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Abstract

Reinforcement Learning has seen significant success over the years but its ability to
scale to solve an task in a zero-shot manner is still an open discussion. While recent
works have attempted to produce zero-shot RL, they make assumptions on the
structure of representations. We introduce Proto Successor Measure: a framework
that learns policy independent representations that inherently satisfy the Bellman
flow constraint. We show that the representations that allow for zero-shot RL can
be shown to form an affine set and can consequently be defined only using a set
of policy-independent basis vectors along with a fixed bias vector. Any possible
behavior on the MDP can be shown to be a linear combination of these basis and
bias vectors. We derive a practical algorithm to learn these vectors using only
interaction data from the environment and show that our approach can produce the
optimal Q function and the policy at test time for any given reward function.

1 Introduction

Reinforcement Learning algorithms involve finding a sequence of decisions that optimally solves
a given task in the environment. Given an environment, many tasks (or reward functions) can be
defined each requiring a different sequence of optimal decisions. In this paper, we aim to train agents
that can produce optimal decisions for a range of tasks in the same environment. While related
machine learning fields like computer vision and natural language processing have shown success
in zero-shot Ramesh et al. (2021) and few-shot Radford et al. (2021) adaptation to a wide range
of downstream tasks, RL lags behind in such functionalities. RL agents are usually trained for a
given task (reward function) or on a distribution of related tasks; most RL agents do not generalize to
solving unrelated tasks, even in the same environment. Unsupervised reinforcement learning aims to
extract information (skills Eysenbach et al. (2018); Zahavy et al. (2022), representations ?Ma et al.
(2022), world-model Janner et al. (2022), goal-reaching policies Agarwal et al. (2024); Sikchi et al.
(2023a), etc.) from the environment using data independent of the task reward to efficiently train RL
agents for any task. Recent advances in unsupervised RL (Wu et al., 2018; Touati & Ollivier, 2021;
Blier et al., 2021) have shown some promise towards achieving zero-shot RL.

Recently proposed pretraining algorithms (Stooke et al., 2020; Schwarzer et al., 2021b; Sermanet
et al., 2018; Nair et al., 2022; ?) use large-scale task-independent data to train representations that
can lead to zero-shot or few-shot reinforcement learning for several tasks. Most of the methods learn
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representations around the data-collecting policies and are hence restricted to limited downstream
tasks. Instead, we aim to learn a representation of the MDP that captures all possible behaviors of
an agent given the dataset of interactions. Some prior works (Mahadevan, 2005; Bellemare et al.,
2019; Farebrother et al., 2023; Machado et al., 2017a,b) have used graph Laplacians to capture the
dynamics. Proto Value Functions (Mahadevan, 2005) and follow-up work (Bellemare et al., 2019;
Farebrother et al., 2023; Wu et al., 2018) used the eigenvectors of the graph Laplacian obtained from
a random policy to approximate the global basis of value functions. While a uniformly random policy
might produce informative state visitations, it does not cover all possible behaviors on the dynamics.
Some recent methods have attempted zero-shot RL by decomposing the representation of visitation
distributions (Touati & Ollivier, 2021; Touati et al., 2023) or by projecting the state space to a metric
aware space (Park et al., 2024b,a). While these methods do show some progress in zero-shot RL,
methods like those of Park et al. (2024b,a) make assumptions about the underlying metric space. We
aim to explore a representation structure derived from the inherent Markov nature of the underlying
stochastic process that can truly capture any possible behavior.

To this end, we draw our inspiration from the linear programming view (Manne, 1960; Denardo,
1970; Nachum & Dai, 2020; Sikchi et al., 2023b) of reinforcement learning where the value function
is represented as a dot product between a state-action visitation distribution and the reward. The
objective is to find the visitation distribution that maximizes the return subject to the Bellman
flow constraints. Since the reward function is not subject to any additional constraints, we learn
a representation for all possible state-action visitation distributions, and by extension, all possible
successor measures that satisfy the Bellman flow constraints. We show that any successor measure
can be represented as a linear combination of policy-independent basis functions and a bias. We
introduce Proto-Successor Measure, a framework that learns a set of basis functions and bias to
represent any successor measure in the MDP using reward-free interaction data. Obtaining the
optimal policy reduces to simply finding the linear weights to combine these basis vectors. These
basis vectors only depend on the state-action transition dynamics of the MDP, independent of the
initial state distribution, reward, or policy, and can be thought to compactly represent the entire
dynamics.

The contributions of our work are (1) A novel, mathematically complete perspective on representation
learning for Markov decision processes. (2) An efficient practical instantiation that reduces basis
learning to a single-player optimization (3) Extensive evaluations of a number of tasks demonstrating
the capability of our learned representations to quickly infer optimal policies.

2 Related Work

Unsupervised Reinforcement Learning: Unsupervised RL generally refers to a broad class of
algorithms that use reward-free data to improve the efficiency of RL algorithms. These include
methods that provide intrinsic rewards (auxiliary tasks) to improve exploration (Bellemare et al.,
2016; Burda et al., 2018; Houthooft et al., 2016; Lee et al., 2019) or representation learning Sermanet
et al. (2018); Nair et al. (2022); Schwarzer et al. (2021a); Agarwal et al. (2021). We are focusing on
methods that can learn representations to produce optimal Q functions for any given reward function.
Representation learning through unsupervised or self-supervised RL has been discussed for both
pre-training (Nair et al., 2022; ?) and training as auxiliary objectives (Agarwal et al., 2021; Schwarzer
et al., 2021a; ?). While using auxiliary objectives for representation learning does accelerate policy
learning for downstream tasks, the policy learning begins from scratch for a new task. Pre-training
methods like ?Nair et al. (2022) use self-supervised learning techniques from computer vision like
masked auto-encoding to learn representations that can be used directly for downstream tasks. These
methods use large-scale datasets (?) to learn representations but these are fitted around the policies
used for collecting data. These representations do not represent any possible behavior nor can they
represent Q functions for any reward functions.

There are also works that aim to discover intents or skills from diverse trajectories []. These methods
use the fact that the latents or skills should define the output state-visitation distributions thus
maximizing mutual information (Warde-Farley et al., 2018; Eysenbach et al., 2018; Achiam et al.,
2018; Eysenbach et al., 2021) or minimizing Wasserstein distance (Park et al., 2024b) between the
latents and corresponding state-visitation distributions. Many works use this construction.
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Methods that linearize RL quantities: In this subsection, we discuss methods that represent
different RL quantities as a linear combination of some basis vectors and explain how our method is
different from them. All these methods aimed to use these basis functions to transfer to a new task
that can be represented in the span of these basis functions. Successor features (Barreto et al., 2018)
represents rewards as linear combination of transition features. Consequently, Q value functions can
also be represented as a linear combination of successively accumulated features. Several methods
have extended successor features (Hansen et al., 2019; Lehnert & Littman, 2020; Hoang et al., 2021;
Reinke & Alameda-Pineda, 2023) to more complex domains.

Spectral methods like Proto Value Functions (PVFs) (Mahadevan, 2005; Mahadevan & Maggioni,
2007) instead represent the value functions as a linear combination of basis vectors. It uses the
eigenvectors of the random walk operator (graph Laplacian) as the basis vectors. Works like
Adversarial Value Functions Bellemare et al. (2019) and Proto Value Networks (Farebrother et al.,
2023) have extended this idea in different ways. However, deriving these eigenvectors from a
Laplacian is not scalable to larger state spaces. Wu et al. (2018) came up with an approximate
scalable objective but in any case, the Laplacian is dependent on the policy which makes it incapable
of representing all behaviors or Q functions.

Forward Backward Representations (Touati & Ollivier, 2021; Touati et al., 2023), on the other
hand, use an inductive bias on the successor measure to decompose it into a forward and backward
representation. We also provide a representation for the successor measure, but unlike FB our
representations are linear on a set of basis features. Additionally, FB ties the reward representation
with the representation of the optimal policy derived using Q function maximization which can lead
to overestimation issues.

3 Preliminaries

In this section we introduce some preliminaries and define terminologies that will be used in later
sections. We begin with some MDP fundamentals and RL preliminaries followed by a discussion on
affine spaces which form the basis for our representation learning paradigm.

3.1 Markov Decision Processes

A Markov Decision Process is defined as a tuple ⟨S,A, P, r, γ, µ⟩ where S is the state space, A
is the action space, P : S × A 7−→ ∆(S) is the transition probability (∆(·) denotes a probability
distribution over a set), γ ∈ [0, 1) is the discount factor, µ is the distribution over initial states and
r : S × A 7−→ R is the reward function. The task is specified using the reward function r and the
initial state distribution µ. The goal for the RL agent is to learn a policy πθ : S 7−→ A that maximizes
the expected return J(πθ) = Es0∼µEπθ

[
∑∞

t=0 γ
tr(st, at)].

In this work, we consider a task-free MDP which does not provide the reward function or the
initial state distribution. Hence a task-free or reward-free MDP is simply the tuple ⟨S,A, P, γ⟩. A
task-free MDP essentially only captures the underlying environment dynamics and can have infinite
downstream tasks specified through different reward functions.

The state-action visitation distribution, dπ(s, a) is defined as the normalized probability of being in a
state s and taking an action a if the agent follows the policy π from a state sampled from the initial state
distribution. Concretely, dπ(s, a) = (1− γ)

∑∞
t=0 γ

t
P(st = s, at = a). A more general quantity,

successor measure, Mπ(s, a, s+, a+) is defined as the probability of being in state s+ and taking
action a+ when starting from the state-action pair s, a and following the policy π. Mathematically,
Mπ(s, a, s+, a+) = (1 − γ)

∑∞
t=0 γ

t
P(st = s+, at = a+|s0 = s, a0 = a). The state-action

visitation distribution can be written as dπ(s, a) = Es0∼µ(s),a0∼π(a0|s0)[M
π(s0, a0, s, a)].

Both these quantities, state-action visitation distribution, and successor measure follow the Bellman
Flow equations.

dπ(s, a) = (1− γ)µ(s)π(a|s) + γ
∑

s′,a′∈SA
P (s|s′, a′)dπ(s′, a′)π(a|s) (1)
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For successor measure, the initial state distribution changes to an identity function

Mπ(s, a, s+, a+) = (1− γ)1[s = s+, a = a+]+

γ
∑

s′,a′∈SA
P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+) (2)

Given a task reward function r, the RL objective can be rewritten in the form of a constrained linear
program.

max
d

∑
s,a

d(s, a)r(s, a)

s.t. d(s, a) = (1− γ)µ(s)π(a|s) + γ
∑

s′,a′∈SA
P (s|s′, a′)d(s′, a′)π(a|s)

d(s, a) ≥ 0 ∀s, a

(3)

The Q function can then be defined using successor measure as Qπ(s, a) =∑
s+,a+ Mπ(s, a, s+, a+)r(s+, a+) or Qπ = Mπr. Obtaining the optimal policies requires

maximizing the Q function which requires solving maxπ M
πr.

3.2 Affine Spaces

Let V be a vector space and b be a vector. An affine set is defined as A = b+V = {x|x = b+v, v ∈ V}.
Any vector in a vector space can be written as a linear combination of basis vectors i.e. v =

∑n
i αivi

where n is the dimensionality of the vector space. This implies that any element of an affine space
can be expressed as x = b+

∑n
i αivi.

Given a system of linear equations Ax = c, with A being an m × n matrix (m < n), and c ̸= 0,
the solution x forms an affine set. Hence x = b+

∑
i αixi. The vectors {xi} form the basis set of

the null space or Kernel of A. The values (αi) form the affine coordinates of x for the basis {xi}.
Hence, for a given system with known {xi} and b, any solution can be represented only using the
affine coordinates (αi).

4 Theoretical Motivation

In this section, we introduce the theoretical results that form the foundation for our representation
learning approach. The goal is to learn policy-independent representations that can represent any valid
visitation distribution in the environment (i.e satisfy the Bellman flow constraint in Equation 3). With
a compact way to represent these distributions, it is possible to reduce the policy optimization problem
to a search in this compact representation space. We will show that state visitation distributions and
successor measures form an affine set and thus can be represented as

∑
i ϕiw

π
i + b where ϕi are basis

functions, wπ are “coordinates" or weights to linearly combine the basis functions, and b is a bias
term. First, we build up the formal intuition for this statement and later we will use a toy example to
show how these representations can make policy search easier.

The first constraint in Equation 3 is the Bellman Flow equation. We begin with Lemma 4.1 showing
that state visitation distributions that satisfy the Bellman Flow form affine sets.
Lemma 4.1. All possible state-action visitation distributions in an MDP form an affine set.

While Lemma 4.1 shows that any state-action visitation distribution in an MDP can be written using
a linear combination of basis and bias terms, state-action visitation distributions still depend on the
initial state distribution. Moreover, as shown in Equation 1, computing the state-action visitation
distribution requires a summation over all states and actions in the MDP which is not always possible.
Successor measures are more general than state-visitation distributions as they encode the state-action
visitation of the policy conditioned on a starting state-action pair. Using similar techniques, we show
that not only state-visitation distributions but in fact, successor measures also form affine sets.
Theorem 4.2. Any successor measure, Mπ in an MDP forms an affine set and so can be represented
as

∑d
i ϕiw

π
i + b where ϕi and b are independent of the policy π and d is the dimension of the affine

space.
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Following Theorem 4.2, for any w, the function
∑d

i ϕiw
π
i +b will be a solution of Equation 2. Hence,

given Φ (ϕi stacked together) and b, we do not need the first constraint on the linear program (in
Equation 3) anymore. The other constraint: ϕiwi + b ≥ 0 still remains which w needs to satisfy. We
discuss ways to manage this constraint in Section 5.3. The linear program given a reward function
now becomes,

max
w

Eµ[(Φw + b)r]

s.t. Φw + b ≥ 0 ∀s, a.
(4)

In fact any visitation distribution that is a policy-independent linear transformation of Mπ such as
state visitation distribution or future state-visitation distribution, can be represented in the same way
as shown in Corollary 4.3.
Corollary 4.3. Any quantity that is a policy-independent linear transformation of Mπ can be written
as a linear combination of policy-independent basis and bias terms.

Toy Example: Let’s consider a simple 2 state MDP (as shown in Figure 1a) to depict how the
precomputation and inference will take place. Consider the state-action visitation distribution
as in Equation 1. For this simple MDP, the Φ and b can be computed using simple algebraic
manipulations. For a given initial state-visitation distribution, µ and γ, the state-action visitation
distribution d = (d(s0, a0), d(s1, a0), d(s0, a1), d(s1, a1))

T can be written as,

d = w1


−γ
1+γ
−1
1+γ

1
0

+ w2


−1
1+γ
−γ
1+γ

0
1

+


µ(s0)+γµ(s1)

1+γ
µ(s1)+γµ(s0)

1+γ

0
0

 (5)

The derivation for these basis vectors and the bias vector is in the supplementary material. Equation
5 represents any vector that is a solution of Equation 1 for the simple MDP. So any state-action
visitation distribution possible in the MDP can now be represented using only w = (w1, w2)

T . The
only constraint in the linear program of Equation 4 is Φw + b ≥ 0. Looking closely, this constraint
gives rise to four inequalities in w and the linear program reduces to,

max
w1,w2

(
−γw1 − w2

1 + γ
,
−w1 − γw2

1 + γ
,w1, w2)

T r

s.t. w1 + γw2 ≤ µ(s0) + γµ(s1)

γw1 + w2 ≤ µ(s1) + γµ(s0)

w1 ≥ 0, w2 ≥ 0

(6)

The inequalities in w give rise to a simplex as shown in Figure 1b. For any specific instantiation
of µ and r, the optimal policy can be easily found. For instance, if µ = (1, 0)T and the reward
function, r = (1, 0, 1, 0)T , the optimal w will be obtained at the vertex (w1 = 1, w2 = 0) and the
corresponding state-action visitation distribution is d = (0, 0, 1, 0)T .

(a)

(b)

Figure 1: (left) A Toy MDP with 2 states and 2 actions
to depict how the linear program of RL is reduced using
precomputation. (right) The corresponding simplex for
w assuming the initial state distribution is µ = (1, 0)T .

As shown for the toy MDP, the successor mea-
sures form a simplex as discussed in Eysen-
bach et al. (2021). Spectral Methods follow-
ing Proto Value Functions (Mahadevan & Mag-
gioni, 2007) have tried to represent value func-
tions using a linear combination of basis vectors,
V = Φvfw for some Φvf . Some prior works
(Dadashi et al., 2019) have argued that value
functions do not form convex polytopes. We
show through Theorem 4.4 that for identical
dimensionalities of basis, the span of value func-
tions using basis functions is a subset of the set
of value functions that can be represented using
the span of the successor measure.
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Theorem 4.4. For the same dimensionality,
span{Φvf} represents the set of the value func-
tions spanned by Φvf and {span{Φ}r} represents the set of value functions using the successor
measures spanned by Φ, span{Φvf} ⊆ {span{Φ}r}.

Approaches such as Forward Backward Representations (Touati & Ollivier, 2021) have been based
on representing successor measures but they have forced a latent variable z representing the policy to
be a function of the reward for which the policy is optimal. The forward map that they propose is a
function of this latent z. We, on the other hand, propose a representation that is truly independent of
the policy or the reward.

5 Method

In this section, we start by introducing the practical algorithm inspired from the theory discussed in
Section 4 for obtaining Φ and b. We will also discuss the inference step i.e., obtaining w for a given
reward function.

5.1 Learning Φ and b

For a given policy π, its successor measure under our framework is denoted by Mπ = Φwπ + b with
wπ the only object depending on policy. Given an offline dataset with density ρ, we follow prior
works (Touati & Ollivier, 2021; Blier et al., 2021) and model densities mπ = Mπ/ρ learned with the
following objective:

Lπ(Φ, b, wπ) = −Es,a∼ρ[m
Φ,b,wπ

(s, a, s, a)]

+
1

2
Es,a,s′∼ρ,s+,a+∼ρ[m

Φ,b,wπ

(s, a, s+, a+)− γm̄Φ̄,b̄,w̄π

(s′, π(s′), s+, a+)] (7)

The above objective only requires samples (s, a, s′) from the reward-free dataset and a random
state-action pair (s+, a+) (also sampled from the same data) to compute and minimize L(π).

A ϕ and b that allows for minimizing the L(π) for all π ∈ Π forms a solution to our representation
learning problem. But how do we go about learning such ϕ and b? A naive way to implement learning
ϕ and b is via a bi-level optimization. We sample policies from the policy space of Π, for each policy
we learn a wπ that optimizes the policy evaluation loss (Eq 7) and take a gradient update w.r.t ϕ and b.
In general, the objective can be optimized by any two-player game solving strategies with Φ = [ϕ, b]
as the first player and wπ as the second player. Instead, in the next section, we present an approach to
simplify learning representations to a single-player game.

5.2 Simplifying Optimization via a Discrete Codebook of Policies

We need a way to disentangle learning a new w for each newly sampled policy. To do so, we propose
parameterizing w to be conditional on policy. In general, policies are high-dimensional objects and
compressing them can result in additional overhead. Parameterizing policy with a latent variable z is
another alterative but presents the challenge of covering the space of all possible policies by sampling
z. Instead, we propose using a discrete codebook of policies as a way to simulate uniform sampling
of all possible policies with support in the offline dataset.

Discrete Codebook of Policies: Denote z to a compact representation of policies. We propose
to represent z as a random sampling seed that will generate a deterministic policy from the set of
supported policies as follows:

π(a|s, z) = Uniform Sample(seed = z + hash(s)) (8)

The above sampling strategy defines a unique mapping from a seed to a policy. If the seed generator
is unbiased, the approach provably samples all possible deterministic policies uniformly. Now, with
policy πz and wz parameterized as a function of z we derive the following single-player reduction to
learn Φ, b, w jointly.

PSM-objective: min
ϕ,b,w(z)

Ez[L
πz (ϕ, b, w(z))] (9)
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5.3 Fast Optimal Policy Inference on Downstream Tasks

After obtaining Φ and b via the pretraining step, the only parameter to compute for obtaining
the optimal Q function for a downstream task in the MDP is w. As discussed earlier, Q∗ =
maxw(Φw + b)r but simply maximizing this objective will not yield a Q function. The linear
program still has a constraint of Φw + b ≥ 0,∀s, a. We solve the constrained linear program by
constructing the Lagrangian dual using Lagrange multipliers λ(s, a). The dual problem is shown in
Equation 10. Here, we write the corresponding loss for the constraint as min(Φw + b, 0).

max
λ≥0

min
w

−Φwr −
∑
s,a

λ(s, a)min(Φw + b, 0) (10)

Once w∗ is obtained, the corresponding M∗ and Q∗ can be easily computed. The policy can be
obtained as π∗ = argmaxa Q

∗(s, a) for discrete action spaces and as DDPG style policy learning
for continuous action spaces.

6 Experiments

Figure 2: Qualitative results on a gridworld: G denotes the goal sampled for every episode. The
black regions are the boundaries/obstacles. (Top row) We visualize the optimal Q-functions inferred
at test time for the given goal in the image by PSM. The arrows denote the optimal policy. (Bottom
row) Denotes the sample path of the optimal policy inferred by the PSM agent starting from a start
state S.

Our experiments qualitatively evaluate how PSM can be used to encapsulate an task-free MDP into a
representation that will enable faster inference on any downstream task. For the purpose of this paper,
we restrict ourselves to goal conditioned rewards on discrete gridworld and four room environments.
Since the goal-conditioned rewards are state-only reward functions, we learn representations for
Mπ(s, a, s+) instead of Mπ(s, a, s+, a+).

Task Setup: Both environments have discrete state and action spaces. The action space consists of
five actions: {up, right, down, left, stay}. We collect all transitions possible in the environment to
form our offline reward-free dataset to train Φ and b. During inference, we sample a goal and infer
the optimal Q function on the goal. Since the reward function is given by r(s) = 1s=g , the inference
looks like Q(s, a) = maxw Φ(s, a, g)w s.t. Φ(s, a, s′)w + b(s, a, s′) ≥ 0 ∀s, a, s′. Figure 2
shows the Q function and the corresponding optimal policy (when executed from a fixed start state)
on the gridworld and Figure 3 shows the same on the four-room environment. As illustrated clearly,
for both the environments, the optimal Q function and policy can be obtained zero-shot for any given
goal-conditioned downstream task. We observe a 100% success rate on both these tasks.
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Figure 3: Qualitative results on a four room: G denotes the goal sampled for every episode. The
black regions are the boundaries. The agent needs to navigate across rooms through the small opening
to reach the goal. (Top row) We visualize the optimal Q-functions inferred at test time for the given
goal in the image by PSM. The arrows denote the optimal policy. (Bottom row) Denotes the sample
path of the optimal policy inferred by the PSM agent starting from a start state S.

7 Conclusion

Successor Measures are solutions of the Bellman Flow equations and hence form affine sets. We
present a novel framework Proto Successor Measures for representing successor measures in an MDP
that can be trained in an unsupervised manner, using only reward-free transitions. The framework
utilises the fact that successor measures can be represented as a linear combination of basis functions
and a bias term. These basis and bias terms are independent of the policy. These representations can
infer any RL solution on the MDP by searching for the optimal linear weight. The value function for a
successor measure given a reward function is simply a dot product between the successor measure and
the reward vector. Hence, it makes sense to represent successor measure as optimal value functions
can be obtained easily from them. We show that PSM can produce the optimal Q function and the
optimal policy for any goal conditioned task in a couple of environments.
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A Appendix

In this section, we will present the proofs for all the Lemmas and Theorems stated in Section 4.

A.1 Proof of Lemma 4.1

Lemma 4.1. All possible state-action visitation distributions in an MDP form an affine set.

Proof. Any state-action visitation distribution, d(s, a) must satsify the Bellman Flow equation:∑
a

dπ(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P(s|s′, a′)dπ(s′, a′) (11)

This equation can be written in matrix notation as:∑
a

dπ = (1− γ)µ+ γPT dπ (12)

Rearranging the terms,

(S − γPT )dπ = (1− γ)µ (13)

where S is the matrix for
∑

a. This equation is an affine equation of the form Ax = b whose solution
set forms an affine set. Hence all state-visitation distributions dπ form an affine set.

A.2 Proof of Theorem 4.2

Theorem 4.2. Any successor measure, Mπ in an MDP forms an affine set and so can be represented
as

∑d
i ϕiw

π
i + b where ϕi and b are independent of the policy π and d is the dimension of the affine

space.

Proof. Using Lemma 4.1, we have shown that state-action visitation distributions form affine sets.
Similarly, successor measures, Mπ(s, a, s+, a+) are solutions of the Bellman Flow equation:

Mπ(s, a, s+, a+) = (1− γ)1[s = s+, a = a+] + γ
∑

s′,a′∈SA
P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+)

(14)

Taking summation over a+ on both sides gives us an equation very similar to Equation 11 and so can
be written by rearranging as,

(S − γPT )Mπ = (1− γ)1[s = s+] (15)

With similar arguments as in Lemma 4.1, Mπ also forms an affine set. Any element x of an affine set
can be written as

∑d
i ϕiwi + b where < ϕi > are the basis and b is a bias vector. The basis is the

given by the null space of the matrix operator (S − γPT ). Since the operator (S − γPT ) and the
vector (1−γ)1[s = s+] are independent of the policy, the basis Φ and the bias b are also independent
of the policy.

A.3 Proof of Theorem 4.4

Theorem 4.4. For the same dimensionality, span{Φvf} represents the set of the value functions
spanned by Φvf and {span{Φ}r} represents the set of value functions using the successor measures
spanned by Φ, span{Φvf} ⊆ {span{Φ}r}.
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Proof. We need to show that any element that belongs to the set {span{Φ}r} also belongs to the set
span{Φvf}.

V π(s) =
∑
i

βπ
i Φ

vf
i (s)

If we assume a special Φi(s, s
′) = σi(s)ηi(s

′),

V π(s) =
∑
i

wπ
i

∑
s′

Φ(s, s′)r(s′)

=
∑
i

[
wπ

i

∑
s′

ηi(s
′)r(s′)

]
σi(s)

The two equations match with βπ
i = wπ

i

∑
s′ ηi(s

′)r(s′) and σi(s) = Φvf
i (s). This implies for every

instance in the span of Φvf , there exists some instance in the span of Φ.
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