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Abstract

General purpose agents need to be able to execute diverse skillsets in stochastic
settings. Given that the mutual information between skills and states measures the
number of distinct skills in a skillset, a compelling objective for learning a large
skillset is to find the skillset with the largest mutual information between skills and
states. The problem is that the two main unsupervised approaches for optimizing
this mutual information objective, Empowerment-based skill learning and Unsuper-
vised Goal-Conditioned Reinforcement Learning, only optimize loose lower bounds
on the mutual information, which can impede diverse skillset learning. We propose a
new empowerment objective, Skillset Empowerment, that optimizes a tighter bound
on the mutual information between skills and states. For any proposed skillset, the
tighter bound on mutual information is formed by replacing the posterior distribu-
tion of the proposed skillset with a variational distribution trained to match the
posterior of the proposed skillset. In addition, because our empowerment objec-
tive is not a reinforcement learning problem, we optimize the objective as a bandit
problem in which actions are skillsets (e.g., the set of parameters that make up
the skill-conditioned policy) and the reward for an action is our variational mutual
information lower bound for the proposed skillset. We show empirically that our
approach is able to learn large abstract skillsets in stochastic domains, including
ones with high-dimensional observations, in contrast to existing approaches.

1 Introduction

General purpose agents that operate in the real world will need to be able to execute a large set of
skills in highly stochastic settings. A futuristic household robot, for instance, will need to execute
the vast number of skills involved in household chores like cooking and cleaning while the human
members of the household may be moving as well as conversing with each other and the robot in
seemingly random ways. Even the simple act of the robot moving its head to look in different
directions will produce unpredictable outcomes as relevant objects to the robot may appear in
unexpected places. An appealing approach for learning diverse skillsets, regardless of the level of
randomness in the domain, is to find the skillset with the largest mutual information between skills
and skill-terminating states because this mutual information measures the number of distinct skills
in a skillset.

The problem is that the two most popular approaches for optimizing the mutual information between
skills and states, Empowerment-based skill learning (Gregor et al., 2016; Eysenbach et al., 2018;
Achiam et al., 2018; Choi et al., 2021; Sharma et al., 2019) and Unsupervised Goal-Conditioned
Reinforcement Learning (GCRL) (Ecoffet et al., 2019; Mendonca et al., 2021; Nair et al., 2018;
Pong et al., 2019; Campos et al., 2020; Pitis et al., 2020; Held et al., 2017; McClinton et al., 2021;
Held et al., 2017; Kim et al., 2023), only maximize a loose lower bound of the mutual information
between skills and states, which can make it challenging to learn a diverse skillset. In both existing
empowerment and unsupervised GCRL approaches, this loose lower bound on mutual information



RLJ | RLBRew Workshop @ RLC 2024

(Left)

Current 𝞱 Candidate 𝞱1 Candidate 𝞱2

Diversity Measure

ITrue(Z;S|𝞱)

ILoose(Z;S|𝞱)

IOurs(Z;S|𝞱)

ITrue(Z;S|𝞱1)  >  ITrue(Z;S|𝞱2) 

ILoose(Z;S|𝞱1)  <  ILoose(Z;S|𝞱2) 

IOurs(Z;S|𝞱1)  >  IOurs(Z;S|𝞱2) 

Graphical Model of Skillset and Environment

Z

s0

A0 S1

…
A1 S2

An-1 Sn

(Right)

Sn-1

ɸ(z|s0)

𝜋(ai|si,z)

T(si+1|si,ai)

Figure 1: (Left) Two candidate skillsets θ1 and θ2 are compared using different measures of diversity.
θ1 is the more diverse skillset as each of its nine skills target different states, whereas the skills in θ2
target two different states (different skills are shown by different colored trajectories emanating from
the black square agent). Thus, using the true mutual information, ITrue(Z;S|θ1) > ITrue(Z;S|θ2).
However, using the loose lower bound on mutual information employed by existing empowerment
methods that penalizes differences from the current skillset, ILoose(Z;S|θ1) < ILoose(Z;S|θ2) be-
cause θ2 is more similar to the current skillset θ than θ1. We introduce a tighter bound to the
mutual information in which the more diverse skillset θ1 would score higher than θ2. (Right) Graph-
ical model of a skillset and its effect on environment. Z, Ai, and Si are random variables for skills,
actions, and states, respectively. Solid arrows represent conditional probability distributions. A
skillset is defined by the distribution over skills (blue arrow) and skill-conditioned policy distribu-
tion (red arrows). Green arrows represent the transition dynamics. Dotted arrow is the skill channel.

for some candidate skillset is formed by replacing the true posterior probability that computes the
probability of a skill given the skill-terminating state and the candidate skillset with a potentially
very different distribution. Existing empowerment approaches replace the true posterior of the
candidate skillset with another distribution trained to match the true posterior of the current skillset,
which may have significant differences with the candidate skillset. As Figure 1 (Left) illustrates,
this can create a loose lower bound on mutual information for desirable diverse skillsets that differ
significantly from the current skillset. Similarly, GCRL replaces the true posterior with a fixed
posterior distribution that encourages the goal-conditioned policy to execute actions that achieve
the assigned goal state (Choi et al., 2021). However, this implementation can produce a loose lower
bound on mutual information in stochastic settings for diverse skillsets with abstract skills that
target groupings of states.

Our main contribution, Skillset Empowerment, is an empowerment objective that optimizes a tighter
lower bound on the mutual information between skills and states. In our variational lower bound, we
replace the true posterior distribution within the mutual information term for a candidate skillset
with a variational posterior that is trained to match the true posterior of the candidate skillset.
The resulting empowerment objective is not a reinforcement learning problem because the reward
depends on the full skill-conditioned policy. As a result, we optimize our objective as a bandit
problem, in which the actions are candidate skillsets (e.g., the parameters of the skill-conditioned
policy neural network) and the reward is our version of the skillset candidate’s mutual information
variational lower bound, which measures the diversity of the proposed skillset. We provide a par-
ticular architecture and optimization method that can efficiently optimize the objective despite the
potentially large action space. Our experiments show that our approach can learn diverse abstract
skillsets in stochastic settings, including ones with high-dimensional observations. To our knowledge,
our approach is the first unsupervised skill learning method to successfully learn large skillsets in
stochastic settings.



RLJ | RLBRew Workshop @ RLC 2024

2 Background

2.1 The Skill Channel and Empowerment

We model an agent’s skillset and its effect on the environment with the probabilistic graphical
model shown in Figure 1 (Right). The random variables in the model include Z, which repre-
sents the selected skill; Ai, which is the primitive action executed by the agent at step i; and Si,
which represents the state at step i that is assumed to be visible to the agent. s0 is the skill
start state under consideration. The model’s probability distributions that produce the random
variables include the environment’s Markovian transition dynamics, T (si+1|si, ai) that are indepen-
dent of past states and actions, and the pair of distributions that define a skillset: ϕ(z|s0) and
π(ai|si, z). ϕ(z|s0) represents the distribution over skills that an agent can execute in some skill
start state s0. π(ai|si, z) represents the agent’s distribution over actions given some skill start
state s0 and skill z (i.e., the agent’s skill-conditioned policy). The model assumes each skill con-
sists of n primitive actions. Given a start state s0 and specific skillset distributions ϕ(z|s0) and
π(ai|si, z), the joint distribution of the random variables p(z, a0, s1, a1, s2, . . . , an−1, sn|s0, ϕ, π) =
ϕ(z|s0)π(a0|s0, z)T (s1|s0, a0)π(a1|s1, z)T (s2|s1, a1) . . . π(an−1|sn−1, z)T (sn|sn−1, an−1).

Given our goal of learning diverse skillsets that target many states, the relationship between the
skill random variable Z and the skill-terminating state random variable Sn given some start state s0
and skillset defined by the distribution over skills ϕ(z|s0) and the skill-conditioned policy π(a|s, z) is
of particular interest. We refer to the relationship between skills and skill-terminating states as the
skill channel. The skill channel is interesting because sampling the channel can indicate how diverse
a skillset is. More diverse skillsets will be those in which different skills z produce different states sn,
while less diverse skillsets will be those in which different skills z produce the same distribution over
sn. Shannon (1948) showed that the diversity of a channel (i.e., the number of distinct inputs to a
channel that can be decoded with arbitrarily low error at the output of the channel) can be measured
using the mutual information of the channel. Thus, in the case of skillsets, the number of unique
skills in a skillset defined by (ϕ(z|s0), π(a|s, z)) can be quantified using the mutual information
between skills and states I(Z;Sn|s0, ϕ, π), in which

I(Z;Sn|s0, ϕ, π) = H(Z|s0, ϕ, π) −H(Z|s0, ϕ, π) (1)
= Ez∼ϕ(z|s0),sn∼p(sn|s0,π,z)[log p(z|s0, ϕ, π, sn) − log ϕ(z|s0)]. (2)

The goal of our work is to find the most diverse skillset that produces the largest mutual information
of the skill channel. The maximum mutual information of a channel is known as the capacity of
the channel. For channels that describe the relationship between action and sensor representations,
which is the case for the skill channel where the skills are actions and the states are sensor rep-
resentations, the capacity of the channel can also be referred to as Empowerment (Klyubin et al.,
2005; Capdepuy, 2011; Salge et al., 2013a). Thus, the goal of our work is to find the empowerment
of states s0, which requires finding the skillset (ϕ(z|s0), π(a|s, z)) that produces the largest mutual
information between skills and states:

E(s0) = max
ϕ(z|s0),π(a|s,z)

I(Z;Sn|s0, ϕ, π). (3)

2.2 Existing Approaches

Next we discuss how both of the two dominant approaches to unsupervised skill learning,
empowerment-based skill learning and unsupervised GCRL, optimize the mutual information of
the skill channel and why these approaches are only optimizing loose lower bounds on the mutual
information between skills and states.

A key problem with optimizing the mutual information of the skill channel for a candidate skillset
(ϕ, π) is that it depends on the posterior distribution p(z|s0, ϕ, π, sn), which provides the probability
of a skill z given the start state s0, skillset (ϕ, π), and skill-terminating state sn. As shown in line
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4, the posterior is intractable to compute in large settings (e.g., domains with continuous state and
action spaces) because it requires integrating over an infeasible number of trajectories.

p(z|s0, ϕ, π, sn) =

∫
a0,s1,a2,...,sn−1,an−1

p(z, a0, s1, . . . , an−1, sn|s0, ϕ, π)∫
z,a0,s1,a2,...,sn−1,an−1

p(z, a0, s1, . . . , an−1, sn|s0, ϕ, π)
(4)

To overcome this problem, both existing empowerment and unsupervised GCRL methods replace
the original posterior with a different variational distribution qψ(z|s0, sn), similar to Mohamed &
Rezende (2015) who first replaced the intractable posterior with a variational distribution when
optimizing a different mutual information between open loop action sequences and terminating
states. Replacing the true posterior p(z|s0, ϕ, π, sn) with the variational distribution qψ(z|s0, sn)
results in a lower bound on mutual information IV (Z;Sn|s0, ϕ, π) for the candidate skillset (ϕ, π).
The gap between the actual mutual information I(Z;Sn|s0, ϕ, π) and the variational lower bound on
mutual information IV (Z;Sn|s0, ϕ, π) is an average of the KL divergences between the true posterior
and the variational distribution (Barber & Agakov, 2003):

I(Z;Sn|s0, ϕ, π) − IV (Z;Sn|s0, ϕ, π) = Esn∼p(sn|s0,ϕ,π)[DKL(p(z|s0, ϕ, π, sn)||qψ(z|s0, sn))]. (5)

Thus, replacing the true posterior with a similar variational distribution can produce a tight bound
on mutual information, but replacing the true posterior with a markedly different one can produce a
loose bound. Next, we discuss the variational posteriors used by existing empowerment approaches
and unsupervised GCRL.

Existing Empowerment The typical empowerment-based skill-learning algorithm replaces the
true posterior with a variational distribution trained to be similar to the posterior of the current
greedy skillset (ϕgreedy, πgreedy) (Gregor et al., 2016; Eysenbach et al., 2018; Achiam et al., 2018; Lee
et al., 2019; Choi et al., 2021; Strouse et al., 2021). Specifically, the parameters of the variational
posterior ψ are trained to minimize the KL divergence between the posterior of the current skillset
and the variational distribution:

ψ∗ = argmin
ψ

Esn∼p(sn|s0,ϕgreedy,πgreedy)[DKL(p(z|s0, ϕgreedy, πgreedy, sn)||qψ(z|s0, sn))]. (6)

With this posterior, the empowerment objective becomes

EV (s0) = max
ϕ(z|s0),π(a|s,z)

IV (Z;Sn|s0, ϕ, π),

IV (Z;Sn|s0, ϕ, π) = Ez∼ϕ(z|s0),sn∼p(sn|s0,π,z)[log qψ∗(z|s0, sn) − log ϕ(z|s0)]. (7)

Using this objective, candidate skillsets (ϕ, π) are evaluated using the variational lower bound on
mutual information defined in line 7.

The problem with this implementation is that it will significantly penalize skillsets that differ from
the current skillset, even when they are significantly more diverse than the current skillset. Examples
similar to the one discussed in Figure 1 (Left) in which a candidate skillset can target more unique
states than the current greedy skillset but because the skills z that achieve the terminating states
sn do not have high probability according to variational posterior qψ∗(z|s0, sn) at the states sn, the
log qψ∗(z|s0, sn) can be very low, which can then result in a poor IV for the candidate skillset (ϕ, π).
The low IV scores would then discourage the agent from selecting these skillsets. Instead, the skillsets
that are favored are the ones similar to the greedy skillset because the (z, sn) tuples generated by
skillsets similar to the greedy skillset will be rewarded with higher log qψ∗(z|s0, sn) values. Several
prior works have empirically demonstrated this result in which existing empowerment approaches
tend to learn skillsets that do not change much from initialization (Campos et al., 2020; Park et al.,
2022; 2023a;b; Strouse et al., 2021; Levy et al., 2023).

Unsupervised GCRL Unsupervised GCRL approaches replace the true posterior with a fixed
variational posterior that encourages the skill-conditioned policy (or the goal-conditioned policy)
to target the conditioned goal state. There are different options for the fixed variational posterior
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depending on the desired goal-conditioned reward. The variational posterior could take the form of a
fixed standard deviation gaussian centered at the skill-terminating state sn: q(z|s0, sn) = N (z;µ =
sn, σ = σ0) (Choi et al., 2021). This will encourage the learning of a goal-conditioned policy such
that when given a goal state z, the goal-conditioned policy will target a skill-terminating state sn
close to z. Section D in the Appendix describes how the common goal threshold reward function in
which the agent is rewarded for entering within a threshold of the goal can be implemented with a
fixed posterior.

For the desirable diverse skillsets, the tightness of a variational lower bound on mutual information
IV that employs a fixed posterior can depend on the level of randomness in the domain. In de-
terministic settings, the variational lower bound IV (Z;Sn|s0, ϕ, π) for diverse skillsets can form a
tight bound to the true mutual information I(Z;Sn|s0, ϕ, π). Consider the IV of an effective goal-
conditioned policy π, in which IV employs a tight fixed-variance gaussian variational posterior with
a mean at the skill-terminating state sn. Because the goal-conditioned policy is effective (i.e., for
goal state z, sn ≈ z), the true posterior p(z|s0, ϕ, θ, sn) will be similar to the fixed-variance gaussian
variational posterior, and thus the gap between the true mutual information and IV will be small.
In deterministic settings, GCRL can thus be an effective way to learn diverse skillsets, which has
been repeatedly demonstrated empirically (Andrychowicz et al., 2017; Mendonca et al., 2021; Nair
et al., 2018; Pong et al., 2019; Campos et al., 2020; Pitis et al., 2020; Held et al., 2017; McClinton
et al., 2021; Held et al., 2017; Kim et al., 2023).

However, in significantly stochastic settings, the lower bound can be quite loose for the most diverse
skillsets. In significantly random domains, the most diverse skillsets may be ones that contain
abstract skills that target distinct groupings of states. Abstract skillsets like these will have posteriors
in which many skill-terminating states map to the same skill, which can be far different than the
fixed posterior used in GCRL in which each terminating state is mapped to its own unique goal
state. Thus, the GCRL lower bound on mutual information can be quite loose for these desirable
abstract skillsets, which will discourage the agent from learning them. Instead, the GCRL objective
may limit skillsets to the more deterministic parts of the environment because trying to achieve any
goal state that cannot be reliably achieved may be heavily penalized.

3 Skillset Empowerment

To enable agents to learn diverse skillsets in stochastic domains, we introduce the empowerment
objective, Skillset Empowerment. In this section, we first present the objective and explain how
the objective maximizes a tighter bound on the mutual information of the skill channel. Then we
provide a practical implementation of the objective.

3.1 Skillset Empowerment Objective

The Skillset Empowerment objective is defined as follows:

ESE(s0) = max
ϕ(z|s0),π(a|s,z)

ISE(Z;Sn|s0, ϕ, π),

ISE(Z;Sn|s0, ϕ, π) = Ez∼ϕ(z|s0),sn∼p(sn|s0,π,z)[log qψ∗(z|s0, ϕ, π, sn) − log ϕ(z|s0)],
ψ∗ = argmin

ψ
Esn∼p(sn|s0,ϕ,π)[DKL(p(z|s0, ϕ, π, sn)||qψ(z|s0, ϕ, π, sn))] (8)

Like existing approaches, Skillset Empowerment optimizes a variational lower bound on the mutual
information of the skill channel in which the true posterior of a candidate skillset (ϕ, π) is replaced
with a variational distribution. The key reason Skillset Empowerment optimizes a tighter bound
on mutual information is the manner in which ψ∗ is selected. For any candidate skillset (ϕ, π),
Skillset Empowerment trains the variational posterior qψ(z|s0, ϕ, π, sn) to match the true posterior
of the candidate skillset p(z|s0, ϕ, π, sn). Note that the variational posterior is now conditioned on
the skillset distributions (ϕ, π). The next section will discuss how this is implemented in practice.
This strategy for learning ψ∗ results in a variational mutual information ISE that is a tighter lower
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bound for any skillset (ϕ, π) because the KL divergence between the true and variational posterior
cannot be larger than the KL divergence in existing approaches. This is true because in the selection
of ψ∗, Skillset Empowerment can choose the ψ selected by existing empowerment approaches or a
ψ that produced a fixed variational distribution like in unsupervised GCRL if that is the ψ that
minimizes the KL divergence, but Skillset Empowerment is not limited to those options. The tighter
mutual information lower bound for any skillset in turn means that, for Skillset Empowerment, the
skillset with the largest mutual information will have a mutual information level at least as large as
existing approaches. That is, Skillset Empowerment will learn skillsets that are as or more diverse
than existing approaches.

3.2 Practical Implementation

Next, we provide a practical implementation of the objective that removes the max and min op-
erators. We first discuss how we optimize the skillset distributions ϕ and π because that informs
how we will train the variational parameters ψ. Before discussing how the skillset distributions are
updated updated, note that the Skillset Empowerment objective is not a Reinforcement Learning
problem because the final step reward would include the log q(z|s0, ϕ, π, sn) term, which depends on
the skill-conditioned policy π. Optimizing Skillset Empowerment with RL would be subject to po-
tentially significant nonstationary rewards because each time the skill-conditioned policy is updated,
the final step reward could change.

In order to optimize π and ϕ with deep learning, these skillset distributions need to be represented as
vectors. In our implementation of Skillset Empowerment, we implement the skill-conditioned policy
π as a vector of parameters that represents the weights and biases of a neural network fπ that forms
the skill-conditioned policy. fπ : S × Z → A takes as input a state s and skill z outputs the mean
of a gaussian skill-conditioned policy. That is, π(a|s, z) = N (a;µ = fπ(s, z), σ = σ0), in which σ0
is a small fixed standard deviation. ϕ(z|s0) represents the distribution over skills given some skill
start state s0. Because we implement the distribution over skills as a uniform distribution over a
d-dimensional cube centered at the origin, we define ϕ as a scalar value representing the side length
of that cube. For instance, in our tasks in which the skills are two-dimensional, skills are sampled
from a square with side length ϕ centered at the origin. The probability density ϕ(z|s0) = (1/ϕ)d.

We optimize both ϕ and π using their own bandit problem. In the ϕ bandit problem, the bandit
policy is fη : S → ϕ, which takes as input the skill start state s0 and outputs ϕ (i.e., the size
of the uniform skill space). In the π bandit problem, the bandit policy fλ : S × ϕ → θ takes as
input the skill start state s0 and a ϕ value and outputs π, the vector of parameters that define the
skill-conditioned policy. In the π bandit problem, the reward for an π action is the variational lower
bound on mutual information ISE(Z;Sn|s0, ϕ, π) (i.e., the reward is how diverse the skillset (ϕ, π)
is). Similarly, the reward in the ϕ bandit problem for a ϕ action is ISE(Z;Sn|s0, ϕ, π = fλ(s0, ϕ)),
in which the skill-conditioned policy π is the greedy output from the π bandit policy. Both bandit
policies are optimized using an actor-critic structure. That is, to determine the gradient for the
bandit policy fη, a critic fγ(s0, ϕ) is trained to approximate ISE(Z;Sn)(s0, ϕ, fλ(s0, ϕ)) for ϕ values
around the current greedy output fη(s0). Similarly, a critic fα(s0, ϕ, π) is used to approximate ISE
for sets of parameters π that are near the current greedy vector fλ(s0, ϕ). Figure 5 in the Appendix
provides a visual overview of the two bandit problems.

The current setup is not yet practical because trying to learn the critic fα(s0, ϕ, π) for the π actor
when the vector of parameters π may be thousands of dimensions is infeasible. fα would need to
be able to discern the difference in mutual information when small changes are made to numerous
parameters in π. Instead, because the gradient with respect to the π bandit policy fλ only needs to
know how the ISE responds to small changes in each of the individual parameters in π, we instead
train |π| critics, f1(s0, ϕ, π̂1), . . . , f |π|(s0, ϕ,

ˆπ|π|). Each of these critics only takes a scalar, π̂i, as
input, in which π̂i represents the i-th parameter of π (e.g., could be a noisy value of the current
greedy i-th parameter). The remaining parameters of π are assumed to take on their greedy values.
Thus, each critic f i(s0, ϕ, π̂i) only needs to approximate how the mutual information changes from
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small changes to a single parameter of π. All of these critics are updated in parallel. In Figure 4 in
the Appendix we show how each of these |π| critics attach to the bandit policy fλ that outputs π.

Prior to updating the critics for each parameter of the skill-conditioned policy π, the variational
distribution parameters ψ need to be updated so that ISE forms a tighter bound on the true mutual
information. Because we need to estimate ISE for small changes in each of the parameters of π,
we train |π| different variational parameters ψ1, . . . , ψ|π|. Each set of variational parameters ψi is
trained to minimize the KL divergence between p(z|s0, ϕ, π̂i, sn) and qψi(z|s0, ϕ, π̂i, sn)

Algorithm 1 Skillset Empowerment
Initialize variational posterior parameters ψ1, . . . , ψ|π|

Initialize π critic parameters α1, . . . , α|π| and actor parameters λ
Initial ϕ critic parameters γ and actor parameters η
repeat

Update in parallel ψi by minimizing DKL(p(z|s0, ϕ, π̂i, sn)||qψi(z|s0, ϕ, π̂i, sn)) for noisy (ϕ, π̂i)
Update in parallel αi s.t. fαi(s0, ϕ, π̂i) ≈ ISE(Z;Sn|s0, ϕ, π̂i) for noisy (ϕ, π̂i)
Update π actor with gradient ∇λfα(s0, ϕ, fλ(s0, ϕ)) for noisy ϕ
Update γ s.t. fγ(s0, ϕ) ≈ ISE(Z;Sn|s0, ϕ, fλ(s0, ϕ)) for noisy ϕ
Update η with gradient ∇ηfγ(s0, fη(s0))

until convergence

Algorithm 1 provides the full algorithm for the practical implementation of Skillset Empowerment.
In the first step, the |π| sets of variational parameters ψ1, . . . , ψ|π| are updated in parallel so that
qψi(Z;Sn|s0, ϕ, π̂i, sn) better approximates the true posterior p(Z;Sn|s0, ϕ, π̂i, sn), in which π̂i refers
to the greedy output of fλ(s0, ϕ), except for i-th dimension which can take on noisy values. In
the next step, the |π| critics fα1 , . . . , fαd are updated so that fαi(s0, ϕ, π̂i) better approximates
ISE(Z;Sn|s0, ϕ, π̂i). Next, the actor that outputs π, fλ is updated to produce skillsets (ϕ, π) with
more diversity. Last, the critic and actor responsible for learning ϕ are updated.

Section B of the Appendix discusses how the |π| sets of variational posteriors and the |π| skill-
conditioned policy critics can be training efficiently in parallel with the help of multiple accelerators
and the parallelization capabilities of modern deep learning frameworks (e.g., JAX). Section C
discusses the limitation of our approach, which is that it requires of a simulator of the transition
dynamics. The simulator can be either be provided or learned like in prior empowerment works
(Jung et al., 2012; Karl et al., 2015; 2017).

4 Experiments

We implement several experiments in stochastic settings to evaluate whether Skillset Empowerment
can learn larger skillsets than existing empowerment methods and unsupervised GCRL.

4.1 Environments

Given that existing unsupervised skill-learning approaches like unsupervised GCRL already excel at
learning large skillsets in deterministic settings, our experiments focused on significantly stochastic
domains where no particular state was achievable with high probability. A key constraint on the
set of environments we could choose from was that the transition dynamics of the environment
needed to be sampled in parallel (i.e., a simulator of the environment needed to be available) due
to the large parallel computation requirements of the empowerment algorithms we tested. To our
knowledge, there are no existing benchmarks that satisfy both our stochasticity and parallelization
requirements so we implemented our own domains in JAX. We briefly describe the four environments
we created next. Additional details are provided in section F of the Appendix. Visualizations of
each environment when a random sequence of actions is applied is shown in Figure 2.
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Figure 2: Sample state trajectories executed by a random policy in all four domains.

1. Stochastic Four Rooms Navigation: In this domain, a two-dimensional point
agent navigates in an environment with four walled rooms by executing two-dimensional
(∆x,∆y) ∈ R2 actions. The domain is highly stochastic because after each action is com-
pleted, the agent is moved to the same (x offset, y offset) location in a randomly sampled
room. The abstract skills an agent should learn in this domains are skills that target
(x offset, y offset) locations from the center of a room.

2. Stochastic Four Room Pick-and-Place: This is the same environment as the navigation
task except there is now an object (the red triangle in the second row of Figure 2) that can
be moved if the agent is within a certain distance of the object.

3. RGB QR Code Navigation: In this domain an agent learns to navigate amid a contin-
ually changing RGB-colored QR code background. Observations are 507-dimensional RGB
images and are highly stochastic as the colored-QR code image fully changes after each
action. Actions are discrete and consist of a horizontal movement (move east/west/stay)
and a vertical movement (move north/south/stay).

4. RGB QR Code Pick-and-Place: This environment is the same as the navigation task
except there is a now an object that can be moved if the object is in reach.

In all domains, there is a single skill start state and skills consist of 5 primitive actions.

4.2 Baselines

We compare our approach, Skillset Empowerment, to both a popular empowerment-based skill-
learning method and unsupervised GCRL. For the prior empowerment-based method, we selected
Variational Intrinsic Control (VIC) (Gregor et al., 2016). VIC, like the other popular approaches
to optimizing empowerment including DIAYN (Eysenbach et al., 2018) and VALOR (Achiam et al.,
2018), optimizes a loose lower bound on the mutual information of the skillset in which the varia-
tional posterior is trained to match the posterior of the current greedy skillset. For the unsuper-
vised GCRL comparison, our focus was solely on whether goal-conditioned skills can be learned
in stochastic domains and not on exploration which is the primary focus on recent unsupervised
GCRL algorithms. Thus, we assist the unsupervised GCRL algorithm and provide it with the space
of reachable states and thereby are just comparing our algorithm to supervised GCRL. We compare
to a GCRL objective in which the variational posterior used is the tight diagonal gaussian centered
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H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Figure 3: Entropy visualizations for the stochastic four rooms domain. Left image visualizes H(Sn)
by marking the skill-terminating state from 1000 skills randomly sampled. The center image vi-
sualizes H(Sn|Z) by showing 12 samples of skill-terminating states from 4 specific skills randomly
sampled. The right image visualizes (i) H(Z) by showing the skill space (black rectangle) and (ii)
H(Z|Sn) by showing samples of the variational posterior (empty circles) for four different skills
(filled squares)).

Table 1: Variational empowerment of learned skillsets for all baselines. The average Variational
empowerment (measured in nats) over five random seeds and one standard deviation of error is
shown.

Task Ours VIC GCRL

Four Rooms Nav. 5.1± 0.3 0.2± 0.4 0.3± 0.4
Four Room P.-and-P. 8.7± 0.3 -0.1± 0.3 3.9± 0.6
RGB QR Nav. 3.5± 0.1 -0.4± 0.0 -0.4± 0.3
RGB QR P.-and-P. 6.0± 0.2 -0.6± 0.1 -2.6± 5.8

at the skill-terminating state discussed in section 2.2. For the higher dimensional QR code tasks, we
implemented Reinforcement learning with Imagined Goals (RIG) (Nair et al., 2018). RIG performs
GCRL in a latent space learned separately by a VAE. See section G for details on how the baselines
were implemented.

4.3 Results

Our approach significantly outperforms both baselines in all tasks. Table 1, which notes the average
variational empowerment (in nats) of the skillsets learned by each baseline, shows that our approach
learns a much larger skillset than the baselines in all domains.

For additional evidence that our approach is able to effectively optimize the mutual information
of the skill channel, we visualize the various entropies that appear in the symmetric definitions of
empowerment—H(Sn), H(Sn|Z), H(Z), and H(Z|Sn)—for the learned skillsets in all tasks. Figure
3 provides three images showing these visualizations for the stochastic four rooms navigation en-
vironment. The left image visualizes H(Sn) by executing 1000 skills uniformly sampled from the
learned skill space and marking the skill-terminating state with a colored circle. Per the image,
H(Sn) is large as the skill-terminating states produced by the sampled skills nearly uniformly cover
the possible state space. The center image visualizes H(Sn|Z) by focusing on four skills, uniformly
sampled from the skill space, and for each skill sampling 12 skill-terminating states. Per the image,
despite the room the room randomly changing at each transition, each skill targets a particular (x
offset, y offset) position (i.e. H(Sn|Z) is low), which is the correct abstract skill in this domain.
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For example, the brown skill targets a specific position in the bottom left of each room, while the
the pink skill targets a position towards the top right of each room. Thus, in this task, the agent is
not only learning abstract skills but skills with the appropriate level of abstraction. The image on
the right shows samples (empty circles) of the variational posterior distribution, qψ(z|s0, ϕ, π, sn) for
four skills (filled squares) sampled from the learned skill space (inner black square). Per the image,
H(Z|Sn) is low (i.e., skills are targeting distinct groupings of states) because the samples from the
variational posterior form narrow distributions around the sampled skill. If skills were targeting
overlapping regions of states, the samples from the variational posterior would be more dispersed
across the skill space.

The entropy visualizations for the remainder of the tasks are in section H of the Appendix. For
instance, Figure 6 shows the same images for the stochastic four rooms pick-and-place task. The
left image shows that H(Sn) is large as the agent is able to execute skills that can achieve many
of the possible (agent position, object position) tuples (object is shown by triangles). The center
image, which visualizes H(Sn|Z), shows that the agent is learning abstract skills that target (x offset,
y offset) positions for both the agent and object. The image on the right visualizes H(Z|Sn) for
the now four-dimensional skill space and again the variational posterior forms narrow distributions
around the sampled skill showing the agent is learning skills that target distinct groupings of states.
Figures 7 and 8 in the Appendix provide the entropy visualization images for the RGB QR code
navigation and pick-and-place tasks. Both of these figures show that despite significant stochasticity
and high-dimensional observations, our approach learns diverse skillsets with the appropriate level
of abstraction.

Moreover, the growth in empowerment from the navigation tasks to the pick-and-place tasks provides
further evidence that our approach effectively optimizes empowerment. Moving from navigation
tasks to pick-and-place tasks should boost empowerment by a significant factor as for every position
the agent can reach, there may be a large number of object positions that can be achieved. The
increase in empowerment by multiple nats confirms that empowerment grew by a large factor when
an object was added to the environment. For instance, in the four rooms tasks, moving from the
navigation task to the pick-and-place task increased the size of the skillset from 5.1 nats ( 164 skills)
to 8.7 nats ( 6,000 skills)

On the other hand, the baselines were not able to learn large skillsets. For instance, in the stochastic
four rooms task, the GCRL agent only learns skills to move to corners of the room as shown in
Figure 9, which shows the skill-terminating states of 1000 random skills. More specifically, as shown
in Figure 10, when given a goal state of some (x,y) position in one of the four rooms, the agent
simply moves towards whichever room the goal is in regardless of where in the room the goal is. This
behavior is likely taken to minimize the average distance to the goal as the goal-conditioned reward
heavily penalizes the agent if it is far from the specific goal state. In the image-based QR code tasks,
the VAE generally struggled to reconstruct the large variety of colored QR codes as shown in Figure
11, ultimately producing an image similar to a mean QR code. The overly abstract latent state
space in turn made it challenging for the GCRL component to learn distinct skills. These results
provide evidence that GCRL’s loose lower bound on mutual information for diverse abstract skillsets
GCRL does discourage agents from learning these desirable skillsets. On the other hand, because
Skillset Empowerment can learn a tight bound on mutual information for diverse abstract skillsets,
agents are encouraged to learn them. In addition, like GCRL, the performance of VIC agents also
was poor. As with prior works, we observed stagnant skillsets.

5 Related Work

Developing a scalable way to optimize the mutual information of an action-perception channel has
been a longstanding problem. Earlier empowerment work focused on the action-perception channel
between open-loop action sequences and terminating-states. Klyubin et al. (2005; 2008) showed how
the open-loop variant of empowerment can be computed in small domains with discrete state and
action spaces using the Blahut-Arimoto algorithm (Blahut, 1972). Jung et al. (2012) scaled this
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method to continuous state space settings by integrating Monte Carlo approximation techniques.
Mohamed & Rezende (2015) and Karl et al. (2017) further scaled the computation of open-loop
empowerment to continuous action settings by optimizing a variational lower bound on mutual
information in which a variational distribution replaces the true posterior. However, both of these
approaches still optimize loose lower bounds on mutual information because they replace the true
posterior for a candidate action sequence with a variational posterior trained to match the current
action sequence. Gregor et al. (2016) extended empowerment to the skill channel, in which the
mutual information between skills and skill-terminating states is optimized and the agent needs to
learn both a distribution over skills and a skill-conditioned policy. Optimizing the mutual information
of skill channel has two notable advantages over the open-loop action sequence channel. Because
the distribution over the input variable is limited to simple distributions (e.g., uniform or gaussian
distributions), when the open-loop channel is used the agent is limited in the variety of open-loop
actions it can select. On the other hand, with the skill channel, even though the distribution of
skills is limited (e.g., in our case, a uniform distribution in the shape of a d-dimensional cube),
the marginal distribution over actions those skills can produce can be complex because of the skill-
conditioned policy neural network that converts skills into actions. A second advantage of the skill
channel is that it can learn closed loop policies.

Prior work has used the computation of empowerment for numerous downstream applications, in-
cluding using empowerment as a state utility function (Klyubin et al., 2008; Salge et al., 2013b;
Jung et al., 2012; Mohamed & Rezende, 2015; Karl et al., 2015; 2017), as an evolutionary signal to
evolve sensors and actuators (Klyubin et al., 2005), as an objective for learning a state represen-
tation (Capdepuy, 2011; Bharadhwaj et al., 2022), as an intrinsic motivation reward (Oudeyer &
Kaplan, 2007; Bharadhwaj et al., 2022), and as a way to measure human empowerment (Du et al.,
2020; Myers et al., 2024). Empowerment-based skill learning methods that optimize the mutual
information of the skill channel have used the learned distribution over skills ϕ(z|s0) as temporally
extended action spaces for downstream RL tasks (Eysenbach et al., 2018) or for learning hierarchical
skills (Levy et al., 2023).

Also related to our work are the methods that learn abstract skills in settings with random envi-
ronment distractors (Bharadhwaj et al., 2022; Fu et al., 2021; Ma et al., 2021; Zhang et al., 2020;
Rudolph et al., 2024; Zou & Suzuki, 2024). However, these approaches only learn a single skill with
the help of a reward function or require supervision in the form of a hand-crafted goal space. To our
knowledge, our approach is the first unsupervised skill learning method to successfully learn large
skillsets in stochastic settings.

6 Conclusion

Agents need to be able to execute large skillsets in settings with significant randomness. Skillset
Empowerment takes a step in this direction by optimizing a tighter lower bound to the mutual
information of the skill channel. Our experiments show that our approach is able to learn diverse
abstract skillsets in domains with significant randomness.
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Figure 4: Architecture for the actor-critic that trains the bandit policy fλ that outputs the parame-
ters of the skill-conditioned policy. The output of the actor has |θ| dimensions. For each of the dimen-
sions, a critic fαi(s0, ϕ, π̂i) is trained to approximate the mutual information ISE(Z;Sn|s0, ϕ, π̂i).
During the actor update step, the actor uses the critic at each dimension to determine how to update
each dimension of the skill-conditioned policy.
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Table 2: Table shows various measures of the parallel computation demands for each environment.

Task |π| Update Time (s) GPU Notes

Four Rooms Nav 386 37 1 A100 40GB or 2 H100 80GB SXM5
Four Rooms Pick 484 56 1 A100 40GB or 2 H100 80GB SXM5
RGB QR Nav 2528 10 8 A100 80GB SXM
RGB QR Pick 2528 10 8 A100 80GB SXM

B Parallelized Training

Although the number of skill-conditioned policy parameters may be large, the |π| sets of variational
posterior and π critic parameters can be trained efficiently using the parallelization capabilities of
modern deep learning frameworks (e.g., JAX) and multiple accelerators. For instance, the update
step for each set variational posterior parameters ψi requires (skill z, state sn) tuples from skillsets
(ϕ, π̂i) in which small noise has been added to ϕ and the i-th parameter of π. Assuming access to
multiple accelerators, this update step can occur in parallel for all |π| sets of variational posterior
parameters using the pmap and vmap functions in JAX. For instance, if the skill-conditioned policy
π has 1000 dimensions and there are 4 GPUs available, each GPU can process the update to 250
sets of variational posterior parameters in parallel.

Table 2 provides some data on the parallel computation demands of our approach for each of our
experiments. |π| is the number of parameters in the skill-conditioned policy. Update Time reflects
the time (in seconds) required to complete one whole update step (i.e., one iteration of the Repeat
loop in Algorithm 1). Note that the update times shown for the four rooms tasks were when using a
single A100 40GB device, while the update times for the RGB QR tasks reflect 8 A100 80GB SXM
GPUs. When we used multiple GPUs, the update times were roughly 1/Num GPUs of the original
time with a single GPU.

C Limitations

The major limitation of our approach is that it requires a simulator of the transition dynamics. In
order to approximate each mutual information lower bound ISE(Z;Sn|s0, ϕ, π̂i) for i = 1, . . . , |π|,
we need to sample the (z, sn) tuples that result from making small changes to the i-th parameter of
π. Collecting these tuples in an online manner would require an intractable amount of interaction
with the environment. Thus, we assume access to a model of the transition dynamics, which enables
the large amount of (z, sn) tuples to be sampled in parallel. A model of the simulator can also be
learned as in prior empowerment methods (Jung et al., 2012; Karl et al., 2015; 2017).

D Goal Threshold Reward Function with a Fixed Posterior

For the typical goal threshold reward function in which the agent is only rewarded for entering within
some threshold of the goal, a uniform distribution can be used in which the uniform distribution
is centered at sn and the half lengths of each dimension of the uniform distribution are given by
the parameters σ1, . . . , σd for each of the d dimensions of the skill space (i.e., the goal state space):
q(z|s0, sn) = U(z;µ = sn, σ = [σ1, . . . , σd]). If the goal state z is within the goal threshold of sn, the
log q(z|s0, sn) reward would be 1/

∏d
i=1 σi. Otherwise, the reward could be set to 0.

E Overview of Bandit Problems

Figure summarizes the bandit problems for optimizing the skill-conditioned policy π and the distri-
bution over skills ϕ.
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Figure 5: Overview of the two bandit problems. In the π bandit problem, the task is to optimize
the bandit policy fλ : S × ϕ → ϕ, which takes as input the skill start state s0 and side length of the
uniform distribution ϕ and output a vector π consisting of the parameters of the skill-conditioned
policy neural network. That is, π is the vector of the weights and biases of the function fπ that
determines of the mean of an action given a state and skill. The reward for a π action R(s0, ϕ, π) is
the mutual information lower bound ISE(Z;Sn|s0, ϕ, π) (i.e., the reward is how diverse the skillset
(ϕ, π) is). In the ϕ bandit problem, the task is to learn the bandit policy fη : S → ϕ, which
takes as input the skill start state s0 and outputs ϕ, which is the side length of the d-dimensional
cube uniform distribution centered at the origin. The reward for a particular ϕ action R(s0, ϕ) is
ISE(Z;Sn|s0, ϕ, π = fλ(s0, ϕ)). That is, the bandit policy is encouraged to output ϕ that results in
diverse skillsets (ϕ, π = fλ(s0, ϕ)).
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F Environment Details

We implemented the following environments.

1. Stochastic Four Rooms Navigation: This domain consists of a two-dimensional point
agent in an environment with four walled rooms. The domain is highly stochastic because
after each action is complete, the agent is placed in a room uniformly sampled. That is,
the next location of the agent is the sum of (i) the agent’s (∆x,∆y) position relative to
the center of its current room before the action, (ii) the next action, (iii) small gaussian
noise, and (iv) the center of the new room. Thus, the “abstract" state in this domain is
the (∆x,∆y) position relative to the center of the current room. The observation space is
two-dimensional and continuous consisting of the (x, y) position of the agent. The action
space is also two-dimensional and continuous and consists of the the (∆x,∆y) action. The
action space for each dimension is the range [−1, 1]. The rooms are squares and have half
lengths of size 5.

2. Stochastic Four Room Pick-and-Place: This is the same environment as the navigation
task except there is now an object that can be moved. The observation space is four-
dimensional consisting of the two-dimensional positions of the agent and object. The action
space is also four-dimensional. The first two dimensions determine the change in the relative
position of the agent. The final two dimensions determine the change in the relative position
of the object. However, the final two dimensions of the action are only applied if both the
x and y positions of the object are within 2.5 units of the agent. The agent starts in the
same position as the object.

3. RGB QR Code Navigation: In this domain an agent learns to navigate amid a contin-
ually changing RGB-colored QR code background. The underlying dynamics in this envi-
ronment are simple. The environment state, not visible to the agent, is the two-dimensional
position of the agent. Actions are discrete and consist of a horizontal movement (i.e., move
west, move east, or no change) and a vertical movement (i.e., move north, move south,
or no change). In the underlying state space, the transition dynamics are deterministic.
However, the observation space and dynamics are more complex. The observation space is
high-dimensional consisting of 3x13x13 RGB images (i.e., 507 total pixels), in which the
dimensions represent (number of channels, image length, image width). The agent in ev-
ery image is represented by a 3x2x2 black pixel. The domain is highly stochastic as the
RGB-colored QR code background completely changes after each action.

4. RGB QR Code Pick-and-Place: This environment is the same as the navigation task
except there is a now an object that can be moved. The object is always represented by a
yellow square of pixels. In additional to the agent position changes, agent actions now also
include a horizontal object position change (i.e., no change, move west, move east) and a
vertical object position change (i.e., no change, move north, move south). The box can be
moved if the both the underlying x and y positions of the box are within two units of the
the agent. The agent starts in the same position as the object.

G Baseline Details

For the GCRL comparison, in the low-dimensional stochastic four rooms domains, we compared
against the variant of GCRL that is a lower bound to Empowerment, in which the variational
posterior consists of a tight diagonal gaussian centered at the skill-terminating state. The goal dis-
tribution is set to the distribution of all reachable state (e.g., all possible agent (x, y) positions in the
stochastic four rooms navigation task). For the higher dimensional QR code tasks, we implemented
Reinforcement learning with Imagined Goals (RIG) Nair et al. (2018). RIG is an unsupervised
GCRL method that combines representation learning and GCRL. RIG uses a VAE to separately
learn an encoder that maps state to distributions over skills and a decoder that maps latent states
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Figure 6: Images show the entropy visualizations for the stochastic four rooms pick-and-place do-
main. The left image shows the skill-terminating states sn that result from 1000 skills uniformly
sampled from the learned skill space. The near uniform coverage of the state space shows that
H(Sn) is large. The middle image focuses on four skills, uniformly sampled from the skill space,
and for each skill shows 12 samples of skill-terminating states. Per the image, each skill targets
an abstract state representing an offset from the center of a room for both the agent and object,
showing that H(Sn|Z) is low. The right image focuses on four skills and shows 5 samples from the
variational posterior qψ(z|s0, l, θ, sn). Per the image, the samples form a narrow distribution around
the executed skill, showing that H(Z|S) is low.

to distributions over observations. RIG then performs GCRL in the learned embedding space (i.e,
the agent learns skills that target specific latent states). Because the focus of this paper is not
exploration, we make it easier on the representation learning component of RIG and provide it with
a large dataset of reachable observations (e.g., images of the agent and object in a large variety of
positions in the pick-and-place QR code environment.) The goal distribution for the GCRL phase
is the prior distribution p(z) from the VAE component.

H Visualizations

Figure 6 shows that our approach effectively optimizes empowerment in the stochastic four rooms
pick-and-place domain by visualizing the entropies and conditional entropies of the learned skillset.

Figure 7 visualizes the entropy terms for the RGB QR code navigation task. Note that in this
implementation, we used a four dimensional skill space which is twice as large as the two dimen-
sional underlying state space. Per the image on the right, the algorithm corresponds by only using
two dimensions of the latent state space, which is why you see the horizontal lines formed by the
variational posterior.

Figure 8 visualizes the entropy terms for the RGB QR code pick-and-place task. Per the images the
agent learns abstract skills to move itself and the object to specific regions of the underlying (x,y)
space.

Figure 9 shows the state coverage of the GCRL agent in the stochastic four rooms task. Per the
image, the agent only learns skills to target the corners of rooms.

Figure 10 shows the behavior of the skills learned by the GCRL agent. Each skill simply moves in
the direction of the room of the goal state regardless of where in the room the goal is. For instance,
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Figure 7: Entropy visualizations for the RGB QR code navigation task. Left image visualizes H(Sn)
by marking the skill-terminating states sn produced by executing 1000 samples of skills from the
learned skill space. Center image visualizes H(Sn|Z) by executing four skills 12 times each and
recording the skill-terminating states. Each skill targets an abstract (x,y) position. The right image
shows samples from the variational posterior distribution. Note that in this case, the latent space is
four dimensional even though the underlying state space is two dimensional. Because the agent does
not need those extra dimensions, you see the horizontal lines in the variational posterior visualization.

H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Figure 8: Entropy visualizations for the RGB QR code pick-and-place tasks. Left image visualizes
H(Sn) by marking the skill-terminating states sn produced by executing 1000 samples of skills from
the learned skill space. Center image visualizes H(Sn|Z) by executing four skills 12 times each
and recording the skill-terminating states. Each skill targets an abstract (x,y) position for both the
agent and object. The right image shows samples from the variational posterior distribution. Per
the visuals, as expected, H(Sn) is large while the conditional entropies H(Sn|Z) and H(Z|Sn) are
small.
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Figure 9: GCRL state coverage in stochastic four rooms domain.

Figure 10: Image shows the skill-terminating states (empty circles) from four randomly selected goal
states (filled squares). Each skill just moves in the direction of the room the skill is in.
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Figure 11: Image shows a sample of the VAE results in the RGB QR code navigation task. The left
column shows sample images from the environment and the right column shows the results when
those samples are encoded and then decoded. The VAE was able to decode the initial state of the
environment, which is just a white background with the agent in the center, but struggled for other
states.

given the purple goal (shown by purple square) in the lower left of the top right room, the agent just
moves to the top right, which you can see by the purple circles in the top right room and bottom
left room (hard to see). Similarly for the dark blue goal, the agent just moves to the top left, which
you can see by the blue circles in the top left of the various rooms.

Figure 11 shows a sample of the VAE results in the RGB QR navigation domain. The VAE was able
to decode the start state of a white background with the black agent in the center, but struggled
with the other states. The area in which the agent was located would sometimes have slightly darker
pixels but not enough to distinguish the state.


