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Abstract

Temporal logic (TL) tasks consist of complex and temporally extended subgoals and they are
common for many real-world applications, such as service and navigation robots. However,
it is often inefficient or even infeasible for reinforcement learning (RL) agents to solve
multiple TL tasks, since rewards are sparse and non-Markovian in these tasks. A promising
solution to this problem is to learn task-conditioned policies which can zero-shot generalize
to new TL tasks without further training. However, influenced by some practical issues, such
as myopic use of options and long task horizon, previous works suffer from sub-optimality
(or even infeasibility) in the found solution and sample inefficiency in training. In order to
tackle these issues, this paper proposes a new option framework to train a generalist agent for
multiple TL tasks. It consists of option training and task execution parts. In option training,
in order to improve optimality, we propose to learn options dependent on the future subgoals.
Additionally, in order to tackle the issue of long horizon in the training of future-dependent
options, we propose to learn a multi-step value function which can propagate the rewards
of satisfying future subgoals. Finally, we propose a model-free MPC planner to zero-shot
solve unseen tasks with learned options. The generalization capability of the trained agent is
evaluated in three environments, showing its significant advantage over previous methods.

1 Introduction

Reinforcement learning (RL) is a promising framework for developing truly general agents capable of acting
autonomously in the real world, ranging from video games (Mnih et al., 2015; Badia et al., 2020) to robotics
(Levine et al., 2016; Inala et al., 2021). Previous RL algorithms primarily focus on solving tasks with a single
goal state. However, many real-world applications may require agents to satisfy temporally extended goals
(e.g., eventually take the key and then reach the door). Tasks consisting of temporally extended subgoals are
termed as temporal logic (TL) tasks (De Giacomo & Vardi, 2013; Toro Icarte et al., 2018). TL tasks have
a wide range of applications in the real world, such as control system and robotics. For example, a service
robot on the factory floor might have to fetch the a set of components but in different orders depending on the
product being assembled, and it may need to avoid some unsafe situations.

Generalization to multiple TL tasks is a key requirement for deploying autonomous agents in many real-world
domains (Taylor & Stone, 2009). It is important for RL agent to learn to perform zero-shot execution of
different tasks by leveraging the generalization abilities of deep learning models. However, previous related
works suffer from various deficiencies (Kuo et al., 2020; Araki et al., 2021; Vaezipoor et al., 2021; den Hengst
et al., 2022; Liu et al., 2022), such as lack of optimality or learning efficiency. Some works (Araki et al., 2021;
den Hengst et al., 2022; Liu et al., 2022) solve new TL tasks by leveraging the learned reusable skills or
options, but produce sub-optimal or even infeasible solutions, especially when the direct use of options can
produce myopic solutions. These methods train every option for reaching a specific subgoal independently
and myopically without considering the future, as we illustrated in an example in Section 3, which may fail
to achieve the global optimality of the task completion. Further, (Kuo et al., 2020; Vaezipoor et al., 2021)
propose to train policies conditioned on the task formula directly, where the agent needs a large amount of
environment samples to learn to understand temporal operators and figure out the optimal path for satisfying
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the task. These approaches have poor sample efficiency in complex tasks or environments, since they do not
utilize reusable skills when solving compositional tasks like TL tasks.

In this work, in order to tackle the above issues, we propose a hierarchical option framework to solve the TL
tasks and generalize to new tasks in a zero-shot manner. The proposed framework consists of option training
part and task execution part.

In the option training part, we train a generalizable agent which can achieve various subgoals with different
future situations. We propose two innovations for this part: 1) we introduce future-dependent options which
are trained to not only achieve the target subgoal, but also consider other subgoals to be achieved in the future.
By preventing myopic behavior in achieving the target subgoal, the proposed options can approximate the
global optimality of the task completion as much as possible. 2) When the options are dependent on future
subgoals, learning option policies needs to consider the achievement of subgoals in many time steps ahead. In
order to facilitate the information propagation in this case, we train a multi-step value function to predict the
discounted return of satisfying a future subgoal sequence.

In the task execution part, the given TL task is solved by a hierarchical option framework, where the high level
is for option selection and the low level is for option execution. In the high level, whenever the previously
selected option is successfully finished, we propose to use a model-free option planner to find the optimal
sequence of subgoals which not only satisfies the given TL task and but also has the largest expected return in
the multi-step value function, and then selects the option for reaching the first subgoal conditioned on other
subgoals in the subgoal sequence. This option planner works in a manner of model predictive control (MPC)
(Garcia et al., 1989), but it does not need to learn a transition model and hence circumvents the compounding
errors caused by the inaccuracy of the learned transition model during planning.

In experiments, we demonstrate the zero-shot generalization capability of the trained agent in three environ-
ments, including both discrete and continuous action spaces. All these environments are procedurally generated
where the layout and task specification are randomly generated, so that none of tasks can be solved by simple
tabular methods (Sutton & Barto, 2018). With comprehensive evaluations, we show that the proposed approach
outperforms previous representative methods in terms of sample efficiency, accuracy and optimality.

2 Preliminaries

2.1 Temporal Logic Task Specification

A temporal logic (TL) task is described by a TL specification φ, a Boolean function that determines whether
the objective formula is satisfied by the given trajectory or not (Pnueli, 1977). The specification of TL task is
used to express (multi-task) temporally extended subgoals and partial orders of subgoals for task completion
(Huth & Ryan, 2004). First define a common vocabulary AT as the set of atomic tasks. TL tasks are widely
used in real-world applications. For instance, in service robot applications, AT could include events such
as opening the drawer, activating the fan, turning on/off the stove, or entering the bathroom. Then, the TL
task can include temporally-extended occurrences of these events. For example, two possible TL tasks are (1)
"Open the drawer and activate the fan in any order, then turn on the stove" and (2) "Open the drawer but do not
enter the bathroom until the stove is turned off".

In order to study the systematic generalization of TL tasks with options, we adopt task temporal logic (TTL)
(León et al., 2021) to specify TL tasks. TTL is designed to be an expressive, learning-oriented TL language
interpreted over finite traces, i.e, over finite episodes. The language of TTL is a fragment of the widely-used
Linear-time Temporal Logic over finite traces (LTLf) (De Giacomo & Vardi, 2013), and the translation of any
TTL formula into LTLf is provably guaranteed in (León et al., 2020). TTL is expressive enough to represent
tasks in (Andreas et al., 2017) which is a popular benchmark in the RL-TL literature.

Definition 1 (Task Temporal Logic (León et al., 2021)). Given the vocabulary AT , every formula φ in TTL is
built from atomic tasks a ∈ AT , negation ¬ (on proposition only), and sequential composition ";", connected
by operators ∨, ∪, and U . The grammar of TTL is expressed as below:

l ::= a|¬a|l ∨ l′, α ::= lU l′, φ ::= α|φ; φ′|φ ∪ φ′ (1)
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where | indicates the alternative choices between templates. Specifically, an atomic task a represents the
reachability of a corresponding subgoal in the environment. So, every atomic task a in TTL means that its
associated subgoal a needs to be achieved eventually, i.e., ♢a in LTL language (De Giacomo & Vardi, 2013).
The operators ∨ and ∪ represent the non-deterministic choice. The operator U refers to "until" and lU l′ reads l
must hold before l′ is satisfied. Besides, the sequential composition φ; φ′ represents that the formula φ′ has to
become satisfied after φ holds true. The temporal operators eventually ♢ and always □ can be also defined by
operator U .

Definition 2 (Satisfaction). The truth value of a TL task specification is determined by a finite sequence of truth
assignments σ = ⟨σ0, σ1, σ2, . . . , σN ⟩ with vocabulary AT , where a ∈ σi iff the atomic task a is achieved at
time step i. Then, σ satisfies φ (1) at time i ≥ 0, denoted by ⟨σ, i⟩ |= φ:

• ⟨σ, i⟩ |= a iff a ∈ σi, where a ∈ AT

• ⟨σ, i⟩ |= ¬a iff ⟨σ, i⟩ ̸|= a ∈ AT

• ⟨σ, i⟩ |= (a ∨ a′) iff ⟨σ, i⟩ |= a or ⟨σ, i⟩ |= a′

• ⟨σ, i⟩ |= lU l′ iff there exists j such that i ≤ j ≤ N and ⟨σ, j⟩ |= l, and ⟨σ, k⟩ |= l′ for all k ∈ [i, j)

• ⟨σ, i⟩ |= φ; φ′ iff there exists j such that i < j ≤ N , and ⟨σ, i⟩ |= φ, and ⟨σ, j⟩ |= φ′

• ⟨σ, i⟩ |= (φ ∪ φ′) iff ⟨σ, i⟩ |= φ or ⟨σ, i⟩ |= φ′

A sequence σ is defined to satisfy φ iff ⟨σ, 0⟩ |= φ. This sequence σ here is same as the sequence of symbolic
observations in the rest of this paper.

Progression Technique. The progression function, denoted as prog(σ, φ), is defined as a function which
takes a TL specification and the current labelled state (symbolic observation) as inputs and returns a formula
that expresses aspects of the original formula that remain to be satisfied (Bacchus & Kabanza, 2000; Vaezipoor
et al., 2021). For example, in Figure 2, consider task φ := wood; diamond; ax, i.e., collect wood, then diamond
and ax finally. It will be progressed to "diamond; ax" after wood is collected, meaning that the agent still needs
to collect diamond and then ax.

3 Methodology

In this work, we propose a novel future-dependent option framework to solve and generalize tasks with TL
specifications. Here every option is trained to achieve a specific subgoal conditioned on future ones.

In the following, we first present a motivating example. Then the general framework of option training and
task execution is illustrated. Finally, the algorithms, especially the model-free option planner, are introduced.
Due to the space limit, the details of future-dependent option and multi-step value function are introduced in
Appendix A.1 and A.2, respectively.

3.1 Motivation

The first motivating example is shown in Figure 1. In this problem, the robot starts in room 1. There are
red and blue balls in room 2 and 3, respectively. There is a locked door between room 2 and 3, which can
only be opened by the key in room 1. The task is to first visit red ball and then blue ball. The robot needs to
train options for reaching red and blue balls. If every option is myopically trained to reach its target without
considering the future, the solution for the task is shown in Figure 1(a) and wastes many steps for picking up
the key. However, if the option of reaching red ball is trained by considering the future (reaching the blue ball),
the obtained solution has much fewer steps, as shown in Figure 1(b).

In Figure 2, assume that environment reward Re is −0.1 for every movement and the given task is φ :=
wood; diamond; ax (go to collect wood, then diamond and finally ax). There are two choices (sA and sB) for
the agent to collect wood. Previous option-based approaches may myopically choose to collect the wood in
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(a) Myopic solution

1 2 3

(b) Optimal solution

Figure 1: Task: first go to red ball, and then blue ball. Red line: option of reaching red ball. Blue line: option of
reaching blue ball.

the orange circle since it is closer, and finish the task φ along the green path. However, considering Re, the
globally optimal solution of task φ is the red path. In some cases, the decision made by myopic option-based
approaches may lead to infeasible solutions. For instance, if the game in Figure 2 has constraint that the agent
cannot move more than 12 steps in one episode, the green path with myopic choice of collecting wood is
infeasible.

Therefore, although option framework was used an efficient approach to solve compositional RL problem like
TL tasks in previous works (Kuo et al., 2020; Araki et al., 2021; Vaezipoor et al., 2021; den Hengst et al.,
2022; Liu et al., 2022; León et al., 2021), myopically training each option to reach a single subgoal without
considering the future can produce sub-optimal solutions.

Figure 2: Motivating example. The
TL task is wood; diamond; ax (go to
collect wood, then diamond and fi-
nally ax). The state sA denotes the
state when the agent is at the wood in
the orange circle, and sB denotes that
the agent is in the blue circle.

In this work, we propose a novel option framework where every option is
trained with dependence on a sequence of future subgoals. We denote O
as the set of options. Let oξ

g denote the option of reaching subgoal g ∈ G
conditioned on ξ as a sequence of future subgoals to satisfy. We train
each option oξ

g ∈ O not only by the experience of reaching the subgoal g,
but also with the information of satisfying subgoals in ξ (in a fixed order
same as ξ), since the option oξ

g is to reach subgoal g but also conditioned
reaching the subgoal sequence ξ. Therefore, in order to back-propagate the
information of satisfying subgoal sequence ξ (which often has long time
horizon to complete), we also train a multi-step value function V ϕ(s; ξ) to
predict the discounted return obtained by reaching subgoals in ξ starting
from the state s. We use V ϕ to set target values to update value functions
of options, hence accelerating the training efficiency of options. Consider
the example in Fig. 2 again, when the option of collecting "wood" is also
trained with reward information of collecting diamond and then ax after
collecting wood, i.e., g ="wood" and ξ :=["diamond", "ax"], the option
policy πξ

g will lead the agent to sB (the wood in blue circle) instead of sA.
This is because V ϕ(sA; ξ) < V ϕ(sB ; ξ) and V ϕ sets the targets for updating value function of option policy
πξ

g .

3.2 General Framework

The proposed framework is presented in Figure 3. The option training part is to learn the policies of future-
dependent options determined by subgoal sequences with various compositions and lengths. These learned
options lay the foundation of agent’s capability of generalization to new TL tasks. Every training iteration
works as below. The details of training algorithm are presented in Algorithm 1 in Appendix A.11.

1. Sequence generation: the environment randomly generates subgoal sequences τ which only consist
of subgoals from G. For example, with G = {a, b, c, d, e}, the subgoal sequence τ = [a, b, d] asks the
agent to first reach a, then b and finally d, where a, b, d are subgoals;

2. Option determination: given the subgoal sequence τ , the agent needs to determine appropriate future
dependent options to achieve subgoals in τ one-by-one. For example, if τ = [a, b, d], the options
determined to be trained should be obd

a , od
b and o∅d (∅ means empty);
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Figure 3: The proposed framework of option training and task execution. In task execution, the option selection
part is a model-free option planner. The red arrow indicates that the task formula is progressed by the subgoal
symbol g when g is achieved.

3. Option policy training: the policies of determined options are trained by using an appropriate RL
algorithm together with agent’s experience of trying to satisfy subgoals in τ . During the training, the
reward propagation is augmented by the multi-step value function V ϕ(·; τ) which is introduced in
Section A.2;

The task execution part in Figure 3(b) is a hierarchical framework for zero-shot solving new TL tasks by using
learned options, where the option selection is conducted in the high level and the policy of selected option is
executed in the low level. In the high level, the option selection is realized by a model-free option planner,
where the task formula is first decomposed into the set of satisfying subgoal sequences, then the optimal
subgoal sequence is selected and finally the optimal option to be executed is determined. In the low level, the
policy of selected option is executed in the environment. More details about option planner are introduced in
Section 3.3.1.

1. Task decomposition: The given task φ is first decomposed into a set K of subgoal sequences
τi, i.e., K := {τi}

Mφ

i=1 = {[gi
1, gi

2, . . . , gi
Li

]}Mφ

i=1, where each τi can satisfy φ and any gi
j is

from G. For instance, if φ = a; (b ∨ c); (d ∨ e), the decomposed subgoal sequences are K =
{[a, b, d], [a, b, e], [a, c, d], [a, c, e]} and Mφ = 4. The details are in Algorithm 3 in Appendix;

2. Sequence selection: The optimal subgoal sequence τi∗ with highest expected return is selected from
K according to the multi-step value function V ϕ, i.e., i∗ = arg maxi∈[1,Mφ] V ϕ(s0; τi) and s0 is the
initial state;

3. Option determination: Different from that in the option training part, only the first option from τi∗ , i.e.,
o

τi∗ [1:]
τi∗ [0] , is determined and sent to the low level for execution. For example, assuming τi∗ = [a, b, d],

only obd
a is selected and executed in the low level;

4. Option policy execution: The agent executes the policy of option selected above in the environment.
When the selected option is successfully finished, the task formula φ is updated by the progression
with the achieved subgoal. For example, assuming that the target task is φ = a; (b ∨ c); (d ∨ e) and
the execution of option obd

a is successfully finished, the task formula φ will be progressed by the
subgoal symbol a and become φ := prog(φ, a) = (b ∨ c); (d ∨ e).

Remark. The future-dependent property makes the option selection non-Markovian, and this is reason
for performance improvement. In previous option frameworks, such as (León et al., 2020; 2021), every
option is trained to reach a specific subgoal, and option selection is independent of other options and hence
Markovian. However, this is shown to be sub-optimal in the motivating example of Section 3.1, where making
options dependent on the future can produce globally optimal solution. But future-dependent option loses the
Markovian property, since its policy is dependent on future subgoals. The details of future-dependent option
and multi-step value function are introduced in Section A.1 and A.2 in Appendix.
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3.3 Algorithms

The algorithms for training and testing are in Algorithm 1 and 2 in Appendix A.11, and the algorithm for
subgoal extraction is presented in Algorithm 3. The task generation for performance evaluation is introduced
in Appendix A.3. More practical implementation techniques are in Appendix A.10.

3.3.1 Model-free Option Planner

In the high level of TL task execution, we use a model-free planner to determine the next option to execute. As
shown in Figure 3(b), it uses the standard model-predictive control (MPC) technique (Garcia et al., 1989):
first extracts all the subgoal sequences satisfying the target task ϕ, then finds the optimal subgoal sequence ξ∗

according to multi-step value function V ϕ(s; ξ) and finally determines the option of achieving first subgoal
ξ∗[0] conditioned on achieving future ones ξ∗[1 :], i.e., o

ξ∗[1:]
ξ∗[0] , to execute. Different from previous MPC

planners, we do not need to learn a transition model here since V ϕ is already trained to predict the expected
return of achieving various subgoal sequences ξ. So, although previous model-based planners suffer from
compounding errors (Asadi et al., 2018; Lambert et al., 2022), this issue can be avoided by our proposed
model-free planner. Whenever the selected option is successfully finished, the task formula needs to be updated
by progression with the symbol of achieved subgoal, as indicated by the red arrow in Figure 3(b).

Although function V ϕ is trained to predict the return of finite subgoal sequences which have maximum length
K, V ϕ is still generalizable to longer sequences, since the representation of subgoal sequence is extracted by
GNN which has strong power of generalization. This is validated by the following experiments.

During the task execution, in order to avoid unsafe symbols, whenever task formula is updated the agent finds a
set of unsafe symbols Uunsafe which can falsify the current task φ, i.e., Uunsafe = {q|q ∈ G, prog(q, φ) = false}.
In the low level of the task execution framework, actions at which can lead the agent too close to symbols in
Uunsafe will be ignored, where the closeness is measured by the action value function Q∅

g for ∀g ∈ Uunsafe. The
details of task execution are presented in Algorithm 2 in Appendix.

4 Experiments

Our experiments are designed to evaluate the performance of multi-task RL agent trained by the proposed
framework, including sample efficiency, optimality and generalization. Specifically, we focus on the following
questions: 1) Performance: whether the proposed framework can outperform previous representative methods
in terms of optimality and sample efficiency; 2) Ablation study: what is the influence of different components
of the proposed framework on the learning performance; 3) Long horizon tasks: whether the proposed
framework can train the multi-task agent to better solve long-horizon unseen tasks; 4) Visualization: what
the learned value function looks like for options conditioned on different future subgoals. The baselines for
performance comparison are presented in Appendix A.4. The neural architecture and hyper-parameters used in
experiments are also introduced in Appendix A.9 and A.12.

4.1 Environments

We conducted experiments across different environments and TL tasks, where the tasks vary in length and
difficulty. All the environments are procedurally generated, where the layout and positions of objects are
randomly generated upon reset. The positions and properties of objects are unknown to the agent. As such,
none of the environments adopted here can be solved by simple tabular-based methods.

Letter. This environment is a n × n grid game which is a variant of that in Figure 2, replacing objects by
letters. Out of the n2 grid cells, m grids are associated with k (where m > k) unique propositions (letters).
Note that some letters may appear in multiple cells, giving the option of reaching them in multiple ways. An
example layout is shown in Figure 4(a) with n = 7, m = 10 and k = 5. At each step the agent can move along
the cardinal directions (up, down, left and right). The agent is given the task specification and is assumed to
observe the full grid (and letters) from an egocentric point of view with the image-based observation. Each
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Figure 4: Environments. Note that these environments are procedurally generated and hence tasks cannot be
solved by simple tabular methods.

task is described by a TL formula in terms of these letters. But positions of these letters are unknown to the
agent. The agent must visit these letters’ locations in certain way to satisfy the TL formula.

Room. This environment is also a grid-world game, but its observation is divided into four rooms as shown in
Figure 4(b). There are 5 letters located in 8 positions, corresponding to 5 propositions randomly allocated in
these rooms. An example of layout is shown in Figure 4(b). The agent is randomly placed into one of these
rooms. Each room is connected to its neighbors by corridors. Two randomly selected corridors are blocked
by locks. The agent can open a lock by using a key corresponding to that specific lock (having the same
color). These (green and yellow) keys are placed in positions which the agent can reach. This environment is
an upgrade of MineCraft with obstacles and dependencies between objects imposed by keys and locks. The
observation is also image-based here and the agent does not know the positions of objects. Every task formula
is a TL formula in terms of object’s letters. The agent must visit these letters’ locations in certain way to satisfy
the TL formula.

Navigation. This is a robotic environment with continuous action and state spaces. It is modified from
OpenAI’s Safety Gym (Ray et al., 2019). As shown in Figure 4(c), the environment is a 2D plane with
6 to 9 colored circles, called "navigation". Here each color represents a proposition in task specification,
with some circles sharing the same color. We use Safety Gym’s Point robot whose actions are steering and
forward/backward acceleration. Its observation includes the lidar information towards the circles and other
sensory data (e.g., accelerometer, velocimeter). The circles and the robot are randomly positioned on the
plane at the start of each episode and the robot has to visit and/or avoid certain colors in a particular manner
described by the TL specification.

4.2 Training and Evaluation

In every training episode, the agent uses appropriate option policies to satisfy a subgoal sequence ξ which is
randomly selected from the set of subgoals of the environment. After every fixed number of training steps or
episodes, the agent is evaluated on a fixed number of tasks with TL specifications randomly sampled from a
large set of possible tasks (more than 106). The task generation for evaluation is introduced in Section A.3 in
Appendix. In Appendix A.6, we also evaluate the agent on TL tasks whose solution has longer horizons than
subgoal sequences used in the training stage, verifying the generalization of the trained agent to more difficult
tasks. The details of option training and task evaluation algorithms are presented in Appendix A.11.

Remark. The algorithm performance reported here can be also regarded as the evaluation of zero-shot
generalization. First, since the agent is only trained to complete subgoal sequences, the TL tasks in evaluation
are unseen in the training. Second, the agent directly applies the policies of trained options to complete tasks
in evaluation, so that no further learning is needed for any unseen tasks in the evaluation. These two arguments
also hold in baselines (see Appendix A.4). Therefore, the zero-shot generalization capability of the proposed
framework is evaluated and compared with baselines.
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(a) Letter, DNF Task (b) Room, DNF Task (c) Navigation, DNF Task

(d) Letter, Rec. Task (e) Room, Rec. Task (f) Navigation, Rec. Task

Figure 5: Performance Comparisons. The x-axis is the environmental step, and the y-axis is the return. "Rec."
is short for recursive. The first row is for evaluating DNF tasks, and the second row is for evaluating recursive
tasks. The definitions of DNF and recursive tasks are in Appendix A.3. The return is defined as the sum of
rewards along the trajectory.

4.3 Results

In this section, we present the comparison results of the proposed method with baselines. The overall
performance comparisons in terms of average return for satisfying TL tasks are first presented. Then, we
demonstrate the ablation studies to investigate the effects of different components of the proposed framework.
More ablation study on the multi-step value function in the navigation domain is shown in Section A.5. In
each plot of the proposed framework, the x-axis is the number of environment steps used in the option training
algorithm, while the y-axis is the evaluation performance of task execution algorithm by applying trained
options. In evaluation, the task is randomly generated according to some template.

The ablation study, performance in long-horizon task and visualization of value function are presented in
Appendix A.5, A.6 and A.7, respectively.

4.3.1 Performance

In Figure 5, the proposed method is compared with three baselines introduced in Section A.4. We can see
that although Baseline-1 can learn fast in the early stage, its overall performance is the worst. The optimality
in Baseline-1 degrades because the resulting options myopically focus on the next subgoal only, without
looking ahead. It shows the importance of the dependence of options on future subgoals. In addition, the
proposed method can learn much faster than GCN-LTL and GRU-LTL, confirming that leveraging reusable
skills via options can achieve better sample efficiency. Further, the agents in GCN-LTL and GRU-LTL, which
are conditioned on the task specification directly, need a lot of environment samples to understand temporal
operators and find out the optimal path in the formula to finish the task.

5 Conclusion

In this work, we propose a novel framework for generalizing TL tasks by options dependent on the future
subgoal sequence. Moreover, to facilitate the reward propagation of satisfying future subgoals, we propose to
learn a multi-step value function updated by Monte Carlo estimates of discounted return. Based on these, we
also propose a new model-free option planner for task execution, which circumvents the compounding errors
caused by the learned transition model. With comprehensive experiments, the proposed method is confirmed
to have significant advantages over previous methods in terms of optimality and sample efficiency.
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A Appendix

A.1 Future Dependent Option

In this work, we define a future dependent option, i.e., oξ
g := ⟨S, βg, πξ

g⟩ where ξ is a finite sequence of
subgoals to be achieved in the future after completing g. Each option is trained to achieve its corresponding
subgoal g ∈ G conditioned on future subgoals in ξ, working in the multi-task MDP. For each option, without
loss of generality, the initial set is the same as the state space S, and the terminal function is the indicator of
satisfying the subgoal g, i.e., βg(s) = 1{L(s) |= g} where L(·) is the labeling function defined in Section
2.1. The option policy πξ

g is trained to maximize the discounted return of achieving the target subgoal g
conditioned on achieving the future subgoals in sequence ξ, encouraging the option policy to realize the global
optimality of achieving both g and ξ. Specifically, since achieving the future subgoal sequence ξ is taken into
consideration, the return of achieving ξ needs to be back-propagated to train the action value (Q) function of
the option πξ

p, which is helped by the multi-step value function V ϕ introduced in next section.

Generally, when the option policy is trained by an off-policy method, the agent learns a sample-based
approximation to the Q function Qπξ

g
(s, a) of option oξ

g, denoted as Qθ
g(s, a; ξ) referring to the expected

discounted return of achieving subgoal g conditioned on the achievement of subgoal sequence ξ in the future.
Alternatively, when the option policy is trained by an on-policy method, the agent learns a value function
V θ

g (s; ξ) to approximate the value function Vπξ
g
(s) of option oξ

g . The Q (or V) function of option is updated by
TD-1 method (Sutton & Barto, 2018). For different environments, we choose an appropriate RL method to
learn option policies, such as SAC for off-policy or PPO for on-policy method.

In option training, the option policy πξ
g is trained together with other options used to satisfy future subgoals

in ξ. Specifically, given any subgoal sequence ξ := {gi}K
i=1 in option training, we define the sub-sequences

ξk := {gi}K
i=k+1 and k = 1, . . . , K. We then start from trying the option policy πξ1

g1
to achieve subgoal

g1. When the subgoal gk in ξ is satisfied, we switch to use another option policy π
ξk+1
gk+1 to achieve gk+1,

repeating this process until the agent satisfies the last subgoal gK by using the option policy π∅
gK

. In addition
to environmental rewards, the agent will receive the reward RF when the last subgoal gK is satisfied. For any
k = 1, . . . , K − 1, the discounted returns during the executions of option policies from π

ξk+1
gk+1 to π∅

gK
are all

back-propagated to train the policy πξk
gk

(updating Qθ
g(·, ·; ξk) or V θ

g (·; ξk)), via the multi-step value function
V ϕ introduced in Section A.2.

It is worth noting the difference between V θ
g and V ϕ. The value function V θ

g (·; ξ) is used to train option policy
πξ

g if on-policy training method is used, and it is associated with the option oξ
g and subgoal g. However, V ϕ(·; ξ)

is the multi-step value function used to propagate reward information of satisfying the subgoal sequence ξ,
independent of any options or subgoals.

A.2 Multi-step Value Function

Since the value functions of option policies (Qθ
g or V θ

g ) are updated with TD-1 method in (Sutton & Barto,
2018), each update can propagate the reward information for only one time step. However, we note that
the satisfaction of a future subgoal sequence ξ can have long horizon with sparse rewards, and the training
of option policy πξ

g is dependent on satisfying ξ. Therefore, it can be inefficient to propagate the reward
information of satisfying ξ back to update Qθ

g or V θ
g in training the option policy πξ

g . In the rest of the paper,
we use ξ[k] to denote the k-th subgoal in sequence ξ.

In order to help the propagation of reward information in long-horizon tasks, we propose to learn a multi-step
value function V ϕ(s; ξ) to estimate the discounted return of satisfying the subgoal sequence ξ starting from
state s. In option training, the output of V ϕ is used to set the target value for updating Qθ

g(·, ·; ξ) or V θ
g (·; ξ)

so that the reward propagation toward option policies can be accelerated. In Figure 6, it visually shows how
the reward information is back-propagated in both Qθ and V ϕ when options are learned by an off-policy RL
method. In the on-policy case, V θ and V ϕ work in the same way. Additionally, this function V ϕ(·; ξ) is also
used to build a model-free option planner in task execution.
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s0 s1 . . . st′ . . . st′′ . . . sT

st′s0 st′′ . . . sT

Qθ(·, ·; ξ) :

V ϕ(·; ξ) :

st′+1

VMC(0, T ) VMC(t′, T )

VMC(0, t′) VMC(t′, t′′)

Figure 6: Diagram of back-propagation of reward information. The green line shows that Q functions of differ-
ent options (target subgoals are omitted) are learned by TD-1 method. Note that function V ϕ is independent
of subgoals while Qθ is dependent on different subgoals. The first and second subgoals (ξ[0] and ξ[1]) are
satisfied at st′ and st′′ , respectively. The red line shows that the multi-step value function V ϕ sets the target
value for Qθ whenever a subgoal is satisfied. The blue and cyan curves denote the Monte Carlo estimate of
multi-step discounted return VMC(·, ·). V ϕ is updated whenever a subgoal is satisfied, which has much coarser
time resolution than Qθ.

Specifically, the target value for updating V ϕ is calculated based on Monte Carlo (MC) estimates of two
discounted returns. 1) The first is the MC estimate of the discounted return till the end of the trajectory
(cyan curves in Figure 6), i.e., VMC(t, T ) :=

∑T
k=t γk−trt (T is the last time step of the trajectory). We use

VMC(t, T ) here since it is unbiased and good at capturing long-term rewards, but it also has large variance
(Sutton & Barto, 2018); 2) In order to attenuate the variance, we also use the MC estimate of the discounted
return till the satisfaction of next subgoal ξ[0] (blue curves in Figure 6), i.e., VMC(t, t′) =

∑t′

k=t γk−trt (t′ is
the time when ξ[0] is satisfied). This VMC(t, t′) is used to build a multi-step temporal difference (TD) target
for updating V ϕ, which is together with the value estimate of satisfying other subgoals ξ[1 :] from a lagged
value network V ϕ−

(Van Hasselt et al., 2016).

Assume we have a trajectory τ = {s0, a0, r0, s1, . . . , sT −1, aT −1, rT −1, sT } with the subgoal sequence ξ as
the target task to complete. If next subgoal ξ[0] is satisfied at time t′, the target for multi-step V ϕ function is
written as

V target(st; ξ) = max{VMC(t, t′) + γt′−tV ϕ−
(st′ ; ξ[1 :]), VMC(t, T )} (2)

In the equation above, the first term in the maximum is a multi-step TD target formed by VMC(t, t′) together
with the lagged value network V ϕ−

. As discussed above, we also use VMC(t, T ) in (2) to directly capture
the reward information till the end of the trajectory. Since the value network always has very small values
throughout the state space in early training stages, we need to use a maximum operator in (2) to help the
reward back-propagate from the end of the trajectory. If next subgoal ξ[0] is not satisfied by any state in τ , the
target will become V target(st; ξ) = max{V ϕ−(st; ξ), VMC(t, T )}. Finally, the value function V ϕ is trained to
predict its target value by minimizing the loss function

J(ϕ) = ℓ(V ϕ(st; ξ), V target(st; ξ)) (3)

where ℓ is an arbitrary differentiable loss function.

The value function V ϕ also sets the target value to update the Q functions of option policies (i.e., Qθ
g(·, ·; ξ))

whenever the subgoal g is satisfied. For any tuple (st, at, rt, st+1), the target value for Qθ
g(·, ·; ξ) is expressed

as,

Qtarget
g (st, at, rt, st+1; ξ) = rt + γβg(st+1)V ϕ(st+1; ξ)

+γ(1 − βg(st+1)) max
a′

Qθ−

g (st+1, a′; ξ) (4)

where θ− is the parameter of the lagged target network as (Van Hasselt et al., 2016). This target means that
when g is not satisfied yet (i.e., βg(st+1) =false), the Q function is updated via the classical TD-1 method.
However, whenever g is satisfied (i.e., βg(st+1) =true), it is updated with the target value given by V ϕ(·; ξ)
which can quickly propagate discounted return (reward information) of satisfying ξ back to st+1, achieving
the global optimality of satisfying both g and ξ. Then Qθ

g(·, ·; ξ) can be updated by minimizing the loss as,

J(θ) = E(s,a,r,s′,g,ξ)∼B
[
ℓ(Qθ

g(s, a; ξ), Qtarget
g (s, a, r, s′; ξ))

]
(5)

where B is the replay buffer.
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A.3 Task Generation

We define the depth of a task formula φ as the length of the shortest subgoal sequence to satisfy φ. We generate
two kinds of tasks to evaluate agent’s performance.

The first kind of task is the "DNF" task described by a disjunctive normal formula that concatenates terms by
disjunctive operator ∪, i.e., φdnf = φdnf ∪ φ′ and φ′ = φ′; s|φ′; ¬g. Here, s and g are propositions denoting
two different subgoals. The notation | denotes alternative. When generating a task formula, two sub-formulae
around | are randomly selected. For instance, φdnf = (a; b; ¬e) ∪ (c; d). Specifically, the number of terms that
are connected with the disjunctive operator ranges between 3 and 5, and the number of propositions in every
term is between 1 to 5.

The second type of task is called "Recursive" task, which can be formulated as φrec = φrec; φ′|φrec ∩ φ′ and
φ′ = g ∨ φ′|¬sU(g ∨ φ′)|¬sUg. Here, s and g are propositions denoting two different subgoals. The depth of
the recursion is randomly selected between 3 and 5. An example of "recursive" task is (¬a∪(b∨c)); e; (¬f ∪g),
and the shortest subgoal sequence for satisfying this task is b → e → g or c → e → g with the depth of 3.

A.4 Baselines

The proposed algorithm is compared with three baselines. The model architecture and hyper-parameters of the
proposed method and baselines are introduced in Appendix A.9 and A.12. The first baseline (Option) is based
on the conventional option framework, where a planning technique is used to tell the agent which proposition
to achieve next and every option is only trained to achieve next proposition as the subgoal. This idea was
widely used by previous works on multi-task RL (Andreas et al., 2017; Sohn et al., 2018; Sun et al., 2019;
León et al., 2020; Araki et al., 2021; León et al., 2021). The agent’s model here is the same as that in our
method, except that the options are myopic and do not consider future subgoals. In order to make comparisons
to be fair, in Option baseline the RL algorithms for training the agent and hyper-parameters are the same as the
proposed method, where HER and formula transformation are both adopted. However, in Option baseline,
since options are not conditioned on future subgoals, their training does not need future rewards and the
multi-step value function V ϕ is not used.

The second baseline (GCN-LTL) is modified from (Vaezipoor et al., 2021), where the task formula is processed
by a graph convolutional network (GCN) (Kipf & Welling, 2016) and progresses over time. The architecture of
GCN here is the same as that in (Vaezipoor et al., 2021) with T = 8 message passing steps and 32-dimensional
node embedding. Other parts of agent’s model are the same as the proposed method. The third baseline
(GRU-LTL) is based on the method in (Kuo et al., 2020). This approach trains an agent that considers the
whole task specification as an extra input and uses GRU (Chung et al., 2014) to learn an embedding of the TL
specification which does not progress over time. The learned task embedding has the size of 32 which is same
as the size of embedding of future subgoals in our method. Other parts of agent’s model are the same as the
proposed method.

In original papers of GCN-LTL and GRU-LTL (Kuo et al., 2020; Vaezipoor et al., 2021), the agent is trained
by on-policy PPO algorithms. In order to make them comparable with the proposed framework, GCN-LTL
and GRU-LTL use same RL algorithm as our framework, with the same hyperparameters as ours. In the letter
and room domains, the agents in GCN-LTL and GRU-LTL are trained by the off-policy Q learning (Mnih
et al., 2015) approach. In the navigation domain, GCN-LTL and GRU-LTL still use the PPO algorithm. Since
the agent takes the original TL specification as its input directly, formula transformation and HER cannot be
used in GCN-LTL or GRU-LTL. Since their original implementations are not option-based, the multi-step
value function V ϕ is not used either.

A.5 Ablation Study

The ablation study is first to examine the difference between GNN and GRU when used in option critics
Qθ

p(·, ·; ξ) and value function V ϕ(·; ξ) to learn the embedding of the sequence ξ of future subgoals. Specifically,
the nodes of GNN represent subgoals and every subgoal is connected to its successor by a directed edge. The
embedding of sequence ξ is learned by GCN with multi-step message passing (T = 8). In addition, when the
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(a) Letter, DNF Task (b) Letter, Rec. Task (c) Room, DNF Task (d) Room, Rec. Task

Figure 7: Ablation study. The x-axis is the environmental step, and the y-axis is the return. "No-HER" refers
to the proposed method without using HER. "No-value" refers to the proposed method without using the
multi-step value function.

(a) Nav1, DNF Task (b) Nav2, DNF Task (c) Nav1, Rec. Task (d) Nav2, Rec. Task

Figure 8: The ablation study of the multi-step value function V ϕ in navigation domain. The x-axis is the
environmental step, and the y-axis is the success rate.

GRU is used, sequence ξ, with every element one-hot encoded, is fed into GRU and the embedding can be
obtained at the output of GRU. More details of agent’s model are in Appendix. In Figure 7, we can see that the
GRU performs slightly worse than GNN.

In addition, we study the effects of multi-step value function V ϕ and HER by comparing "No-value" and
"No-HER" with the proposed method in Figure 7. We can see that when V ϕ or HER is not used, the learning
performance can degrade significantly, implying their importance in performance improvement. Since the time
horizon of tasks in the navigation domain is much longer than other domains, we find that the multi-step value
function V ϕ plays a more important role in navigation domain. The reward propagation is more difficult when
task’s time horizon increases, and hence the usage of V ϕ can improve the sample efficiency of our framework
significantly in this case.

Multi-step Value Function. In navigation domain, the time horizon of every task is 1000 which is much
longer than that in other domains. The experiments in this section are conducted in two environments of
navigation domain. The first environment has 3 colors and 6 objects, denoted as "Nav1" whereas the second
environment has 5 colors and 10 objects, denoted as "Nav2". Both DNF and Recursive tasks are evaluated in
these two environments. The results of ablation study on the multi-step value function V ϕ are shown in Figure
8, where the curve of "No Value" refers to our framework without using V ϕ. Compared with other experiment
results, we can see that V ϕ can improve the sample efficiency more in navigation domain.

A.6 Long Horizon Tasks

In order to verify the effectiveness of the reward propagation, we evaluate the performance of the trained RL
agent in tasks with long time horizon. We focus on the letter domain where the map size and the depths of
the TL specification are changed for comparison. The depth of a formula φ is the length of optimal subgoal
sequence to satisfy φ. Baseline Option only learns independent option for each subgoal and does not consider
reward propagation. Baseline GRU-LTL uses recurrent GNN to process the TL specification not progressed,
so its performance on TL tasks with long horizon is much worse than Baseline GCN-LTL. Therefore, we do
not consider Baseline-1 and Baseline GRU-LTL for comparison here. In every experiment, there are 8 unique
letters on the map and every letter appears twice.
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Figure 9: Performance comparison for long-horizon tasks in letter domain. The x-axis is the number of
environment steps taken for option training. The y-axis is the average sum of rewards received in the trajectory.
The map size is n × n and the task formula has depth of d. The evaluation takes place at the steps of
{3, 5, 10} × 106, during the option training.
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Figure 10: Visualization of trained action-value function of options. The first row is for the option of reaching
a in letter domain, and the second row is for the option of reaching C in room domain. The color in every grid
(state s) corresponds to the Q value of the optimal action, i.e., ∀s, Qθ

p(s, ∗; ξ) = maxaQθ
p(s, a; ξ).

The comparison results in terms of episodic return are shown in Figure 9. Since the evaluation results of
long-horizon tasks have large variances, we only show the results as charts here. The TL specification for
evaluation is a DNF task consisting of 3 conjunctions with the depth of d, where every letter is randomly
generated without repetition. Every task here has longer horizon than that in Figure 5. Every result in Figure 9
is the average of 10 formulas, and the variance is obtained from 5 seeds. We can see that the proposed method
can significantly outperform the Baseline GCN-LTL. Moreover, the superiority of our proposed method
improves with map size and formula depth, showing that the proposed method can solve the long-horizon
tasks well and the effect of reward propagation is significant.

A.7 Visualization

Finally, in order to show the effects of the dependence of options on future subgoals, we visualize the Q
functions of the same option dependent on different future subgoals. The color of very grid represents the
discounted return to the target subgoal, where the brighter the color is, the higher the return will be.

In Figure 10, the first row shows the Q functions of reaching subgoal a in letter domain in three scenarios,
namely dependent on nothing, b and b → c. Every grid represents the environment state where the agent is in
that grid. On the map shown in Figure 10(a), there are three letters a. According to Figure 10(b), the agent
should go to the closest a. Figures 10(c) and 10(d) tell us that when dependent on b or b → c, the option of
reaching a regards a in first row or 7-th row as the target.

In the second row of Figure 10, we can see that in room domain, the option of reaching C has different targets
when the future subgoal sequences ξ are different. Specifically, In Figure 10(h), the grid containing the yellow
key has the highest value in the bottom rooms and the grid having C in the upper left room has the highest
value across the whole map. This indicates that in environment states where the agent is in the bottom rooms,
the agent should first go to pick up the yellow key as an intermediate target and then go to C in the upper left
corner. It shows that the agent successfully learns the skill of opening a lock by the right key, without having
any key proposition or prior knowledge.

A.8 Additional Results in Navigation Environment

In addition to Section 4.3.1, we conduct more experiments in Navigation environment with more complex
agent of car. This agent simulates a wheeled robot with differential drive control. The performance evaluation
is shown in Figure 11. The setups of Nav 1 and 2 are same as that introduced in Section A.5. Here, we
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(a) Nav1, DNF Task (b) Nav1, Rec Task (c) Nav2, DNF Task (d) Nav2, Rec Task

Figure 11: Performance evaluation in Navigation environment with Car agent. Nav1 and 2 are different setups
of navigation environment, introduced in Section A.5.

compare the proposed framework with Option baseline which learns options of reaching different subgoals
myopically without looking into the future, similar as that in (León et al., 2020; 2021). Then the proposed
framework without multi-step value function is also evaluated, denoted as No-value. We can see that, in
all these experiments, the option baseline performs the worst, showing the importance of future subgoals.
The no-value baseline can reach similar performance as the proposed framework, but it has a much slower
convergence speed, demonstrating the effect of multi-step value function on accelerating the value propagation
and learning speed.

A.9 Neural Network Architecture

The agent’s architecture of critic (Q or V function) is shown in Figure 12. The input consists of observation,
subgoal embedding and subgoal sequence. The observation is processed by the perception module. The subgoal
embedding is the one-hot encoding of the subgoals in G. The future subgoal sequence is processed by GNN
or GRU. After inputs are processed, the embeddings of observation, subgoal and future subgoal sequence
are concatenated and fed into an MLP to predict the return. The multi-step value function V ϕ has the same
architecture as the critic function, except that its inputs are only the observation and future subgoal sequence.

The perception module is determined by the observation space of the environment. In letter/room domain with
map size of n × n, we used a 3-layer convolutional neural network (CNN) which have 16, 32 and 64 channels,
respectively, where the kernel size is l ∈ {2, 3, 4} and stride is 1. In navigation domain, we used a 2-layer
fully-connected network with [256, 256] units and ReLU activations.

The sequence of future subgoal is processed by GNN or GRU here. The GNN used here is a graph convolutional
network (GCN) (Kipf & Welling, 2016; Schlichtkrull et al., 2018) with 8 message passing steps and 32-
dimensional node embeddings. The GRU used here is a 2-layer bidirectional GRU with a 32-dimensional
hidden layer.

MLP Module

Module
GNN/GRU

Observation Subgoal

Perception

Sequence
Subgoal

Figure 12: Neural Architecture of
Qθ

p(·, ·; ξ) or V θ
p (·; ξ), where p is the

subgoal and ξ is the future subgoal se-
quence.

For the MLP part of the critic function in Figure 12, we use 3 fully-
connected layers with [64, 64, da] units and ReLU activations for all
three domains. For discrete action space environments, ad is the num-
ber of possible actions, and the output of critic function was passed
through a logit layer before softmax. For the continuous case, ad is
the action dimension and we also need to train an actor network shar-
ing same architecture as the critic network except the Tanh activation.
Then we assume a Gaussian action distribution and parameterized
its mean and standard deviation by sending the actor’s output to two
separate linear layers.

In three baselines, the Q/value networks and actor network of the
agent have the same architectures introduced here, keeping the same
model complexity as the proposed method. In baseline Option, since
the option does not consider future subgoals, the critic network does
not have any module to process the subgoal sequence. In baselines
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GCN-LTL and GRU-LTL, since they do not use options, the critic network and actor network do not have any
subgoal as its input, where TL specification is first transformed into a syntax tree and processed by a GCN (in
baseline GCN-LTL) or GRU (in baseline GRU-LTL without progression). The GCN has the same architecture
as that introduced above. The GRU in baseline-3 is also a 2-layer bidirectional GRU with 32-dimensional
hidden layers.

A.10 Practical Implementation Techniques

Training Curriculum. In the option training, the agent is trained to satisfy a randomly generated sub-
goal sequence ξ with maximal environment return. Denote the maximum length of ξ as K. The train-
ing curriculum consists of K levels. As such, in the k-th level (k = 1, . . . , K), the length of subgoal
sequence ξ is set to be k. Whenever the average success rate in k-th level is above a threshold (e.g.,
80%), the agent will proceed to (k + 1)-th level where the length of subgoal sequences becomes longer.

Table 1: Hyperparameters of PPO in Navigation
Domain

Hyperparameter Value
Env. steps per update 2048

Minibatch size 256
Discount 0.995

Time horizon of an episode 1000
Total number of steps 15e6

Satisfaction Reward RF 10
HER trajectory modification ratio 1.0

Evaluation interval (episodes) 100
Evaluation episodes 10

Optimizer Adam
Learning rate 3 × 10−4

GAE-λ 0.95
Entropy coefficient 0.01

Value loss coefficient 0.5
Gradient clipping 0.5
PPO clipping (ϵ) 0.2

Therefore, the difficulty of tasks increases gradually as
the agent proceeds to higher levels. For any subgoal se-
quence ξ, the agent applies options to satisfy subgoals
in ξ one-by-one with conditions of future subgoals. The
details are introduced in Algorithm 1. In letter and room
domains, we use deep Q learning (Mnih et al., 2015) (off-
policy) to train options, whereas in the navigation domain,
we use PPO (Schulman et al., 2017) algorithm (on-policy)
to train options. The details of hyper-parameters are in-
troduced in Section A.12.

Adversarial Scheme. We also adopt an adversarial
scheme for selecting training options which can improve
the learning efficiency in empirical experiments. In the
k-th level, at the beginning of each episode with initial
state s0, multiple subgoal sequences with the same length
are randomly generated, i.e., {ξi}NT

i=1, and the j-th se-
quence with the lowest value is selected as the training
task for the agent, i.e., j = arg mini=1,...,NT

V ϕ(s0; ξi).
This implies that a difficult task in the current level is
selected to train the agent, always pushing forward the
capability of the learning agent.

Hindsight Experience Replay In early learning stage,
most trajectories produced by agent’s policies cannot achieve or satisfy the given task, which cannot provide
any useful reward information to train agent’s policy and value functions. Therefore, in training the options,
in order to improve the learning efficiency, we propose to modify the hindsight experience replay (HER)
(Andrychowicz et al., 2017) to better utilize the past unsuccessful trajectories. We extend HER to temporal logic
domain by modifying any unsuccessful trajectory whose given task was not successfully finished. Specifically,
in any unsuccessful trajectory τ associated with subgoal sequence ξ (ξ is not finished by τ ), we find ξ′ which
is the subgoal sequence satisfied by τ actually and replace ξ by ξ′, so that the trajectory τ associated with ξ′

becomes a successful trajectory (ξ′ is satisfied by τ ). Then, assigning a large positive reward RF at the time
step when ξ′[−1] becomes satisfied, designating the trajectory τ successful and hence useful to the training.

A.11 Algorithms

We summarize the detailed operations in option training and task execution (evaluation) in Algorithms 1 and
2, respectively. Algorithm 1 trains the Q function in line 21 via off-policy method, which can be trivially
extended to train V function via on-policy method. The algorithm of extracting subgoal sequences from the TL
task is presented in Algorithm 3.
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Algorithm 1 Option Training Algorithm
1: Environment MDPMe; labeling function L; positive reward for task completion RF ; The set of propositions P

and subgoals G; multi-step value function V ϕ(s; ξ); Q function of option policy Qθ
g(s, a; ξ) for ∀g ∈ G; the subgoal

planner Γϑ; replay buffer B; trajectory buffer Bt; episodic buffer E ; maximum length of subgoal sequence K;
performance threshold ζ of upgrading to next level

2: Initialize parameters θ, ϑ and ϕ;
3: Initialize B ← [];
4: % levels from 1 to K;
5: for k = 1, . . . , K do
6: % train the options;
7: while the average success rate is below ζ do
8: Initialize E ← [];
9: Reset environment s← s0;

10: Randomly generate NS subgoal sequences, and select ξ with lowest value on V ϕ;
11: for l = 1, . . . , len(ξ) do # len(ξ) denotes the length of ξ
12: s̃0 ← s;
13: for t = 0, . . . , TS − 1 do
14: Apply option policy π

ξ[1:]
ξ[0] into the environmentMe;

15: Obtain reward rt and next state s̃t+1;
16: Store experience tuple (s̃t, at, rt, s̃t+1, ξ[0], ξ[1 :]) into E and B;
17: if L(s̃t+1) |= ξ[0] then
18: Set s← s̃t+1 and ξ ← ξ[1 :];
19: Go to 10;
20: end if
21: Sample a minibatch BM from B and update Q function according to (5);
22: Sample trajectories from Bt and update V ϕ according to (3);
23: end for
24: Break; # the trajectory E is unsuccessful and needs to be relabeled
25: end for
26: if E is unsuccessful then # relabel unsuccessful trajectory by HER
27: Randomly select subgoal sequence ξ′ satisfied by E ;
28: Relabel the subgoal and condition (future subgoal) of every tuple in E based on ξ′;
29: end if
30: Store transitions of E into B;
31: Store E into Bt;
32: end while
33: end for

A.12 Hyper-parameters

In the proposed framework, we use deep Q learning (Mnih et al., 2015) to learn options in letter and room
domains, while we use PPO (Schulman et al., 2017) in the navigation domain. All experiments were conducted
on a compute cluster using 1 GPU (RTX 2080 Ti). The hyper-parameters used for deep Q learning in letter and
room domain are introduced in Table 2. The hyper-parameters for PPO in navigation domain are presented in
Table 1. The agents in three baselines are trained by the same RL algorithms in the proposed method, using the
same algorithm hyperparameters of the proposed method. In baseline Option, we do not consider any future
subgoal sequence. In baselines GCN-LTL and GRU-LTL, we cannot use TTL transformation or HER since the
TL specification is transformed into a syntax tree from its original form.



RLJ | RLBRew Workshop @ RLC 2024

Algorithm 2 Task Execution Algorithm
1: The environmentMe; labeling function L; the set of propositions P; progression function prog(·, ·) introduced in (León et al.,

2021); multi-step value function V ϕ and critics of options Qθ
g for ∀g ∈ G trained by Algorithm 1; the threshold of closeness κ; the

test task specification φ;
2: Reset environment and obtain the initial state s0;
3: Transform task specification φ into a set K = {ξi}

Mφ

i=1 of accepting subgoal sequences by using Algorithm 3;
4: Given φ, obtain the set of unsafe subgoals Us;
5: Select ξ∗ with largest value such that ξ∗ = arg maxξ∈K V ϕ(s0; ξ);
6: set t← 0;
7: while every sequence ξ ∈ K is not empty do
8: Sample action at from the option policy π

ξ∗[1:]
ξ∗[0] (·|st) until ∀g ∈ Us, Qθ

g(st, at;∅) < κ

9: Obtain next state st+1;
10: if L(st+1) |= ξ∗[0] then
11: Progress the formula φ← prog(L(st+1), φ)
12: Update the set Us ← {q|q ∈ PG, prog(q, φ) = false};
13: ∀ξ ∈ K, if L(st+1) |= ξ[0], then ξ.pop(ξ[0])
14: Select again ξ∗ = arg maxξ∈K V ϕ(st+1; ξ);
15: end if
16: t← t + 1
17: end while

Algorithm 3 Transforming task specification into a list of subgoal sequences (León et al., 2021)
1: Task specification φ; the set of propositions P;
2: Initialize K ← {};
3: for each atomic task p ∈ φ do
4: if p is atomic positive or negative then
5: for all Seq ∈ K do
6: Seq.append(p)
7: end for
8: else
9: # There are non-determinstic choices

10: Initialize choice list: CL
11: LK←− len(K)
12: for all Seq ∈ K do
13: for all choice ∈ p do
14: CL.append(choice)
15: Generate a clone per choice Seq′ ←− Seq
16: K.append(Seq’)
17: end for
18: end for
19: Initialize counter c←− −1
20: for i = 1, 2, . . . , len(K) do
21: if i%LK == 0 then
22: c+ = 1
23: end if
24: We append a different choice to each sequence cloned K[i].append(CL[c])
25: end for
26: end if
27: end for
28: Return K
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Table 2: Hyperparameters of Deep Q Learning in Letter and Room Domain

Hyperparameter Value in Letter Value in Room
Batch size for training options 256 256
Batch size for training planner 64 64

Discount 0.99 0.99
Exploration ϵ init value 0.75 0.75
Exploration ϵ final value 0.05 0.05

Exploration ϵ factor 0.5 0.5
Curriculum level K 5 5

Total number of steps 10e6 10e6
Satisfaction Reward RF 1 1

Q update interval 10 5
Q target update interval 2000 1500

V update interval 10 5
V target update interval 2000 1500

HER trajectory modification ratio 0.5 1.0
Evaluation interval 10 10
Evaluation episodes 10 10

Optimizer Adam Adam
Adam ϵ 2× 10−5 2× 10−5

β1, β2 0.9, 0.999 0.9, 0.999
Learning rate 3× 10−4 2× 10−4

Replay buffer size |B| 1e6 1e6


