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Abstract

In this work, we study the problem of obtaining a better control policy from demon-
strations in Markov decision processes where both the environment dynamics and
the reward function are unknown to the learning agent. The most relevant solution
is the inverse reinforcement learning (IRL). The performance of the obtained control
policy from IRL, however, heavily depends on the quality of demonstrations and
hardly outperforms them. To overcome this limitation, we propose a novel method
that enables the learning agent to outperform the demonstrator via a co-learning
strategy with a general stereo utility. In particular, we propose a new stereo utility
definition that aims to address the bias in the interpretation of good demonstrations
via providing a hybrid view of future rewards under different discounting factors.
We then propose a new loss function for the learning agent to co-learn the re-
ward function and control policies such that the learning agent can outperform the
demonstrator. The performance of the proposed algorithm is further validated in
three OpenAI environments and a real-world indoor drone flight scenario.

1 Introduction

Reinforcement learning (RL) has shown its advantages in yielding human-level or better-than-
human-level performance in, e.g., Go and Atari games (Mnih et al., 2015; Silver et al., 2016). The
basic idea of RL is to learn control policies that optimize certain metrics. For example, many exist-
ing RL algorithms, such as DQN (Mnih et al., 2015), DDPG (Lillicrap et al., 2015) and proximal
policy optimization (PPO) (Schulman et al., 2017), leverage the cumulative reward as the metric to
evaluate the performance of a control policy.

In practice, however, the reward function itself may not be available or optimal. Literature, such as
(Ng et al., 1999; Wu et al., 2023) have proved that applying techniques like reward shaping can be
beneficial to the policy search process. For example, the authors in (Kumar et al., 2018) observed
that a properly shaped reward function can yield a faster walking agent than that trained with the
original reward function, indicating that the original reward function may not be optimal. Moreover,
the given reward function may suffer from corruption caused by over-complicated reward settings
(Everitt et al., 2017). The noisy reward settings can consequently mislead the learning agents to some
degree (Huang & Zhu, 2019). To overcome these challenges, it is important to learn task-specific
reward functions for the design of optimal control policies that best fulfill the task objectives.
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One important and popular approach for the learning/approximation of the reward function is the
inverse reinforcement learning (IRL) (Ng et al., 2000; Ziebart et al., 2008; Choi & Kim, 2011; Finn
et al., 2016; Šošić et al., 2018; Hu et al., 2020; Jiang et al., 2021; Devidze et al., 2022), which seeks
to learn the reward function from expert demonstrations. The traditional IRL methods, however,
have two main limitations. First, they follow the common template for IRL (Arora & Doshi, 2018),
i.e., optimize the policy in the inner loop of reward learning given unknown dynamics. As the policy
optimization procedure can be very complex, it is challenging for the traditional IRL methods to find
an optimal policy in high-dimensional systems. A sample-based approach (Finn et al., 2016) was
proposed to address this challenge. However, the approach is based on policy optimization with local
linear models (Levine & Abbeel, 2014) and does not allow for learning from task rewards, which lacks
specific guidance. The second limitation of the traditional IRL methods is that the performance
of IRL is typically dominated by the performance of the demonstrator. There are limited existing
works addressing the problem of achieving better-than-demonstrator performance (Brown et al.,
2020), such as the maximum entropy IRL (Ziebart et al., 2008; Wu et al., 2020), that address the
noise in the demonstrations and could result in a better policy than the demonstrator, while requiring
that most demonstrations come from an expert. Note also that the proposed methods in (Ziebart
et al., 2008; Wu et al., 2020) do not focus on learning to outperform demonstrations directly, which
can not guarantee obtaining better policies. Moreover, The approach proposed in (Kang et al.,
2018) aims to guide the exploration by augmenting the sparse reward signals through measuring
the divergence between RL current policy and a provided expert policy. The work in (Nair et al.,
2018) combines RL with imitation learning to avoid the exploration issue in RL, which could yield
policies that outperform the demonstrators. The authors in (Brown et al., 2019; 2020) propose to
use a set of ranked demonstrations to learn a reward function that allows better-than-demonstrator
performance. Similarly, a rating-based RL method proposed in (White et al., 2024) is designed to
infer a reward function based on human ratings data, enabling effective policies learning. However,
the existing approaches either lack the recovery of the intention/reward of the demonstrator, which
is reusable for RL, or are inefficient because the task is solved into two sequential steps, namely,
recovering the reward function and extracting a policy from the derived reward function with RL.

Another relevant work is on the use of non-exponential discounting in RL. In (Fedus et al., 2019),
the authors proposed a new hyperbolic discounting mechanism in RL and found that value functions
learned over multiple time-horizons can help obtain better performance over some state-of-the-art
value-based RL methods. This is an interesting direction towards performance improvement via
using multiple time-horizons (discount factors). However, no existing work has been studied on IRL
with multiple discount factors, which is one key motivation of our current work.

In this paper, we propose a new reward and policy concurrent learning approach to recover the
reward function and derive control policies that can mimic and then outperform the demonstrator.
We first propose a stereo utility definition that calculates the expectation of the utility value for
one trajectory/demonstration with respect to different discount factors. We then propose a new loss
function aimed at enabling the learning agent to exceed the demonstrator. The loss function includes
both the policy learning process and the reward function approximation process, hence yielding a
concurrent learning structure. Lastly, we demonstrate the effectiveness of our proposed algorithm
in both virtual and real-world environments.

2 Preliminaries and Problem Statement

A standard Markov decision process (MDP) can be represented as a tuple given by M :=
⟨S, A, T, R, γ⟩, where S denotes the state space, A the action space, T the transition model, R the re-
ward function, and γ ∈ [0, 1) is the discount factor that is used to compute a weighted accumulation
of past rewards for a trajectory {s0, a0, r0, ..., sj , aj , rj , ...}, where j ∈ N, sj ∈ S, and aj ∈ A. The
selection of an action aj is determined by the action policy represented as πθ(aj |sj) : S → p(A|S, θ),
where θ is the parameter of the action policy generated, e.g., by a neural network. Note that p(·)
can be either stochastic or deterministic. rj is an immediate reward for state sj after taking the
action aj , which is derived from the reward function R. In standard RL, the goal for the RL agent is
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to learn a policy that can maximize the (discounted) accumulated reward (Sutton & Barto, 2018).
Since R is typically assumed to be available, the (discounted) cumulative reward is widely used in
the existing RL approaches as the metric to evaluate the policy. When R is unavailable, a learned
reward function is required when using the existing RL approaches.

Here we consider a RL-MDP\R problem where agent has a specific goal, while R is unavailable.
Note that the RL-MDP\R is different from MDP\R by including the simultaneous learning of action
policies that aim to outperform the demonstrator. We adopt the reward function specification (Arora
& Doshi, 2018) as R : S → R, which provides a map from the state to the associated immediate
reward (Wulfmeier et al., 2015). To approximate the unknown relationship between states and
rewards, a neural network architecture g : Rn → R can be used to take raw state features sj ∈
S, which could be high dimensional, as the input and return an immediate reward value. The
approximated reward function R̂ is then represented as

R̂ := g(x|ϕ), (1)

where x ∈ S and ϕ is the parameter associated with the neural network. We denote one sampled
trajectory with an initial state s0 in the RL-MDP\R setting as τθ+

s0
. The trajectory τθ+

s0
is sampled

from the learner’s policy πθ+ (can be either stochastic or deterministic) governed by parameters
θ+, such that τθ+

s0
= {s0, πθ+(a0|s0), s1, ..., πθ+(aT −1|sT −1), sT }, where T represents the length of

the sampled trajectory. Similarly, we denote the demonstration with an initial state s0 as τθ∗

s0
=

{s0, (a0), s1, (a1)..., sT ∗−1, (aT ∗−1), sT ∗}, where T ∗ represents the length of the episode associated
with that demonstration and the parentheses indicate that the action information is not required
to be available (since R̂ defined in (1) only considers the raw state information as the features). If
the initial state and the policy are not given specifically, the demonstration/trajectory notation can
be simplified as τθ. The discounted cumulative reward of one demonstration/trajectory τθ is given
by Gϕ(τθ, γ) =

∑T
j=0 γjg(sj |ϕ), where sj ∈ τθ, and the neural network output value g(sj |ϕ) is an

estimation of the corresponding immediate reward rj .

Note that the ground truth reward function R is unavailable for comparison. Hence, our goal is to
obtain learned reward functions R̂ such that the policy learning process converges to a final policy
that yields exceeding and stable performance, and R̂ can quantitatively distinguish trajectories, i.e.,
good trajectories yield larger discounted cumulative rewards than the bad ones.

3 Reward and Policy Co-Learning

The existing research on IRL usually chooses one single discount factor γ for calculating the dis-
counted cumulative rewards with respective to the expert’s demonstrations. For example, the studies
in (Shiarlis et al., 2016) define γ = 1 for the finite length trajectories, with an inherent assumption
that the expert takes the rewards accumulated in one trajectory equally. However, the expert’s prin-
ciple on viewing future rewards, i.e., γ, may not be static at different future steps. Applying one
single γ can create a bias in quantifying the value of trajectories. Moreover, expert demonstrations
may demonstrate a hybrid view of future rewards, i.e., a hybrid discounting of trajectories via differ-
ent discount factors. To address the limitation of using one single discount factor, we propose a new
utility function to quantify the trajectory values by averaging the discounted cumulative rewards
with different γ. Note that the average discounted cumulative rewards can be extended to weighted
discounted cumulative rewards. For simplicity of presentation, we only focus on average discounted
cumulative rewards throughout this paper.

Definition 1. For a set Γ that contains different possible discount factors γ, the stereo utility of
one trajectory τθ is defined as

Uϕ(τθ) =
∑
γ∈Γ

Gϕ(τθ, γ)
|Γ|

, (2)
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where |Γ| is the cardinality of Γ, ϕ is the parameter of the reward function, Gϕ(τθ, γ) represents for
the discounted cumulative reward of trajectory τθ with the discount factor γ, and θ is the parameter
of the action policy.

The stereo utility can be interpreted as an expectation of the discounted cumulative reward with
respect to the discount factor set Γ (with a uniform distribution). If an appropriate Γ is chosen,
Uϕ(τθ) is expected to provide a multi-spectrum view and interpretation of the demonstration, which
is not achievable via the standard discounted cumulative reward Gϕ(τθ, γ) when the true fixed
discount factor is unknown.

One of the fundamental methods for IRL is maximum margin optimization which aims at learning
a reward function that makes the demonstrations quantitatively better than alternative policies by
a margin (Arora & Doshi, 2018). To enable the learning agent to exceed the demonstrator, we
propose a new structure that is different from the standard maximum margin formulations where
the demonstrator is assumed to always outperform the learning agent. In particular, we minimize the
stereo utility difference between the learning agent’s current trajectory and the demonstration. The
minimum margin formulation with the same initial state s0 is denoted as minϕ

(
Uϕ(τθ+

s0
) − Uϕ(τθ∗

s0
)
)

.

The above formulation is equivalent to maximum the gap between the expert’s demonstration and
the learning agent’s trajectory. However, the philosophy here is to push the learning agent to catch
up with the demonstrator. In order to let the learning agent achieve better performance while
avoiding the divergence, we further propose to revise it as

min
ϕ

[
λ

(
Uϕ(τθ+

s0
) − Uϕ(τθ∗

s0
)
)

− Gϕ(τθ, γ)
]

, (3)

where 0 ≤ λ < 1 is the weight that determines the importance of minimizing the margin
Uϕ(τθ+

s0
) − Uϕ(τθ∗

s0
), and Gϕ(τθ, γ) is the discounted cumulative reward of trajectory τθ calculated

with a predefined γ in the policy optimization process. Note that Gϕ(τθ, γ) can also be replaced by
the stereo utility given in (2), which will be similar to a multi-horizons RL (Fedus et al., 2019).

Note that the trajectories τθ+

s0
and τθ are sampled from the learning agent’s different policies. Specif-

ically, τθ+

s0
is sampled from the most updated policy while τθ can be sampled from the past policies

during the policy optimization process. The benefit of sampling the trajectories from different polices
in (3) is that we can integrate the reward function learning process with the policy search process.
In particular, we integrate the policy gradient method presented in (Sutton & Barto, 2018) with the
optimization problem in (3) and propose a new loss function to solve the RL-MDP\R problem as

L(θ, ϕ) = −(1 − ρ)E
[
Gϕ(τθ, γ); πθ

]
+ ρ

[
Uϕ(τθ+

s0
) − Uϕ(τθ∗

s0
)
]

, (4)

where ρ ∈ [0, 1) is equivalent to the weight defined in (3) as λ = ρ
1−ρ .

Based on the loss function presented in (4), this subsection will present an algorithm that concur-
rently updates the reward function parameter ϕ and the action policy parameter θ. In particular,
we propose a reward and policy co-learning (RPCL) algorithm that encloses the reward function
learning process in the loop of policy optimization by updating ϕ occasionally with respective to θ.

Following the philosophy that a novice needs more guidance and an expert requires less instructions,
we update ϕ more frequently during the early learning stage and gradually reduce the frequency.
In particular, we select the Fibonacci sequence as the tool to change the ϕ updating frequency by
leveraging the growing gap between two adjacent elements in the sequence. Let the ith updated ϕ be
denoted as ϕi (ϕ0 means the initial ϕ). ϕ remains unchanged as ϕi until the (i+1)th update. Hence,
ϕ is independent of θ. Note that θ+ is the most (recently) updated version of θ, which is constant
and hence also independent of the θ learning process. Therefore, the partial partial derivative of
L(θ, ϕ) with respect to θ is only related to the first term in (4), i.e., ∂L(θ,ϕ)

∂θ = − ∂E[Gϕ(τθ,γ);πθ]
∂θ . The

weight 1 − ρ is ignored as the second weighted term is not included here and the learning rate itself
can incorporate the extra weight parameter. Moreover, the gradient formulation will be the same
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as gradient ascent based on the discounted cumulative reward (Sutton et al., 2000). Hence, we can
choose an advantage actor-critic (Mnih et al., 2016) method to calculate ∂L(θ,ϕ)

∂θ . Specifically, the
gradient can be calculated as

∂L(θ, ϕ)
∂θ

= −
T −1∑
t=0

▽θlogπθ(at|st)Ât, (5)

where Ât denotes the advantage function and is calculated by Ât =
∑T

j=t γj−tg(sj |ϕ) − V̂ (st), and
V̂ (st) is the estimated value function (Sutton & Barto, 2018) generated by the critic network. After
θ has been updated for a number of times (which is determined by the ϕ updating frequency), the
current θ is assigned to θ+, which is then followed by the ϕ update process. Before explaining the
detailed technique for updating ϕ, it is worth mentioning the benefit of the co-learning structure. As
the reward function is updated less frequently than the policy parameter, the percentage of required
demonstrations is small. In particular, let the maximum learning episode of the policy searching
process be denoted as E. The number of demonstrations requires by RPCL is at most the total
element number in the Fibonacci sequence, which is less than E.

During the above policy learning process, the reward function is constant. After a number of
iterations, we update ϕ for K times based on the partial derivative of L(θ, ϕ) with respect to ϕ as

∂L(θ, ϕ)
∂ϕ

= −(1 − ρ)
∂E

[
Gϕ(τθ, γ); πθ

]
∂ϕ

+ ρ

K

∂Di

∂ϕ
, (6)

where Di = Uϕ(τθ+

s0
) − Uϕ(τθ∗

s0
), and the expectation of the discounted cumulative reward can be

approximated via samples as E
[
Gϕ(τθ, γ); πθ

]
=

∑
τθ p(τθ)Gϕ(τθ, γ), where p(τθ) = p(τθ|θ)p(θ)

denotes the possibility of obtaining the trajectory of τθ. Since the gradient ∂L(θ,ϕ)
∂θ uses an online

learning technique, the probability of having τθ for a given θ is one, i.e., p(τθ|θ) = 1, and p(θ) can be
simplified as a uniform function. Let the number of sampled trajectories from the policy optimization
process be n. Then we have

∑
τθ p(τθ)Gϕ(τθ, γ) ≈ 1

n

∑n
k=1 Gϕ(τθk , γ), where τθk represents the kth

sampled trajectory from a policy πθk
. Hence, the gradient of ϕ in (6) can be approximated as

∂L(θ, ϕ)
∂ϕ

= −1 − ρ

n

n∑
k=1

T∑
j=1

γj−1▽ϕg(sk
j |ϕ) + ρ

K

K∑
i=1

▽ϕDi, (7)

where sk
j is the state sj in the kth sampled trajectory and n is the number of total sampled tra-

jectories. The second term’s derivative is given by ▽ϕDi = 1
|Γ|

∑
γ∈Γ

( ∑T
j=1 γj−1▽ϕg(s+

j |ϕ) −∑T
j=1 γj−1▽ϕg(s∗

j |ϕ)
)

for s+
j ∈ τθ+

s0
and s∗

j ∈ τθ∗

s0
.

4 Algorithm Evaluation

To evaluate the effectiveness of the proposed RPCL algorithm, we conduct experiments in three
OpenAI gym environments (Brockman et al., 2016) which are Cart Pole (where the objective is to
to balance a pole vertically by applying appropriate forces to the cart), Mountain Car (which trains
an agent to navigate a car to the top of a hill by applying appropriate actions), and Bipedal Walker
(where the goal is to train an agent to control a simulated bipedal walker to navigate through a
terrain while maintaining balance and achieving a goal). We also conduct an indoor drone test to
evaluate our approach in real world scenario. The indoor drone test is conducted with OptiTrack
system which can provide real-time postions of the drone.

There are two available actions in Cart Pole, which are pushing the cart to the left (a = 0) or
right (a = 1). The performance of a policy is proportional to the episode length, i.e., the longer
run time is, the better control policy is. Mountain Car has two versions, i.e., MountainCar-v0
and MountainCarContinuous-v0, which supports discrete and continuous actions respectively. In
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particular, MountainCar-v0 only has three discrete action inputs, namely, push left (a = 0), no
push (a = 1), and push right (a = 2), while MountainCarContinuous-v0 allows the input action to
be continuous. For both versions, the episode termination condition is selected as the case when
the cart reaches the top of the rightmost hill. If the condition is not satisfied, the episode will
keep on running unless other extra stop conditions are met (e.g., an upper limit of the experiment
time). Different from Cart Pole which considers a policy’s performance proportional to the run
time, Mountain Car considers performance inverse proportional to the run time. In other words,
the less steps it takes for the car to reach the goal position, the better the policy is. We discard the
reward values from all these environments as they are assumed to be unknown in the RL-MDP\R
setting. To obtain expert policies, we adopt LQR method on the linearized model of Cart Pole as a
demonstrator. We adopt the policies learned from the policy search with the original reward for two
Mountain Car environments as the expert demonstrators since there are no analytical solutions.
With the expert demonstrators, we then implement the proposed RPCL algorithm in all these
environments, where the policy and reward functions are approximated by neural networks.

To verify the performance of the proposed RPCL algorithm in these environments, we evaluate the
learned policies against the demonstrators’ policies and the policies (using the sample actor-critic
RL structure as ours) learned from environment reward. We let all the three polices share the same
initial state and run experiments for 1000 random initial states. As can be observed in Table 1,
our RPCL agent outperforms the other two policies in all these environments. A random selected
10 trials of performances for both our RPCL agents and expert demonstrators in Cart Pole and
Mountain Car are shown in Fig. 1.

Table 1: Results comparison for CartPole-v0 (CP), MountainCar-v0 (MC), and
MountainCarContinuous-v0 (MCC) with respect to the running steps

Environment RPCL Expert AC with Env Reward
CP 1000±0 716±310 972 ±148
MC 135±22 253±143 135±32

MCC 273±61 417±127 393±120
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Figure 1: Performance comparison between the expert demonstrator and the learned policy from
the RPCL algorithm in the CartPole and Mountain Car environments.

We explore the choice of different discount factor sets and the corresponding effect on the agent’s
performance. The results show that the inclusion of more discount factors in the form of the proposed
stereo utility can generally yield improved performance. We also test our RPCL with Bipedal Walker
environment which has a higher dimensional task to be solved. In particular, the BipedalWalker-
v3 environment simulates the bipedal locomotion, which takes 4 degrees of freedom (2 hip and
knee joints) action inputs and provides 24-dimensional state information which consists of kinematic
parameters of the agent and 10 lidar rangefinder measurements. The performance of the agent is
not directly related to the run time. Instead, the performance is measured by whether the agent
moves to the far end without falling and how much motor torque needs to be applied.
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In our RPCL simulation, we adopt a policy learned from the policy search with the original reward,
obtained via DDPG (Lillicrap et al., 2015), as the expert demonstrators. The demonstrator can
achieve 288 ± 69 evaluated over 500 rollouts. With this expert demonstrator, we then implement
PRCL in Bipedal Walker. For a 500-rollout statistical evaluation, our RPCL policy can get a score
of 298±27, which outperforms the demonstrator.

To further show the advantages of the proposed RPCL method, we also perform comparison of the
proposed RPCL method with other baseline methods, including behavior cloning, generative adver-
sarial imitation learning (GAIL), maximum margin inverse reinforcement learning, and maximum-
entropy inverse reinforcement learning. Table 2 shows the outcomes of the conducted comparisons.
It can be seen that our RPCL algorithm outperforms Demonstrator, Behavior cloning, Maximum
Margin, RL with environment reward, and GAIL in all examples. We were only able to obtain one
example (MountainCar-discrete) that maximum-entropy IRL applies. The maximum-entropy IRL
works better than ours, while requiring 5 times more episodes of training.

Table 2: Comparison with other baseline methods using the environment reward

IRL methods CP MC MCC BW
Behaviour Cloning 886±183 Fails 72±41 287±75

RPCL 1000±0 -143±36 84±6 298±27
RL with Env reward 972±148 -162±41 82±13 290±25

GAIL 36±22∗ N/A N/A 255±123
Maximum Margin 983±122 -153±34 81±15 274±1

MaxEnt N/A -123± 11 N/A N/A
Demonstrator 798±287 -247±135 76±8 288±69

* obtained in the wrapped environment setting (maximum 200 steps).
1 requires 30000 episodes of training.

To verify the performance of our RPCL algorithm in real world, we test it under a physical indoor
drone testing environment, where the environment rewards are unavailable. Fig. 2 shows the indoor
Bebop drone testing environment with OptiTrack system (Wu et al., 2023). The OptiTrack system
can provide position and velocity information of the drone. Since the OptiTrack system can only
track objects through 18 infrared cameras, the Bebop drone was modified via adding 6 reflective
markers that can be captured by the 18 infrared cameras. The 6 reflective markers are attached to
the drone at different locations to form a rigid body that can be further used as the identification
of the drone in the Motive, which is an optical motion capture software. In particular, we conduct
a simple task by driving the drone from a given ground position (-1.2±0.1m, 0.2±0.1m, 0) to the
origin of 3D coordinate system, i.e., (0, 0, 0). The control input for the drone is discretized into
seven possible actions, i.e., stay still, move forward/backward, move left/right, and rise/fall.

(a) OptriTrack system (b) Modified Drone

Figure 2: Indoor Bebop drone testing setup.

We choose a PI controller as the demonstrator. More precisely, the PI controller will first navigate
the drone parallel to the ground when the drone takes off. The movement in z axis is only activated
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when the drone is above the acceptable landing area. In our tests, we set the acceptable landing
area as a circle with a radius of 0.25 meters around the origin. To train our RPCL algorithm, we
select an actor-critic algorithm and take the x, y, z positions and vx, vy, vz velocities as the input
states. The parameters of our RPCL are set as ρ = 0.99, η = 0.99, γ = 0.99, Γ = [0.9, 0.995], ϵ1 =
5e − 5, ϵ2 = 0.01, n = 1, and N = 1000. The variables e and E are not set because operating large
real flight tests is time-consuming. Hence, the stop condition is determined by the operator. In our
experiments, we conduct 279 episodes of flight and only 14 demonstrations are required.
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Figure 3: Performance comparison between the demonstrator and the RPCL algorithm for indoor
real drone testing.

Table 3: Landing Statistic Comparison (unit: meter)

Controller PI agent RPCL agent
Mean 0.27 0.057

Standard deviation 0.13 0.028

As we observe, the drone already performs well when training episode reaches 270. Hence, we stop
the training at episode 279 and then compare the derived policy with the PI controller. 10 flights are
conducted and the landing markers for our agent and the PI controller are plotted in Fig. 3. It can
be seen that our agent performs better and more stable than the PI controller does. The statistics
of the landing distance with respect to the goal are shown in Table 3. In particular, the distance
error for our RPCL agent is 0.057±0.028m while the PI agent has a high error of 0.27±0.13m. In
other words, the proposed RPCL algorithm can reduce the landing error by approximately 80% by
learning from and then exceeding the PI controller.

5 Conclusion and Future Work

In this paper, we proposed a new reward and control policy co-learning (RPCL) algorithm to derive
control policies that can mimic and outperform expert’s demonstrations in Markov decision pro-
cesses, where the reward function is unknown. The RPCL algorithm is built on the construction of
a new stereo utility function and the design of a new loss function. To evaluate the performance of
RPCL, we conduct experimental studies in three virtual environments and a physical indoor drone
flight environment.

One interesting future research direction is to investigate the application of RPCL in more complex
environments when exceeding expert demonstrations can be more challenging due to, e.g., environ-
ment nonconvexity or the existence of multiple objectives.
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