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Abstract

The correct specification of reward models is a well-known challenge in reinforce-
ment learning. Hand-crafted reward functions often lead to inefficient or suboptimal
policies and may not be aligned with user values. Reinforcement learning from hu-
man feedback is a successful technique that can mitigate such issues, however, the
collection of human feedback can be laborious. Recent works have solicited feedback
from pre-trained large language models rather than humans to reduce or eliminate
human effort, however, these approaches yield poor performance in the presence of
hallucination and other errors. In this paper, we study the advantages and limita-
tions of reinforcement learning from large language model feedback and propose a
simple yet effective method for soliciting and applying feedback as a potential-based
shaping function. We theoretically and empirically show that our approach results
in higher policy returns compared to prior works, even with significant ranking
errors, and eliminates the need for complex post-processing of the reward function.

1 Introduction

The correct specification of task rewards is a well-known challenge in reinforcement learning
(RL) (Leike et al., 2018). Complex tasks often necessitate complex, nuanced reward models, partic-
ularly as shaping terms may be required to guide exploration. However, handcrafting these reward
functions is difficult and often leads to a phenomenon known as reward hacking, wherein an agent
learns to exploit a reward function for increased returns while yielding unexpected or undesired
behavior (Skalse et al., 2022). Reward hacking is symptomatic of the broader challenge of value
alignment, in which it is difficult for a human domain expert to fully and accurately specify the
desired behavior of the learned policy in terms of a reward function.

In this study, we aim to eliminate the dependence on handcrafted reward functions by training agents
with reward functions derived from data. A notable method in this domain is reinforcement learning
from human feedback (RLHF), where policy trajectories are ranked by humans. These rankings are
then used to learn a reward function which guides model training and facilitates value alignment.
This process is extremely costly in terms of human effort, however, requiring a significant number
of rankings to train accurate reward models (Casper et al., 2023).

We can avoid the need for humans-in-the-loop by instead generating rankings with pre-trained
large language models (LLMs) in a process known as reinforcement learning with AI feedback
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(a) Training the scoring model from LLM-ranked state pairs.
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(b) Agent training using the scoring
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Figure 1: Our approach: (a) We randomly sample consecutive state pairs, which are ranked by an
LLM with respect to task completion. The resulting dataset of ranked state pairs is utilized in an
RLHF fashion to train a single score model, capable of providing a score for any novel state. (b)
Using the scoring model, an RL agent is trained by scoring each state. Prior work uses this score as
a reward; however, our approach utilizes the score differences as a potential reward.

(RLAIF) (Lee et al., 2023; Bai et al., 2022; Kim et al., 2023). However, LLMs are well known
to hallucinate and present false information as fact (Zhang et al., 2023), which reduces the ac-
curacy and reliability of the resulting rankings. This is often overcome through complex reward
post-processing techniques, which may be task-specific and difficult to tune (Klissarov et al., 2023).

In this work, we propose a simple and effective strategy for reinforcement learning in the face of
unreliable LLM feedback. The core idea underlying our approach is to issue uninformative rewards
for states in which the LLM is uncertain. Thus, we avoid issuing potentially misleading rewards
which allow us to train performant policies even in the face of significant ranking errors. Building
off the insight that certainty in language models is expressed through output consistency (Tanneru
et al., 2024), we show that rewards issued from a potential-based scoring function learned over
repeated rankings naturally reflect an LLM’s uncertainty. Our contributions are as follow, we 1)
introduce a methodology for incorporating noisy LLM feedback into RL which out-performs prior
SOTA; and 2) provide theoretical and empirical analysis showing that uncertain LLM outputs – as
given by inconsistent responses – lead to uninformative rewards which improve convergence speed
and policy returns.

2 Related Works

Constructing rewards based on human feedback has a long history (Thomaz et al., 2006). To
efficiently use human domain knowledge and provide more generalizable rewards, human preference
on episode segments (Sadigh et al., 2017; Christiano et al., 2017; Bıyık et al., 2019) and human
demonstrations (Bıyık et al., 2022) are distilled into models which serve as reward functions for RL.
The method has witnessed great success in complex domains where rewards are difficult to specify
such as training large language models (LLM) to align with human logic and common sense (Ziegler
et al., 2019; Ouyang et al., 2022).

One major drawback of RLHF is its requirement of exhaustive human participation to provide
demonstrations and feedback. LLMs have shown deductive logic abilities comparable to humans in
recent years (Du et al., 2023), and are able to substitute humans in reward issuing (Kwon et al.,
2023; Yu et al., 2023; Lee et al., 2023; Xie et al., 2023), or data collection and labeling for reward
model training (Lee et al., 2023; Klissarov et al., 2023). While the former suffers from time and
resource costs for training RL agents, the latter is becoming promising for training complex RL tasks
(Wang et al., 2024).

An outstanding challenge with leveraging LLM-based feedback is that the performance of RLHF is
dependent on the quality of feedback received (Casper et al., 2023). Different LLMs have distinct
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probabilities of giving wrong feedback, thus leading to rewards of varying quality. Casper et al. (2023)
also suggests that comparison-based feedback may not be efficient and adequate to train reward
models with noisy LLM outputs. In this work, we analyze the training performance of reinforcement
learning agents across various LLMs, each of which produce different error distributions in feedback.

Another challenge is that of the reward formulation itself. Many works train a model distilling LLM
or human preference and use it as the reward model (Christiano et al., 2017; Wang et al., 2024;
Klissarov et al., 2023; Lee et al., 2023), but in practice, this needs post-processing on outputs of the
reward model such as filtering (Klissarov et al., 2023), and normalization (Christiano et al., 2017).
Our work posits that a reward function trained without complex post-processing and environment
rewards would be more general and adaptable to various practical scenarios.

3 Background

Reinforcement Learning: In reinforcement learning an agent interacts with an environment and
receives a reward for its current action at each time step, learning an optimal action policy to
maximize the rewards over time. This procedure can be formulated as an infinite horizon discounted
Markov Decision Process (MDP) (Sutton & Barto, 2018).

At each discrete timestep t in this process, the agent observes environment state st and takes action
at, leading to the next environment state st+1 and a reward rt. An MDP is represented as a tuple
(S, A, R, T , γ), where S is a set of states, A is a set of actions, R : S 7→ R is a reward function,
T (s, a, s′) = P (s′|s, a) is a transition function, and γ is a discount factor. A stochastic policy
π(a|s) : A × S 7→ [0, 1] indicates the probability that the agent selects action a given the state s.
The agent’s goal is to learn π maximizing the expected discounted return through training, given
an initial state distribution.

Preference-based Reinforcement Learning: Our work is based on the framework of preference-
based reinforcement learning, where the reward function is learned from preference labels over agent
behaviors (Christiano et al., 2017; Ibarz et al., 2018; Lee et al., 2021a;b). For a pair of states (sa, sb),
an annotator gives a preference label y that indicates which state is ranked higher, considering
which state is closer to the given task goal. The preference label y ∈ {0, 1}, where 0 indicates
sa is ranked higher than sb, and 1 indicates sb is ranked higher than sa. Given a parameterized
state-score function σψ, which is commonly called the potential function and usually equated with
the parameterized reward model rψ, we compute the preference probability of a state pair with the
standard Bradley-Terry model (Bradley & Terry, 1952),

Pψ[sb ≻ sa] = exp (σψ(sb))
exp (σψ(sa)) + exp (σψ(sb))

= sigmoid(σψ(sa) − σψ(sb)), (1)

where sb ≻ sa indicates sb is ranked higher than the state sa. With a preference dataset D =
(sia, sib, yi), preference-based RL learns the state-score model σψ by minimizing the cross-entropy
loss, which aims to maximize the score difference between the high and low states:

L = −E(sa,sb,y)∼D

[
I{y = (sa ≻ sb)} log Pψ[sa ≻ sb]

+ I{y = (sb ≻ sa)} log Pψ[sb ≻ sa]
]
.

(2)

This framework is used in both RLHF and RLAIF where rewards are issued directly from the
state-score model and differ only in the choice of annotator, i.e. human or LLM.

4 Methodology

Despite the success of LLMs in few-shot task generalization, these models are imperfect and yield
sub-optimal performance in many areas. One notable issue is the well-documented tendency of LLMs
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to hallucinate, which results in LLM-generated preference rankings frequently containing errors (see
Table 1 in Appendix B). These errors present major challenges for reinforcement learning from
LLM feedback, as they result in noises in the learned score function. Under the standard RLHF
formulation where rewards are directly issued from the score function (Christiano et al., 2017), this
can lead to inefficient exploration at best and, at worst, trap the agent in sub-optimal local minima.

4.1 Quantifying Feedback Error through Output Consistency

It has been shown that the certainty of LLM predictions can be quantified by issuing the same query
multiple times and measuring the consistency of the predictions (Lyu et al., 2024). Specifically, the
confidence of ranking sa higher than sb, conf{y = (sa ≻ sb)}, is defined as N(sa≻sb)

Nquery(sa,sb) , where
N(sa ≻ sb) denotes the number of times LLM ranks sa higher than sb, and Nquery(sa, sb) denotes
the total number of queries on sa and sb. Confidence is necessary for evaluating LLM feedback, given
that low confidence causes considerable noises in feedback which manifests as incorrect rewards.

Based on the definition of feedback confidence, we can derive an equivalent form of the RLHF loss
in Eq. 2 based on ranking confidence and consistency as follows:

L = −E(sa,sb,y)∼D

[
ENquery

[
I{y = (sa ≻ sb)} log Pψ[sa ≻ sb]

+ I{y = (sb ≻ sa)} log Pψ[sb ≻ sa]
]]

= −E(sa,sb,y)∼D

[
conf{y = (sa ≻ sb)} log(sigmoid(σψ(sa) − σψ(sb)))+

conf{y = (sb ≻ sa)} log(sigmoid(σψ(sb) − σψ(sa)))
]
.

(3)

This loss function uses confidence-based weights to relate the scores between each state in ranked
pairs. From this derivation, we can see the following: 1) A more confident ranking produces a larger
score difference between the ranked states, i.e. the magnitude of the score difference is proportional
to the confidence. Formally, if conf{y = (sa ≻ sb)} > conf{y = (sb ≻ sa)} then σψ(sa) − σψ(sb)
> 0. In the event the LLM is perfectly confident, conf{y = (sa ≻ sb)} = 1, then the loss function
will maximize σψ(sa) − σψ(sb). 2) As the confidence decreases, |conf{y = (sa ≻ sb)} − conf{y =
(sb ≻ sa)}| converges to 0. If the LLM is completely uncertain, conf{y = (sa ≻ sb)} = conf{y =
(sb ≻ sa)} and the loss function will minimize |σψ(sa) − σψ(sb)|, resulting in identical state scores
such that σψ(sa) = σψ(sb), supported by empirical evidence in Appendix A.

5 Potential-based Rewards for Learning with Noisy Feedback

The above observations stemming from Eq. 3 motivate the form of our proposed method. Intuitively,
if the LLM is completely uncertain when ranking sa and sb then the difference between their scores
is zero. This is ideal, as when the LLM is unable to issue an accurate ranking then we
would like it to issue an uninformative reward, i.e. a reward of zero. Our solution is to treat
the state-score as a potential function and we define the reward to be the difference between the
scores of successive state pairs:

r(st) = σψ(st) − σψ(st−1). (4)

Thus, the more uncertain an LLM’s ranking is, the less informative the reward is. The potential
in Eq. 4 is naturally shaped to a proper scale range, with positive rewards for actions beneficial
and promising to the given task goal and negative rewards for detrimental actions. Large values
correspond to more confident rankings, while small ones to less confident rankings. As such, our
approach is particularly well-suited to RLAIF with smaller, specialized models which are often
necessary in resource-constrained environments.
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There is an additional benefit to this formulation. Prior works treat the state-score function as a
reward function and directly issue rewards from it, which we call the “direct-reward” method. This
often leads to training instability as the rewards may have significant differences in scale, which
needs to be corrected via post-processing techniques such as normalization and thresholding as well
as extrinsic per-step reward penalties. However, the performance of post-processed direct rewards
is highly sensitive to these hyper-parameters, as they are often task-specific.

Our potential difference formulation helps alleviate this issue as 1) uncertain states converge to the
same score value so the impact of noisy rankings no longer needs to be mitigated through post-
processing, and 2) less sensitive to scales of flat step penalties.

5.1 Algorithm

Our algorithm (Fig. 1) consists of the following four steps: 1) Randomly sample pairs of sequential
states from the environment. 2) Query the LLM to rank states in each pair with respect to a
natural language task description, e.g., “Go to the green goal”. The prompt contains a language
task description, environment description, and in-context learning examples (Wei et al., 2022) as
context to generate preference labels for states in each pair. 3) Train the state-score model σψ with
the loss function in Eq. 2. 4) Train a reinforcement learning agent with feedback from the state-score
model.

6 Performance Analysis of Potential-Difference Rewards

We evaluate our approach in commonly-used discrete (grid world) and continuous (MuJoCo) (Brock-
man et al., 2016) benchmark environments. Throughout these experiments, we investigate the effec-
tiveness of our potential-based reward function a) as compared to using the score as a reward directly
in both single and multi-query settings; and b) its sensitivity to inconsistency in state rankings.

6.1 Experiment Setup

Grid world. We examine three scenarios within grid world: NoLock, Lock, and MultiLock.
The layouts are shown in Fig. 2. The agent (green triangle) must navigate to the target (green
rectangle). There are one and two locked doors in the Lock and MultiLock variants, respectively,
that block the agent’s way to the goal. To unlock each door the agent must pick up the correct key
and use it on the door. The agent, goal, and key positions are randomly initialized in every episode.

MuJoCo. We examine a subset of robot control tasks selected from the simulated robotics bench-
mark MuJoCo (Todorov et al., 2012). We choose 3 tasks with increasing degrees of complexity:
Inverted Pendulum, Reacher, and Hopper.

For each of these six environments, we compare our approach with two baselines: 1) Direct reward:
Following Christiano et al. (2017), the reward is normalized to zero-mean with a standard deviation
of 1. 2) Default reward: 0 for failure, and 1 − 0.99n

nmax
when the agent reaches the goal. nmax is the

maximum time steps for each episode. n denotes the step count on success.

To train state-score models, grid world uses 2500, 3500, and 6000 state pairs for NoLock, Lock,
and MultiLock respectively while MuJoCo uses 1000 samples for each environment. Without loss
of generality, we employ PPO as the underlying policy-training framework (Schulman et al., 2017)
and make the following assumptions: a) the environment is fully observable; and b) the agent has
no knowledge of the task before training, i.e. is randomly initialized.

6.2 Single-Query Evaluation

We first examine how our approach performs compared to the standard direct reward approach
commonly utilized in RLHF. In each environment, we train our state-score models with 4 LLMs:
Mixtral (Jiang et al., 2024), GPT 4 (Achiam et al., 2023), and Llama-3 with 8B and 70B parameters
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Figure 2: Grid world NoLock, Lock, MultiLock environments from left to right

(Touvron et al., 2023). For grid world environments, we add an additional baseline where rankings
are generated with a ground truth heuristic function (GT) serving as an upper bound for our
methods. Compared with GT, the ranking performance of the LLMs and state-score models trained
with them are shown in Table 1 (Appendix B), where GPT-4 > Llama-3 70B > Mixtral > Llama-3
8B. The state-score models are employed to train 5 RL policies with random seeds and initializations.
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Figure 3: Learning curves for single-query rewards in the grid world environments

0

1e3

R
ew

ar
ds

0 7e5

GPT-4

0 7e5

Llama-3 70B

0 7e5

Mixtral

0 7e5

Llama-3 8B

In
ve

rt
ed

Pe
nd

ul
um

-70

0

R
ew

ar
ds

0 3e5 0 3e5 0 3e5 0 3e5

R
ea

ch
er

Env. Steps
0

4e3

R
ew

ar
ds

0 5e5 Env. Steps0 5e5 Env. Steps0 5e5 Env. Steps0 5e5

H
op

pe
r

Potential difference Direct reward Default reward

Figure 4: Learning curves for single-query rewards in the MuJoCo environments

As a common approach to avoid reward hacking, a constant step penalty is applied to the pro-
duced rewards from both methods in all environments except for MuJoCo Reacher, which exploits
a torque penalty as described in Brockman et al. (2016). The results, as well as the default reward
performance, are shown in Fig. 3 and Fig. 4.

In grid world environments, when using GT, GPT-4, or Llama-3 70B rankings of high quality, our
method converges the fastest and yields the highest final rewards compared with two baselines. When
using LLMs which generate noisy outputs (i.e., Mixtral and Llama-3 8B), our method still outper-
forms the direct rewards, but all methods fail to converge in the Lock and MultiLock environments.
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In Sec. 6.3, we detail the multi-query variation of our approach, particularly for low-performing
LLMs, to regain training performance.

In MuJoCo environments, reported in Fig. 4, our potential-difference rewards slightly outperform
(particularly in Hopper with GPT-4 and Llama-3 70B) or are on par with our baselines. Exceptions
to this trend can be seen with low-performing LLMs (e.g., Llama-3 8b). Our method outperforms
direct rewards in Reacher and achieves a performance similar to the well-crafted default reward
function, showing that potential-difference rewards are better. However, direct reward outperforms
ours when using low-performing LLMs, particularly Mixtral and Llama-3 8B, probably due to the
challenge of designing appropriate prompts for low-performance LLMs with human intuition, i.e.,
comparing the hopper’s speed in two consecutive states because the hopper should learn to move
forward without falling down. While this prompt could lead to good rewards with high-performing
LLMs, low-performing LLMs could not handle such rankings. We hypothesize that this leads to
sub-optimal training results.

6.2.1 Hyper-Parameter Sensitivity Analysis

Env. Steps
0

1

R
ew

ar
ds

1e4 1.8e5

Potential difference

Env. Steps1e4 1.8e5

Direct reward

Fa
lt

st
ep

 p
en

al
ty

penalty 1 1.2 1.4 1.6 1.8

Figure 5: Learning curves of rewards with multiple flat step penalties/discounts in the Lock scenario.

Since potential-difference rewards and direct rewards suffer from reward hacking without post-
processing, a step penalty is essential; however, choosing this value can be difficult. We conduct
further experiments in the grid world Lock scenario to show that our method is less sensitive to step
penalty than direct reward. Flat Step Penalty is tested: A positive constant is subtracted at each
time step. We use the state-score model trained from GT for comparison. Each parameter is tested
by training 3 RL policies with random seeds and initialization. The results are shown in Fig. 5. Our
method shows robustness to the choice of the flat step penalty, as the curves of penalty variances are
less divergent. However, when using direct rewards, the performance is affected significantly with
respect to the penalty, as many of them prevent the agent from converging.

6.3 Multi-Query Evaluation

This section demonstrates that the multi-query variation of potential-difference rewards can handle
feedback noises and regain training performance given LLMs with considerable ranking noises.

6.3.1 Synthetic Ranking Evaluation

To test what ranking accuracy of datasets is needed for the LLM with multi-query methods, and
how many queries are required, we synthesized training datasets with specific ranking accuracy from
60% to 90% and simulated query times from 1 to 10. State-score models trained with these datasets
output rewards when training RL policies, and their performance is shown in Fig. 6. The specific
ranking correctness rates are controlled by introducing random ranking errors into the ground-
truth ranking datasets. This approach is repeated on several copies of the ground-truth datasets to
simulate the multi-query ranking results.

The result demonstrates that with increasing queries, the potential-difference rewards gradually
improve the training performance. Two or more queries may achieve fast policy training converging
towards the optimal if there are few ranking noises. Notably, even for the datasets of only 60%
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ranking accuracy, which is close to random guessing, potential-difference rewards trained with enough
queries can still increase the average policy training returns from 0 to an almost optimal level. This
indicates that with enough queries, even the datasets with low ranking accuracy can be boosted to
function like those with high accuracy. This finding is consistent with our theoretic analysis and
demonstrates considerable potential in mitigating significant ranking errors.

6.3.2 LLM Ranking Evaluation

Observing that Mixtral has the highest inconsistency in ranking states and thus has the largest
potential for improvement, we evaluate the 5-query variations of potential-difference rewards and
direct rewards with ranking results from Mixtral to verify our claims. Different methods’ RL policy
training curves are compared in Fig. 7. As hypothesized, the 5-query potential-difference rewards
achieve faster policy training and result in the highest training returns in all experiments. The single-
query potential-difference rewards have the second-best performance, outperforming or being on par
with both the single-query and 5-query direct rewards in most environments. The improvement is
most significant in the Lock scenario.

7 Conclusions

In this work, we propose a simple method for incorporating noisy LLM feedback into reinforcement
learning. Our approach is based on learning a potential-based score function over repeated LLM-
generated preference rankings which issues uninformative rewards for states in which the LLM is
uncertain. This results in a natural trade-off between reward sparsity and LLM confidence which we
demonstrate both theoretically and empirically in a variety of discrete and continuous environments.
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A Empirical Evidence that Ranking Inconsistency Pushes
Potential-Difference Rewards to Zeros

In Fig. 8, we illustrate the heat maps of state scores trained with datasets of distinct consistency
degrees, demonstrated in the grid world MultiLock environment. Each grid in the heat maps records
the score the scoring model assigns for an agent at that location. The left sub-figure demonstrates
the ideal case in which 100% correct rankings are utilized to train the scoring model, demonstrating
a smooth gradient from the start room (top left corner) to the final room (bottom left corner)
roughly following the correct path. However, if the scoring model is trained with 50% confidence on
all state pairs (right sub-figure in Fig. 8), the score in any state becomes equal as no adjacent states
are ranked higher with high confidence. This demonstrates our method’s ability to disregard states,
and thus not provide rewards, if LLM rankings are inconsistent across multiple queries. Finally,
when the ranking results for a subset of states are inconsistent, yet consistent for all other locations
(see Fig. 8 center), the correct gradual change in score is maintained outside of the affected area.
These results underline our method’s capabilities with respect to the effects of pushing uncertain
state scores toward zero while giving contrasting rewards to confident pairs, ultimately improving
performance of our method with low-performing LLMs (see Sec. 6.3.1).

Figure 8: The heat maps showing that feedback inconsistency pushes rewards towards 0. Each grid
in the map shows the score of the state where the agent is at this grid. The first heat map shows
state scores trained with 100% confident rankings on all state pairs. The second heat map show
state scores trained with 100% confident ranking on all state pairs except 50% confident rankings
on state pairs in the red block. The third heat map shows state scores trained with 50% rankings
on all state pairs.

B LLM Ranking Performance

Mthd. Llama-3 8B GT Mixtral Llama-3 70B GPT4
NoLock(Rank) 1.0 0.69 0.76 0.93 1.0
NoLock(Score) 1.0 0.77 0.89 0.98 1.0
Lock(Rank) 1.0 0.54 0.65 0.89 0.98
Lock(Score) 1.0 0.55 0.74 0.97 0.98
MultiLock(Rank) 1.0 0.58 0.60 0.90 0.99
MultiLock(Score) 1.0 0.66 0.66 0.96 0.99

Table 1: Ranking accuracy for each LLM across 1000 state pairs sampled from each environment.
Rank indicates the direct ranking performance of the LLMs and Score indicates the ranking perfor-
mance of the trained score models. Given that the ground-truth ranking is only accessible in grid
world environments, we only show the ranking correctness of LLMs and state-score models in these
three environments.
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C Reward-Function Scale Analysis
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Figure 9: Policy training curves for state-score models with different scales using tanh.
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Figure 10: Policy training curves for rewards scaled to different ranges with different functions

The magnitude of the reward signal is crucial for shaping effective reward functions for RL agents’
learning. Large reward signals can boost learning with strong incentives, but would lead to detri-
mental outcomes if they are not representative of the task’s objective. While small reward signals
could potentially offer more stability and smaller variance, they might lack sufficient impacts to
drive the learning process. To further study the strengths and drawbacks of potential-difference
rewards through scaling, we deploy two scaling methods: (1) insert an output layer of tanh with a
scaling factor to the state-score model, and then compute the score difference as rewards, (2) post-
process the potential-difference rewards without changing the state-score model. The experiments
are conducted with models trained from Llama3 70B data in the Lock and MultiLock scenarios.

The result of the first method is shown in Fig. 9. For the Lock scenario, all 6 scaling factors performed
worse than our potential-difference rewards without any scaling. While in the MultiLock scenario,
large scaling factors can produce performance no better than potential-difference rewards. The
possible reason is that the learned state scores are naturally optimized to represent the preferences
over the state space. The scaling method actually exerts range constraints on the state-score model,
making additional difficulty to learning.

The result of the second method is shown in Fig. 10, testing three scaling functions to filter potential-
difference rewards. Given a scale range (−s, s) with s in {1, 5, 10, 20, 50}, the scale-constant method
maps potential-difference rewards to {−s, s}, the scale-tanh method maps to (−s, s) by filtering
potential-difference rewards with tanh, and the scale-random method filters potential-difference
rewards with a random scaling function f(r) : r 7→ (−s, s). None of the post-processing methods
tend to outperform the potential-difference rewards. Beyond this, the random scaling is shown to
produce significantly worse average returns in 6 of the 10 experiment settings, while Scale-constant
and Scale-tanh produce less bad results. These results emphasize the effectiveness of both the scale
and shape of the potential-difference rewards.



RLJ | RLBRew Workshop @ RLC 2024

D Example LLM Prompts

A typical LLM description prompt consists of three parts: environment and task description, an
example based on the Chain of Thoughts, and the question. Take a prompt for the MultiLock
scenario as an example.

Environment and Task Description

- Layout: The environment consists of an 11x7 grid divided into 6 chambers. Chamber1
occupies the top-left 3x3 section, Chamber2 the top-middle 3x3 section, Chamber3 the
top-right 3x3 section, Chamber4 the bottom-right 3x3 section, Chamber5 the bottom-middle
3x3 section, and Chamber6 the bottom-left 3x3 section. A door at Chamber2 connects
Chamber2 and Chamber3. Another door at Chamber4 connects Chamber4 and Chamber5.
There is one Agent moving to a clinic in Chamber6 in this environment. The agent starts
in Chamber1, and it must go to Chamber2 first, then to Chamber3 from Chamber2, then to
Chamber4 from Chamber3, then to Chamber5 from Chamber4, and then go to Chamber6
from Chamber5. Every time the Agent can only move for one grid in one of four directions,
up/down/left/right.

- Coordinate System: In this 11x7 grid, points are labeled (x, y), with (0, 0) at the bottom
left and (11, 7) at the top right. Therefore, the coordinates span from (0,4) to (3,7) in
Chamber1. The coordinates span from (4,4) to (7,7) in Chamber2. The coordinates span
from (8,3) to (11,7) in Chamber3. The coordinates span from (7,0) to (11,3) in Chamber4.
The coordinates span from (3,0) to (7,3) in Chamber5. The coordinates span from (0,0) to
(3,3) in Chamber6.

Example

Q:
State[a]:
Agent: Chamber1 (2,4)
Passage to Chamber2: Chamber1 (3,5) right
Door at Chamber2 (7,5) to Chamber3: locked
Key in Chamber2: (5,6)
Passage down to Chamber4: Chamber4 (9,3)
Door at Chamber4 (7,1) to Chamber5: locked
Key in Chamber4: (10,2)
Passage to Chamber6: Chamber5 (3,1) left
Clinic: Chamber6 (1,1)
The agent does not carry any key. It needs a key.
Agent action: move up

Does the action taken by the Agent in State[a] help it progress toward the Clinic? Explain
with Manhattan distance.

A: Let’s think step by step.
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Example

First, what action should the Agent take to progress toward the Clinic in State[a]? Given
the Agent in Chamber1, to reach the Clinic in Chamber6, the Agent must first try entering
Chamber2. To enter Chamber2 from Chamber1, the Agent must first pass the passage at
Chamber1 (3,5).
Then, did the Agent do so? The mahanttan distance between the Agent and the passage is
|2-3|+|4-5|=1+1, which is two.
The Agent takes an action to "move up", which means it will move from (2, 4) to (2, 5).
Which chamber is (2,5) in?
Still in Chamber1. But the mahanttan distance between the Agent and the passage becomes
|2-3|+|5-5|=1+0, which is one, so the Agent is indeed one step closer to this passage.
Therefore, the action taken by the Agent in State[a] indeed helps it progress toward the
Clinic. The answer is Yes.

Question

State[b]:
Agent: Chamber1 (0,6)
Passage to Chamber2: Chamber1 (3,5) right
Door at Chamber2 (7,5) to Chamber3: locked
Key in Chamber2: (5,6)
Passage down to Chamber4: Chamber4 (9,3)
Door at Chamber4 (7,1) to Chamber5: locked
Key in Chamber4: (10,2)
Passage to Chamber6: Chamber5 (3,1) left
Clinic: Chamber6 (1,1)
The agent does not carry any key. It needs a key.
Agent action: move down

Does the action taken by the Agent in State[b] help it progress toward the Clinic? Explain
with Manhattan distance.


