuples (x, k, x′, z). We view a tuple (x, k, x′, z) as a real observation pair
when z = 1, and a fake observation pair when z = 0. Note that our sampling process leads to all
data points being iid.

We define the distribution Dcont(X, k, X ′, Z) as the distribution over (x, k, x′, z). We can express
this distribution as:

Dcont(X = x, k, X ′ = x′, Z = 1) = ω(k)
2H

H∑
h=1

D(x = xh, x′ = xh+k)

= ω(k)
2 ρ(x)D(xk+1 = x′ | x1 = x)

Dcont(X = x, X ′ = x′, Z = 0) = ω(k)
2H2

H∑
h=1

D(x = xh)
H∑

h′=1
D(x′ = xh′)

= ω(k)
2 ρ(x)ρ(x′)

where we use the time homogeneity of D and definition of ρ. We will use a shorthand to denote
D(xk+1 = x′ | x1 = x) as D(x′ | x, k) in this analysis. It is easy to verify that D(x′ | x, k) = D(x′ |
ϕ⋆(x), k). The marginal distribution Dcont(x, k, x′) is given by:

Dcont(x, k, x′) = ω(k)ρ(x)
2 (D(x′ | x, k) + ρ(x′)) (14)

Note that Dcont(X) is the same as ρ(X).

We will use Dcont for any marginal and conditional distribution derived from Dcont(X, k, X ′, Z). We
assume a model class G : X × [K] × ×[N ] → [0, 1] that we use for solving the prediction problem.
We will also reuse the decoder class ϕ : X → [N ] that we defined earlier, and we will assume that
N = |S|. This can be relaxed by doing clustering or working with a different induced MDP (e.g., see
the clustering algorithm in Misra et al. (2020)). However, this is not the main point of the analysis.

We define the expected risk minimizer of the squared loss problem below:

ĝ, ϕ̂ = arg min
g∈G,ϕ∈Φ

1
⌊n/2⌋

⌊n/2⌋∑
i=1

(
g(ϕ(x(i)), k(i), x′(i)) − z(i)

)2
(15)

We express the Bayes classifier of this problem below:
Lemma 3 (Bayes Classifier). The Bayes classifier of the problem posed in Equation 15 is given by
Dcont(z = 1 | x, k, x′) which satisfies:

Dcont(z = 1 | x, k, x′) = D(ϕ⋆(x′) | ϕ⋆(x), k)
D(ϕ⋆(x′) | ϕ⋆(x), k) + ρ(ϕ⋆(x′)) .

Proof. We can express the Bayes classifier as:

Dcont(z = 1 | x, k, x′) = Dcont(x, k, x′, z = 1)
Dcont(x, k, x′, z = 1) + Dcont(x, k, x′, z = 0)
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= ω(k)/2ρ(x)D(x′ | x)
ω(k)/2ρ(x)D(x′ | x) + ω(k)/2ρ(x)ρ(x′)

= D(x′ | x, k)
D(x′ | x, k) + ρ(x′)

= D(x′ | ϕ⋆(x), k)
D(x′ | ϕ⋆(x), k) + ρ(x′)

= q(x′ | ϕ⋆(x))D(ϕ⋆(x′) | ϕ⋆(x), k)
q(x′ | ϕ⋆(x))D(ϕ⋆(x′) | ϕ⋆(x), k) + q(x′ | ϕ⋆(x))ρ(ϕ⋆(x′))

= D(ϕ⋆(x′) | ϕ⋆(x), k)
D(ϕ⋆(x′) | ϕ⋆(x), k) + ρ(ϕ⋆(x′)) .

Assumption 8 (Realizability). There exists g⋆ ∈ G and ϕ◦ ∈ Φ such that for all (x, k, x′) ∈
supp Dcont(X, k, X ′), we have Dcont(z = 1 | x, k, x′) = g⋆(ϕ◦(x), k, x′).

We will use the shorthand to denote g⋆(x, k, x′) = g⋆(ϕ◦(x), k, x′).

As before, we start with typical square loss guarantees in the realizable setting.
Theorem 8. Fix δ ∈ (0, 1). Under realizability (Assumption 8), the ERM solution of f̂ , ϕ̂
in eqn:temp-cont satisfies:

E(x,k,x′)∼Dcont

[(
ĝ(ϕ̂(x), k, x′) − g⋆(x, k, x′)

)2
]

≤ ∆2
cont = 2

n
ln |G|.|Φ|

δ

For proof see Proposition 12 in Misra et al. (2020).

We will prove a coupling result similar to the case for forward modeling. However, to do this, we
need to define a coupling distribution:

Dcoup(X1 = x1, X2 = x2, k, X ′ = x′) = ω(k)Dcont(X = x1)Dcont(X = x2)Dcont(X ′ = x′)

We will derive a useful importance ratio bound.

Dcoup(x1, k, x′)
Dcont(x1, k, x′) = 2ρ(x1)ρ(x′)

ρ(x1)D(x′ | x1, k) + ρ(x1)ρ(x′) ≤ 2 (16)

We now prove an analogous result to Proposition 4.
Theorem 9 (Coupling for Temporal Contrastive Learning). With probability at least 1− δ we have:

E(x1,x2,k,x′)∼Dcoup

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}

|g⋆(x1, k, x′) − g⋆(x2, k, x′)|
]

< 4∆cont(n, δ)

Proof. We start with triangle inequality:

E(x1,x2,k,x′)∼Dcoup

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}

|g⋆(x1, k, x′) − g⋆(x2, k, x′)|
]

≤ E(x1,x2,k,x′)∼Dcoup

[
1
{

ϕ̂(x1) = ϕ̂(x2)
} ∣∣∣g⋆(x1, k, x′) − ĝ(ϕ̂(x1), k, x′)

∣∣∣]+

E(x1,x2,k,x′)∼Dcoup

[
1
{

ϕ̂(x1) = ϕ̂(x2)
} ∣∣∣ĝ(ϕ̂(x1), k, x′) − g⋆(x2, k, x′)

∣∣∣]
We bound the first term as:

E(x1,x2,k,x′)∼Dcoup

[
1
{

ϕ̂(x1) = ϕ̂(x2)
} ∣∣∣g⋆(x1, k, x′) − ĝ(ϕ̂(x1), k, x′)

∣∣∣]
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≤
√
E(x1,x2,k,x′)∼Dcoup

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}]

︸ ︷︷ ︸
:=b

·

√
E(x1,x2,k,x′)∼Dcoup

[∣∣∣g⋆(x1, k, x′) − ĝ(ϕ̂(x1), k, x′)
∣∣∣2]

= b

√
E(x1,k,x′)∼Dcoup

[(
g⋆(x1, k, x′) − ĝ(ϕ̂(x1), k, x′)

)2
]

= b

√
E(x1,k,x′)∼Dcont

[
Dcoup(x1, k, x′)
Dcont(x1, k, x′)

(
g⋆(x1, k, x′) − ĝ(ϕ̂(x1), k, x′)

)2
]

≤ b

√
2E(x1,k,x′)∼Dcont

[(
g⋆(x1, k, x′) − ĝ(ϕ̂(x1), k, x′)

)2
]

≤
√

2b∆cont,

where we use Cauchy-Schwartz’s inequality in the first step and Equation 16 in the second inequality.
The second term is bounded as:

E(x1,x2,k,x′)∼Dcoup

[
1
{

ϕ̂(x1) = ϕ̂(x2)
} ∣∣∣ĝ(ϕ̂(x1), k, x′) − g⋆(x2, k, x′)

∣∣∣]
= E(x1,x2,k,x′)∼Dcoup

[
1
{

ϕ̂(x1) = ϕ̂(x2)
} ∣∣∣ĝ(ϕ̂(x2), k, x′) − g⋆(x2, k, x′)

∣∣∣]
= E(x1,x2,k,x′)∼Dcoup

[
1
{

ϕ̂(x1) = ϕ̂(x2)
} ∣∣∣ĝ(ϕ̂(x1), k, x′) − g⋆(x1, k, x′)

∣∣∣]
≤

√
2b∆cont,

where we use the coupling argument in the first step and then reduce it to the first term using
symmetric of (x1, x2) in Dcoup. Combining the upper bounds of the two terms and using b ≤ 1 and
2
√

2 < 4 completes the proof.

Assumption 9 (Temporal Contrastive Margin). We assume that there exists a βtemp > 0 such that
for any two different states s1 and s2:

1
2Ek∼ω,s′∼ρ [|g⋆(s1, k, s′) − g⋆(s2, k, s′)|] ≥ βtemp

The factor of 1
2 is chosen for comparison with forward modeling as will become clear later at the

end of the proof. As before, if k is fixed, the margin is given by

β
(k)
temp := 1

2 inf
s1 ̸=s2;s1,s2∈S

Es′∼ρ [|g⋆(s1, k, s′) − g⋆(s2, k, s′)|]

and when k ∼ Unf([K]) the margin is given by

β
(u)
temp := 1

2 inf
s1 ̸=s2;s1,s2∈S

Ek∼Unf([K]),s′∼ρ [|g⋆(s1, k, s′) − g⋆(s2, k, s′)|]

We directly have β
(u)
temp ≥ 1

K

∑K
k=1 β

(k)
temp.

Lemma 4.
Px1,x2∼ρ

(
ϕ̂(x1) = ϕ̂(x2) ∧ ϕ⋆(x1) ̸= ϕ⋆(x2)

)
≤ 2∆cont(n, δ)

βtemp

Proof. We start with the left-hand side in thm:coupling-temporal-contrastive.

E(x1,k,x2,x′)∼Dcoup

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}

|g⋆(x1, k, x′) − g⋆(x2, k, x′)|
]

= E(x1,x2)∼Dcoup

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}
Ek∼ω,x′∼ρ [|g⋆(x1, k, x′) − g⋆(x2, k, x′)|]

]



RLJ | RLBRew Workshop @ RLC 2024

= E(x1,x2)∼ρ

[
1
{

ϕ̂(x1) = ϕ̂(x2)
}
Ek∼ω,s′∼ρ [|g⋆(x1, k, s′) − g⋆(x2, k, s′)|]

]
≥ 2βtempE(x1,x2)∼ρ

[
1
{

ϕ̂(x1) = ϕ̂(x2) ∧ ϕ⋆(x1) ̸= ϕ⋆(x2)
}]

= 2βtempP(x1,x2)∼ρ

[
ϕ̂(x1) = ϕ̂(x2) ∧ ϕ⋆(x1) ̸= ϕ⋆(x2)

]
,

where we use the definition of βtemp, the fact that marginal over Dcoup(X) is ρ, and that
g⋆(x, k, x′) only depends on ϕ⋆(x′) and ϕ⋆(x) (Lemma 3). Combining with the inequality proved
in thm:coupling-temporal-contrastive, completes the proof.

We have now reduced this analysis to an almost identical one to the forward analysis case (Proposi-
tion 4). We can, therefore, use the same steps and derive identical bounds. All what changes is that
βfor is replaced by βtemp and in ∆ we replace ln |F| with ln |G|. At this point, we can clarify that
the factor of 1

2 was chosen in the definition of βtemp so that βfor can be replaced by βtemp rather
than βtemp

2 which will make it harder to compare margins, as we will do later.

C.3 Proof of Lower Bound for Exogenous Block MDPs

thm:exolowerbound We present a hard instance using a family of exogenous block MDPs, with
H = 2, A = {1, 2}, and a single binary endogenous factor and d − 1 exogenous binary factors for
each level, where each endogenous and exogenous factor. We first fix an absolute constant p ∈ [0, 1].

Each MDP Mi is indexed by i ∈ [d], and is specified as follows:

• State space: The state is represented by xh := [s1
h, s2

h, . . . , sd
h], where the superscript

denotes different factors. For MDP Mi, only the i-th factor si
h is an endogenous state for

all h, and the other factors are exogenous. Each factor has values of {0, 1}.

• Transition: For the MDP instance Mi: it has

1. For the i-th factor (endogenous factor), P(si
2 | si

1, a) = [si
2 = (si

1 = a)]. That is, the
endogenous states have deterministic dynamics. If si

1 = a, then it transitions to si
2 = 1,

otherwise it transitions to si
2 = 0.

2. For the j-th factor with j ̸= i (exogenous factor), P(sj
2 | sj

1) = (1 − p)(sj
2 = sj

1) + p(sj
2 ̸=

sj
1) for any sj

2 and sj
1. That is, the j-th factor has probability of 1 − p of transiting to

the same state (i.e., sj
1 = 0 → sj

2 = 0 or sj
1 = 1 → sj

2 = 1), and probability of p of
transiting to the different state (i.e., sj

1 = 0 → sj
2 = 1 or sj

1 = 1 → sj
2 = 0).

Note that the MDP terminates at h = 2.

• Initial state distribution and reward: The marginal distribution of sj
1 is uniformly

distributed at random over {0, 1} for all j ∈ [d], and all factors are independent from each
other. For MDP Mi, the agent only receive reward signal after taking action at h = 2, with
R(si

2, a) = si
2. That is, it always reward 1 at si

2 = 1 and reward 0 at si
2 = 0 no matter which

action it takes.

• Data collection policy for video data: We assume that the data collection policy always
pick action 0 with probability p and action 1 with probability 1 − p for all states.

Now we use the following two steps to establish the proof.

Uninformative video data for learning the state decoder Since video data only contains
state information, from the MDP family construction above, we can easily verify that all MDP
instances in such a family will have an identical video data distribution, regardless of the choice of
constant p. This implies that the video data is uninformative for the agent to distinguish the MDP
instance from the MDP family. Now, we assume Di is the video data from the instance M i, and
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ϕi is the state decoder learned from an arbitrary algorithm A1 with Di. Then, for any arbitrary
algorithm A2 that uses the state decoder ϕi in its execution, it is equivalent to such an A2 that uses
the state decoder ϕj in its execution, where j can be selected arbitrarily from [d].

State decoder requiring exponential length Without loss of generality, we further restrict
the state decoder ϕ used in the execution of A2 for all MDP instance to be some ϕh : X → [L],
where h ∈ {1, 2} and L ≤ 2d. Then we will argue that there must exists a k ∈ [d], such that∑

x1,x̃1∈X

P
(
ϕ1(x1) = ϕ1(x̃1) ∨

(
sk

1 ̸= s̃k
1
))

>
2d − L

d2d
, (17)

where x1 := [s1
1, s2

1, . . . , sd
1] and x̃1 := [s̃1

1, s̃2
1, . . . , s̃d

1]. Note that,
eq:incorrectprobmeanstheremustbeaprobabilityofatleast2d − Ld2d that ϕ1 will incorrectly group
two different sk

1 together.

We now prove eq:incorrectprob.Basedontheconstructabove, weknowthat|X| = 2d, and each state in
X has the same occupancy for x1 based on the defined initial state distribution (this holds for all
instances in the MDP family, as we are now only talking about the initial state x1). Thus, we have∑

x1,x̃1∈X

P
[
ϕ1(x1) = ϕ1(x̃1) ∨

(
s1

1 = s̃1
1
)

∨
(
s2

1 = s̃2
1
)

∨ · · · ∨
(
sd

1 = s̃d
1
)]

≤ L

2d
, (18)

because we defined ϕ1 : X → [L], it means that such ϕ1 is only able to distinguish the number of L
different states from X . Then, we obtain∑

j∈[d]

∑
x1,x̃1∈X

P
(

ϕ1(x1) = ϕ1(x̃1) ∨
(

sj
1 ̸= s̃j

1

))
(19)

=
∑

x1,x̃1∈X

P (ϕ1(x1) = ϕ1(x̃1)) (20)

−
∑

x1,x̃1∈X

P
[
ϕ1(x1) = ϕ1(x̃1) ∨

(
s1

1 = s̃1
1
)

∨
(
s2

1 = s̃2
1
)

∨ · · · ∨
(
sd

1 = s̃d
1
)]

(21)

= 2d − L

2d
.

=⇒ maxj∈[d]
∑

x1,x̃1∈X P
(

ϕ1(x1) = ϕ1(x̃1) ∨
(

sj
1 ̸= s̃j

1

))
> 2d−L

d2d .

So this proves eq:incorrectprob.

From eq:incorrectprob, weknowthatfortheMDPinstanceMk, ϕ1 will have probability at least
2d − L2 · d2d to mistake the endogenous state, which implies that for any policy that is represented
using the state decoder ϕ, it must have sub-optimality at least 2d − L2 · d2d. Therefore, it is easy
to verify that, for any ε > 0, we can simply pick d = 14ε, and obtain

sub-optimality >
2d − L

2 · d2d
≥ ε, ∀L ≤ 214ε−1.

Then, any arbitrary algorithm A2 that uses the state decoder ϕ in its execution, where ϕh : X → [L]
can be chosen arbitrarily for h ∈ {1, 2} and L ≤ 214ε−1, must have sub-optimality larger than ε.

Additional characteristics of MDP family and video data Note that, by combining the
arguments of uninformative video data and a state decoder requiring exponential length, we obtain
impossible results. We now discuss the following:
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1. The margin condition defined in assum:margin regarding the constructed MDPs

2. The PAC learnability of the constructed MDPs

3. The coverage condition of video data.

For the defined margin condition of forward modeling, we have: for the MDP instance Mi with
constant p, we can bound the forward margin as below (Pfor denotes the video distribution)∥∥Pfor(X2 | si

1 = 0) − Pfor(X2 | si
1 = 1)

∥∥
TV

= 1
2
∑
X2

∣∣Pfor(X2 | si
1 = 0) − Pfor(X2 | si

1 = 1)
∣∣

= 1
2
∑
X2

∣∣Pfor(si
2 = 0 | si

1 = 0)P(X2 | si
2 = 0) + Pfor(si

2 = 1 | si
1 = 0)P(X2 | si

2 = 1)

− Pfor(si
2 = 0 | si

1 = 1)P(X2 | si
2 = 0) + Pfor(si

2 = 1 | si
1 = 1)P(X2 | si

2 = 1)
∣∣

= 1
2
∑
X2

∣∣(1 − 2p)
[
P(X2 | si

2 = 0) − P(X2 | si
2 = 1)

]∣∣ .
(a)= |1 − 2p|

2
∑
X2

P(X2 | si
2 = 0) + |1 − 2p|

2
∑
X2

P(X2 | si
2 = 1)

= |1 − 2p|,

where step (a) is because si
2 is a part of X2, and then we know P(X2 | si

2 = 0) and P(X2 | si
2 = 1)

cannot be nonzero simultaneously. So picking p ̸= 0.5 implies positive forward margin.

For the temporal contrastive learning, it is easy to verify that |Pfor(z = 1 | si
1 = 1, X2) − Pfor(z =

1 | si
1 = 1, X2)| = |1 − 2p|, so picking p ̸= 0.5 also implies positive margin for temporal contrastive

learning.

As for the PAC learnability, since the latent dynamics of our constructed MDPs are deterministic,
they are provably PAC learnable by Efroni et al. (2022).

As for the coverage property of the video data, it is easy to verify

max
π∈Π,x1∈X

Pπ(x1, a1)
Pfor(x1, a1) = max

π∈Π,x2∈X

Pπ(x2)
Pfor(x2) = max {1p, 11 − p} .

Therefore, we can simply pick p = 13 and obtain the desired MDP and video data properties. This
completes the proof.

Addition remark of thm:exolowerbound In the proof of thm:exolowerbound, ifwepickp =
0.5forthathardinstance, theconstructedMDPfamilyreducestoablockMDPwithoutexogenousnoise, butthemarginbecomes0forbothforwardmodelingandtemporalcontrastivelearning.Therefore, itimpliesthateithertheexogenousnoiseorzeroforwardmargincouldmakethelearnabilityoftheproblemimpossible.

C.4 Can we get efficient learning under additional assumptions?

Our lower bound suggests that one can in general not learn efficient and correct representations with
just video data. However, it may be possible in some cases to do so with an additional assumption.
We highlight one example here and defer a proper formal analysis to future work. One path to
success is when the gold decoder results in the best-in-class error. A domain where this can happen
is when the endogenous state is more predictive of x′ than any other ln |S| bits of information in x.
E.g., in a navigation domain, there can be many sources of noise in the background, but memorizing
all of them can easily overwhelm the decoder’s model capacity. Instead focusing solely on modeling
the agent’s state can simplify the task of predicting the future.

Recently some approaches have also considered recovering latent actions from video data using an
encoder-decoder approach (Ye et al., 2022). In general, the lower bound in Theorem 2 applies to
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these methods and they do not provably work in the hard instances with exogenous noise. For
example, the latent actions can capture exogenous noise instead of actions, if the former is more
predictive of changes in the observations. However, in simpler cases such as 3D games, where the
agent’s action is typically most predictive of changes in observations, or in settings with no exogenous
noise, one can expect these approaches to do well.

C.5 Relation Between Margins

We defined margins βfor for forward modeling and βtemp for temporal contrastive learning. The larger
the values of these margins, the more easy it is to separate observations from different endogenous
states. This can be directly inferred from the sample complexity bounds which scale inversely with
these margins. In particular, both βfor and βtemp depend on the way we sample the multi-step
variable k. We consider two special cases: one where k ∈ [K] is fixed, we instantiate these margins
as β

(k)
for and β

(k)
temp, and second where k is uniformly sampled from [K] and we instantiate those

margins as β
(u)
for and β

(u)
temp.

A natural question is how these margins are related. The sample complexity bounds of forward
modeling and temporal contrastive are almost identical except for the difference in margins (βfor vs
βtemp) and the function classes (F vs G). If the function classes were of similar complexity, then
having a larger margin will make it easier to learn the right representation.2

Theorem 10 (Margin Relation). For any Block MDP and K ∈ N, the margins
β

(k)
for , β

(u)
for , β

(k)
temp, β

(u)
temp > 0 are related as:

1
K

β
(k)
for ≤ β

(u)
for

1
K

β
(k)
temp ≤ β

(u)
temp

η2
min

4H2 β
(k)
for ≤ β

(k)
temp ≤ β

(k)
for

η2
min

4H2 β
(u)
for ≤ β

(u)
temp ≤ β

(u)
for .

Proof. We first prove the first two relations. Fix any k ∈ [K] then,

β
(u)
for = inf

s1 ̸=s2,s1,s2∈S
Ek′∼Unf([K])

[
∥Dpr(X ′ | s1, k′) − Dpr(X ′ | s2, k′)∥TV

]
,

≥ 1
K

K∑
k′=1

inf
s1 ̸=s2,s1,s2∈S

∥Dpr(X ′ | s1, k′) − Dpr(X ′ | s2, k′)∥TV ,

≥ 1
K

inf
s1 ̸=s2,s1,s2∈S

∥Dpr(X ′ | s1, k) − Dpr(X ′ | s2, k)∥TV ,

= 1
K

β
(k)
for .

Similarly,

β
(u)
temp = 1

2 inf
s1 ̸=s2,s1,s2∈S

Ek′∼Unf([K]),s′∼ρ [|g⋆(s1, k′, s′) − g⋆(s2, k′, s′)|] ,

≥ 1
2K

K∑
k′=1

inf
s1 ̸=s2,s1,s2∈S

Es′∼ρ [|g⋆(s1, k′, s′) − g⋆(s2, k′, s′)|] ,

≥ 1
2K

inf
s1 ̸=s2,s1,s2∈S

Es′∼ρ [|g⋆(s1, k, s′) − g⋆(s2, k, s′)|] ,

2This inference has to be made with a caveat that since we are comparing upper bounds, we cannot guarantee this
to hold.
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= 1
K

β
(k)
temp.

We now prove the next two relations. We will prove these bounds for a generic distribution ω ∈
∆([K]) over k. Recall that ω is point-mass over k for β

(k)
temp and Unf([K]) for β

(u)
temp. We denote our

generic margins as βfor and βtemp for k ∼ ω. We use a shorthand notation Wk(s, s′) = ρ(s′)
Dpr(s′|s,k)+ρ(s′)

for a given pair of states s, s′ and integer k ∈ [K]. It is easy to see that Wk(s, s′) ≤ 1 as Dpr(s′ |
s, k), ρ(s′) ∈ (0, 1]. Further, we have Wk(s, s′) ≥ ρ(s′)

2 ≥ ηmin
2H where we use Dpr(s′ | s, k), ρ(s′) ∈

(0, 1], and Equation 8.

We have g⋆(s, k, s′) = Dcont(z = 1 | s, k, s′) = g⋆(s, k, s′) = Dpr(s′|s,k)
Dpr(s′|s,k)+ρ(s′) using the definition of

Dcont in Lemma 3 and Assumption 8. We can use the shorthand Wk and the definition of g⋆ to
show

βtemp = 1
2 inf

s1 ̸=s2,s1,s2∈S
Ek∼ω,s′∼ρ [|g⋆(s1, k, s′) − g⋆(s2, k, s′)|] ,

= 1
2 inf

s1 ̸=s2,s1,s2∈S

K∑
k=1

ω(k)
∑
s′∈S

ρ(s′) |g⋆(s1, k, s′) − g⋆(s2, k, s′)| ,

= 1
2 inf

s1 ̸=s2,s1,s2∈S

K∑
k=1

ω(k)
∑
s′∈S

Wk(s1, s′)Wk(s2, s′) |Dpr(s′ | s1, k) − Dpr(s′ | s2, k)| . (22)

As Wk(s1, s′) ≤ 1 and Wk(s2, s′) ≤ 1 we have

βfor = 1
2 inf

s1 ̸=s2,s1,s2∈S

K∑
k=1

ω(k)
∑
s′∈S

Wk(s1, s′)︸ ︷︷ ︸
≤1

Wk(s2, s′)︸ ︷︷ ︸
≤1

|Dpr(s′ | s1, k) − Dpr(s′ | s2, k)| ,

≤ 1
2 inf

s1 ̸=s2,s1,s2∈S

K∑
k=1

ω(k)
∑
s′∈S

|Dpr(s′ | s1, k) − Dpr(s′ | s2, k)| ,

= inf
s1 ̸=s2,s1,s2∈S

Ek∼ω

[
∥Dpr(s′ | s1, k) − Dpr(s′ | s2, k)∥TV

]
= βfor.

This gives us β
(k)
temp ≤ β

(k)
for and β

(u)
temp ≤ β

(u)
for . Finally, we prove the lower bounds. Starting

from Equation 22 and using Wk(s1, s′) ≥ ηmin
2H and Wk(s2, s′) ≤ ηmin

2H we get the following:

βfor = 1
2 inf

s1 ̸=s2,s1,s2∈S

K∑
k=1

ω(k)
∑
s′∈S

Wk(s1, s′)︸ ︷︷ ︸
≥ηmin2H

Wk(s2, s′)︸ ︷︷ ︸
≥ηmin2H

|Dpr(s′ | s1, k) − Dpr(s′ | s2, k)| ,

≥ η2
min

4H2 · 1
2 inf

s1 ̸=s2,s1,s2∈S

K∑
k=1

ω(k)
∑
s′∈S

|Dpr(s′ | s1, k) − Dpr(s′ | s2, k)| ,

= η2
min

4H2 inf
s1 ̸=s2,s1,s2∈S

Ek∼ω

[
∥Dpr(s′ | s1, k) − Dpr(s′ | s2, k)∥TV

]
= η2

min
4H2 βfor.

This gives us β
(k)
temp ≥ η2

min
4H2 β

(k)
for and β

(u)
temp ≥ η2

min
4H2 β

(u)
for which completes the proof.

The main finding of the above theorem is that forward modeling has a higher margin than temporal
contrastive learning. However, typically the function class used for forward modeling has a higher
statistical complexity than those for temporal contrastive learning as the latter is solving a simpler
binary classification problem than generating an observation.
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C.6 Why temporal contrastive learning is more susceptible to exogenous noise than
forward modeling

Theorem 2 shows that in the presence of exogenous noise, no video-based representation learning
approach can be efficient in the worst case. However, this result only presents a worst-case analysis.
In this section, we show an instance-dependent analysis. The main finding is that the temporal
contrastive approach is very susceptible to even the smallest amount of exogenous noise, while
forward modeling is more robust to the presence of exogenous noise. However, both approaches fail
when there is a significant amount of exogenous noise, consistent with Theorem 2.

Problem Instance. We consider a Block MDP with exogenous noise with a state space of S =
{0, 1}, action space of A = {0, 1} and exogenous noise space of ξ = {0, 1}. We consider H = 1 with
a uniform distribution over s1 and ξ1, i.e., the start state s1 and the start exogenous noise variable
ξ1 are chosen uniformly from {0, 1}. The transition dynamics are deterministic and given as follows:
given action a1 ∈ {0, 1} and state s1 ∈ {0, 1}, we deterministically transition to s2 = 1 − s1 if
s1 = a1, otherwise, we remain in s2 = s1. The exogenous noise variable deterministically transitions
from ξ1 to ξ2 = 1 − ξ1. The reward function is given by R(s2, s1) = 1{s2 = s1}. We use the
indicator notation 1{E} to denote 1 if the condition E is true and 0 otherwise. The observation
space is given by X = {0, 1}m+2 where (m + 2) is the dimension of observation space. Given the
endogenous state s and exogenous noise ξ, the environment generates an observation stochasticaly
as x = [ξ, v1, · · · , vl, w1, · · · , wm−l, s] where vi ∼ psamp(· | ξ) and wj ∼ psamp(· | s) for all i ∈ [l] and
j ∈ [m− l]. The distribution psamp(u | s) generates u = s with a probability 0.8 and u = 1−s with a
probability 0.2. The hyperparameter l is a fixed integer controlling what portion of the observation
is generated by the exogenous noise compared to the endogenous state. If l = 1, we only have a
small amount of exogenous noise, while if l = m − 1 we have the maximal amount of exogenous
noise. The state s and exogenous noise ξ are both decodable from the observation x. The optimal
policy achieves a return of 1 and takes action a1 = 1 if s1 = 0 and a1 = 0 if s1 = 1. As the optimal
policy depends on the value of s1, we must learn the latent state to realize the optimal policy.

Learning Setting. We assume a decoder class Φ = {ϕ⋆, ϕ⋆
ξ} consisting of the true decoder ϕ⋆

and the incorrect decoder ϕ⋆
ξ which maps observation to the exogenous noise ξ. Both decoders take

an observation and map it to a value in {0, 1}. We assume access to an arbitrarily large dataset D
consisting of tuples (x1, x2) collecting iid using a fixed data policy πdata. This policy takes action
a1 = 0 in s1 = 0 and action a1 = 1 in s1 = 1. Let D(x1, x2) be the data distribution induced by
πdata. We will use D to define other distributions induced by D(x1, x2), for example D(x2) or D(s2).
We also assume access to two model classes F : {0, 1} → ∆(X ) and G : {0, 1}2 → [0, 1]. We assume
these model classes are finite and contain certain constructions that we define later.

Overview: As we increase the value of l, the amount of exogenous noise in the environment
increases. We will prove that irrespective of the value of l, temporal contrastive learning assigns the
same loss for both the correct decoder ϕ⋆ and the incorrect decoder ϕ⋆

ξ . In contrast, the forward
modeling approach is able to prefer ϕ⋆ over ϕ⋆

ξ when the noise is limited, specifically, when l < m/2.
This will establish that temporal contrastive is very susceptible to exogenous noise whereas forward
modeling is more robust. However, both approaches provably fail when there is l ≥ m/2.

As we have H = 1, we will denote x2, s2, ξ2 by x′, s′, ξ′ and x1, s1, ξ1 by x, s, ξ respectively. Note that
unless specified otherwise, s and ξ are the endogenous state and exogenous noise of the observation
x. Similarly, s′ and ξ′ are the endogenous state and exogenous noise of x′. We will also use a
shorthand q(x′) to denote the emission probability q(x′ | ϕ⋆

ξ(x′), ϕ⋆(x′)) given its endogenous state
and exogenous noise. We first state the conditional data distribution D(x′ | x).

D(x′ | x) = q(x′)Tξ (ξ′ | ξ)
∑
a∈A

T (s′ | s, a)πdata(a | s),

= q(x′)1 {ξ′ = 1 − ξ} 1 {s′ = 1 − s} , (23)
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where we use Tξ(ξ′ | ξ) = 1 {ξ′ = 1 − ξ} and
∑

a∈A T (s′ | s, a)πdata(a | s) = 1 {s′ = 1 − s} which
follows from the definition of πdata. Note that D(x′ | x) only depends on x via s, ξ, therefore, we
can define D(x′ | x) = D(x′ | s, ξ).

Let x̃ be an observation variable with endogenous state s̃ and exogenous noise ξ̃, i.e., s̃ = ϕ⋆(x̃) and
ξ̃ = ϕ⋆

ξ(x̃). We use this to derive the marginal data distribution ρ over x′ as follows:

ρ(x′) =
∑

s,ξ∈{0,1}

D(x′, s, ξ) =
∑

s,ξ∈{0,1}

D(x′ | s, ξ)µ(s)µξ(ξ),

= q(x′)
4

∑
s,ξ∈{0,1}

1 {ξ′ = 1 − ξ} 1 {s′ = 1 − s} ,

= q(x′)
4 , (24)

where in the second step uses the fact that µ and µξ are uniform and eqn:conditional-instance. We
are now ready to prove our desired result.

Temporal contrastive learning cannot distinguish between good and bad decoder for all
l ∈ [m−1]. We first recall that temporal contrastive learning approach use the given observed data
(x1, x2) to compute a set of real and fake observation tuples. This is collected into a dataset (x, x′, z)
where z = 1 indicates that (x1 = x, x2 = x′) was observed in the dataset, and z = 0 indicates that
(x1 = x, x2 = x′) was not observed, or is an imposter. We sample z uniformly in {0, 1}. The fake
data is constructed by take x = x1 from one tuple and x′ = x2 from another observed tuple. We
start by computing the optimal Bayes classifier for the temporal contrastive learning approach using
the definition of Bayes classifier in lem:bayes-classifier.

Dcont(z = 1 | x, x′) = D(x′ | x)
D(x′ | x) + ρ(x′) = 1{s′ = 1 − s}1{ξ′ = 1 − ξ}

1{s′ = 1 − s}1{ξ′ = 1 − ξ} + 1/4 ,

where we use lem:bayes-classifier in the first step and eqn:conditional-instance,eqn:marginal-instance
in the second step. Recall that z = 1 denotes whether a given observation tuple (x, x′) is real rather
than an imposter/false. Note that since we have k = 1, as it is a H = 1 problem, we drop the
notation k from all terms.

The marginal distribution over (x, x′) for the temporal contrastive is given by eqn:marginal-
tempcont-dist which in our case instantiates to:

Dcont(x, x′) = D(x)
2 {D(x′ | x) + ρ(x′)} ,

= 1
8q(x′)q(x) {1{s′ = 1 − s}1{ξ′ = 1 − ξ} + 1/4} , (25)

where we use eqn:conditional-instance,eqn:marginal-instance, and D(x) = q(x)µ(s)µξ(ξ) = q(x)4.

Let g ∈ G be any classifier head. Given a decoder ϕ, we define g ◦ ϕ : (x, x′) 7→ g(ϕ(x), ϕ(x′)) as a
model for temporal contrastive learning, with an expected contrastive loss of:

ℓcont(g, ϕ⋆)

= E(x,x′)∼Dcont,z∼Dcont(·|x,x′)

[
(z − g (ϕ⋆(x), ϕ⋆(x′)))2

]
= E(x,x′)∼Dcont

[
Dcont(z = 1 | x, x′) (1 − 2g (ϕ⋆(x), ϕ⋆(x′))) + g (ϕ⋆(x), ϕ⋆(x′))2

]
= 1

8
∑

s,ξ,s′,ξ′

{
1{s′ = 1 − s}1{ξ′ = 1 − ξ} + 1

4

}(
1{s′ = 1 − s}1{ξ′ = 1 − ξ}

1{s′ = 1 − s}1{ξ′ = 1 − ξ} + 1
4

(1 − g(s, s′)) + g(s, s′)2
)

Similarly, the expected temporal contrastive loss of the model g ◦ ϕ⋆ with the bad decoder ϕ⋆
ξ is

given by:

ℓcont(g, ϕ⋆
ξ)
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= E(x,x′)∼Dcont,z∼Dcont(·|x,x′)

[(
z − g

(
ϕ⋆

ξ(x), ϕ⋆
ξ(x′)

))2
]

= 1
8
∑

s,ξ,s′,ξ′

{
1{s′ = 1 − s}1{ξ′ = 1 − ξ} + 1

4

}(
1{s′ = 1 − s}1{ξ′ = 1 − ξ}

1{s′ = 1 − s}1{ξ′ = 1 − ξ} + 1
4

(1 − g(ξ, ξ′)) + g(ξ, ξ′)2
)

Note that by interchanging s with ξ and s′ with ξ′, we can show ℓcont(g, ϕ⋆
ξ) = ℓcont(g, ϕ⋆). Therefore,

infg∈G ℓcont(g, ϕ⋆
ξ) = infg∈G ℓcont(g, ϕ⋆). This implies that for any value of l, the temporal contrastive

loss assigns the same loss to the good decoder ϕ⋆ and the bad decoder ϕ⋆
ξ . Hence, in practice,

temporal contrastive cannot distinguish between the good and bad decoder and may converge to the
latter leading to poor downstream performance. This convergence to the bad decoder may happen
if it is easier to overfit to noise. For example, in our gridworld example, it is possibly easier for the
model to overfit to the predictable motion of noise than understand the underlying dynamics of the
agent. This is observed in fig:gridworld-reconstruction where the representation learned via temporal
contrastive tends to overfit to the noisy exogenous pixels and perform poorly on downstream RL
tasks (fig:gridworldexps).

Forward modeling learns the good decoder if l < ⌊m/2⌋. We likewise analyze the expected
forward modeling loss of the good and bad decoder. For any f ∈ F , we have f(x′ | u) as the
generator head that acts on a given decoder’s output u ∈ {0, 1} and generates the next observation
x′.

If we use the good decoder ϕ⋆, then we cannot predict the exogenous noise ξ or ξ′ which can be
either 0 or 1 with equal probability. This implies that for the l noisy bits v1, · · · , vl in x′, the best
prediction is that each one has an equal probability of taking 0 or 1. To see this, fix i ∈ [l] and recall
that P(vi = ξ′ | ξ′) = 0.8 and P(vi = 1 − ξ′ | ξ′) = 0.2. As ξ′ has equal probability of taking value
0 or 1, therefore, P(vi = u) =

∑
ξ′∈{0,1} P(vi = u | ξ′)12 = 0.8+0.2

2 = 0.5. However, since we can
deterministically predict s′, therefore, we can predict the true distribution over wj for all j ∈ [m− l].
Let fgood be this generator head. Formally, we have:

fgood(x′ | ϕ⋆(x)) = (1/2)︸ ︷︷ ︸
due to x′

1 = ξ′

· (1/2)l︸ ︷︷ ︸
due to v1:l

·
m+1∏

j=l+2
psamp(x′

j | 1 − ϕ⋆(x))︸ ︷︷ ︸
due to w1:m−l

· 1{x′
m+2 = 1 − ϕ⋆(x)}︸ ︷︷ ︸
due to x′

m+2 = s′

The Bayes distribution is given by:

D(x′ | x)
= q (x′) · 1{ϕ⋆(x′) = 1 − ϕ⋆(x)} · 1{ϕ⋆

ξ(x′) = 1 − ϕ⋆
ξ(x)}

= 1
{

x′
1 = 1 − ϕ⋆

ξ(x)
}

·
l∏

i=1
psamp(x′

i+1 | 1 − ϕ⋆
ξ(x)) ·

m+1∏
j=l+2

psamp(x′
j | 1 − ϕ⋆(x))1

{
x′

m+2 = 1 − ϕ⋆(x)
}

.

As we are optimizing the log-loss, we look at the expected KL divergence ℓkl between the D(x′ | x)
and fgood(x′ | ϕ⋆(x)) which gives:

ℓkl(fgood, ϕ⋆)

= Ex

[∑
x′

D(x′ | x) ln D(x′ | x)
fgood(x′ | ϕ⋆(x))

]

= Ex

∑
x′

D(x′ | x) ln
1
{

x′
1 = 1 − ϕ⋆

ξ(x)
}

·
∏l

i=1 psamp(x′
i+1 | 1 − ϕ⋆

ξ(x))
(1/2)l+1


= (l + 1) ln(2) + Ex

[∑
x′

D(x′ | x) ln
(

1
{

x′
1 = 1 − ϕ⋆

ξ(x)
}

·
l∏

i=1
psamp(x′

i+1 | 1 − ϕ⋆
ξ(x))

)]
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= (l + 1) ln(2) + Ex

 l∑
i=1

∑
x′

i+1∈{0,1}

psamp(x′
i+1 | 1 − ϕ⋆(x)) ln psamp(x′

i+1 | 1 − ϕ⋆(x))


= (l + 1) ln(2) − lH(psamp),

where H(psamp) denotes the conditional entropy given by −12
∑

s∈{0,1}
∑

v∈{0,1} psamp(v |
s) ln psamp(v | s). As psamp(u | u) = 0.8 and psamp(1−u | u) = 0.2, we have H(psamp) = −0.8 ln(0.8)−
0.2 ln(0.2) ≈ 0.500. Plugging this in, we get ℓkl(fgood, ϕ⋆) = l ln(2) − 0.5l + ln(2) = ln(2) + 0.193l.

Finally, the analysis when we use the ϕ⋆
ξ decoder is identical to above. In this case, we can predict

ϕ⋆
ξ(x′) and correctly predict the psamp distribution over all the l-noisy bits v1:l. However, for the

w1:m−l bits and the x′[m + 2], our best bet is to predict a uniform distribution. We capture this by
the generator fbad which gives:

fbad(x′ | ϕ⋆(x)) = (1/2)︸ ︷︷ ︸
due to x′

m+2 = s′

· (1/2)m−l︸ ︷︷ ︸
due to w1:m−l

·
l+1∏
i=2

psamp(x′
i | 1 − ϕ⋆

ξ(x))︸ ︷︷ ︸
due to v1:l

· 1{x′
1 = 1 − ϕ⋆

ξ(x)}︸ ︷︷ ︸
due to x′

1 = ξ′

The expected KL loss ℓkl(fbad, ϕ⋆
ξ) can be computed almost exactly as before and is equal to ln(2) +

0.193(m − l). We can see that for ℓkl(fgood, ϕ⋆) < ℓkl(fbad, ϕ⋆
ξ) we must have ln(2) + 0.193l <

ln(2) + 0.193(m − l), or equivalently, l < m/2. This completes the analysis.

D Additional Experimental Details

D.1 Details of Experimental Setup

All results are reported with mean and standard error computed over 3 seeds. All the code for this
work was run on A100, V100, P40 GPUs, with a compute time of approx. 12 hours for grid world
experiments and 6 hours for ViZDoom experiments. Data collection for gridworld was done using
a mixture of random walks, optimal trajectories, deviation from optimal trajectories, and walks to
randomly chosen goal positions. Data collection for Vizdoom was done via pretrained PPO policies
along with random walks for diversity in the observation space.

GridWorld Details. We consider navigation in a 12×12 Minigrid environment (Chevalier-Boisvert
et al., 2023). The agent is represented as a red triangle and can take three actions: move forward,
turn left, and turn right (Figure 3). The agent needs to reach a yellow key. The position of the
agent and key randomizes each episode. The agent only observes an area around itself (as an agent-
centric-view). Horizon H = 12, and the agent gets a reward of +1.0 for reaching the goal and -0.01
in other cases.

ViZDoom Defend The Center Details. We test with a ViZDoom environment called Defend the
Center (Wydmuch et al., 2018; Kempka et al., 2016), which is a first-person shooting game (Figure 5).
The map is a large circle. A player is spawned in the exact center. 5 monsters are spawned along
the wall. Monsters are killed after a single shot. After dying, each monster is respawned after some
time. The episode ends when the player dies. The reward scheme is as follows: +1 for killing a
monsterand -1 for death.

Hyperparameters. In Table 2, we report the hyperaparameter values used for experiments in
this work with the GridWorld and ViZDoom environments.

D.2 Results on an Additional Domain

ViZDoom Basic. We use an additional basic ViZDoom environment (Wydmuch et al., 2018;
Kempka et al., 2016), which is a first-person shooting game (Figure 8). The player needs to kill a
monster to win. The map of the environment is a rectangle with gray walls, ceiling, and floor. The
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Hyperparameter Value
batch size 128

learning rate 0.001
epochs 400

# of exogenous variables 10
exogenous pixel size 4

# of VQ heads 2
VQ codebook size 100

VQ codebook temperature 0
VQ codebook dimension 32
VQ bottleneck dimension 1024

Table 2: Hyperparameters used for experiments with the GridWorld and ViZDoom domains.

(a) No Noise (b) Only Observation Noise (c) Only Reward Noise (d) Both

Figure 7: RL experiments using different latent representations for the ViZDoom environment.

player is spawned along the longer wall in the center. A red, circular monster is spawned randomly
somewhere along the opposite wall. The player can take one of three actions at each time step (left,
right, shoot). One hit is enough to kill the monster. The episode finishes when the monster is killed
or on timeout. The reward scheme is as follows: +101 for shooting the enemy, -1 per time step, and
-5 for missed shots. Results for this environment are shown in Figure 7 and Figure 8 and further
validate our findings from theory and experiments.

D.3 Additional Ablations

Harder Exogenous Noise. Figure 6 showed the results when we increase the size of the exogenous
noise variables (diamond shapes overlayed on the image) in the gridworld domain while keeping the
number of exogenous variables fixed at 10. We also increase the number of exogenous noise variables
in the gridworld domain, while keeping their sizes fixed at 4 pixels and present the results in Figure 9.
Both results show significant degradation in the performance of video-based representation learning
methods whereas ACRO which uses trajectory data continues to perform well. This supports one of
our main theoretical results that exogenous noise poses a challenge for video-based representation
learning.

I.I.D. Noise in Gridworld. We evaluate iid noise in the gridworld domain. We use the diamond-
shaped exogenous noise that we used in Figure ??, however, at each time step, we randomly sample
the color and position of each diamond, independent of the agent’s history. Figure 10(a) shows the
result for forward modeling and Figure 10(b) shows the same for ACRO. We also ablate the number
of noisy diamonds. As expected, forward modeling and ACRO can learn a good policy while the
increase in the number of noisy diamonds (num noise var) only slightly decreases their performance.

I.I.D. Noise in the Basic ViZDoom environment. We evaluate the representation learning
methods on the basic ViZDoom domain but with independent and identically distributed (iid)
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(m) Original (n) Forward Modeling (o) Autoencoder (p) Temporal Contrastive

Figure 8: Decoded image reconstructions from different latent representation learning methods in
the ViZDoom environment. We train a decoder on top of frozen representations trained with the
three video pre-training approaches.

noise. We add iid Gaussian noise to each pixel sampled from a 0 mean Gaussian distribution with
a standard deviation of 0.001. Based on theory, we expect temporal contrastive objectives to be
substantially better at filtering out Gaussian iid noise, which is validated experimentally for the
basic ViZDoom Environment (Figure 11(a)). Figure 11(b) refers to the basic ViZDoom result for
convenient comparison.

Additional reconstructions. We show additional image reconstructions Figure 12 for the Grid-
World environment and in Figure 13 for the ViZDoom Defend the Center environment. We highlight
that important parts of the observation space are recovered successfully by the forward modeling
approach under varying levels of exogenous noise, whereas temporal contrastive learning often fails.
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(a) Autoencoder (b) VQ-Autoencoder (c) Forward Modeling

(d) VQ-Forward Modeling (e) Temporal Contrastive (f) ACRO

Figure 9: Gridworld experiments with exogenous noise of size 4 and different the number of exogenous
noise variables. Several video-based representation learning methods struggle to learn as the number
of exogenous noise variables increases, whereas ACRO which uses trajectory data, still performs well.

(a) Forward Modeling (b) ACRO

Figure 10: Experiments with iid noise for the Gridworld environment. ‘Num noise var’ denotes the
number of noisy diamonds constituting the exogenous noise.

(a) I.I.D. Gaussian Noise (b) Exogenous Noise

Figure 11: Experiments with (a) Guassian iid noise for the ViZDoom environment and (b) exogenous
noise.
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(i) Original (j) Forward Modeling (k) Autoencoder (l) Temporal Contrastive

Figure 12: Decoded image reconstructions from different latent representation learning methods in
the GridWorld environment. We train a decoder on top of frozen representations trained with the
three video pre-training approaches.

(e) Original (f) Forward Modeling (g) Autoencoder (h) Temporal Contrastive

Figure 13: Decoded image reconstructions from different latent representation learning methods in
the ViZDoom Defend the Center environment. We train a decoder on top of frozen representations
trained with the three video pre-training approaches.


