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Abstract

Learning from human preference data has emerged as the dominant paradigm for
fine-tuning large language models (LLMs). The two most common families of tech-
niques – online reinforcement learning (RL) such as Proximal Policy Optimization
(PPO) and offline contrastive methods such as Direct Preference Optimization
(DPO) – were positioned as equivalent in prior work due to the fact that both have
to start from the same offline preference dataset. To further expand our theoretical
understanding of the similarities and differences between online and offline techniques
for preference fine-tuning, we conduct a rigorous analysis through the lens of dataset
coverage, a concept that captures how the training data covers the test distribution
and is widely used in RL. We prove that a global coverage condition is both necessary
and sufficient for offline contrastive methods to converge to the optimal policy, but
a weaker partial coverage condition suffices for online RL methods. This separation
provides one explanation of why online RL methods can perform better than offline
methods, especially when the offline preference data is not diverse enough. Finally,
motivated by our preceding theoretical observations, we derive a hybrid preference
optimization (HyPO) algorithm that uses offline data for contrastive-based
preference optimization and online data for KL regularization. Theoretically and
empirically, we demonstrate that HyPO is more performant than its pure offline
counterpart DPO, while still preserving its computation and memory efficiency.

1 Introduction
Due to the difficulty of manually specifying reward functions for complex tasks (Casper et al., 2023),
preference-based learning has emerged as a critical component in the fine-tuning procedure for
large language models (LLMs) (Stiennon et al., 2020; Ouyang et al., 2022; Touvron et al., 2023;
Team et al., 2023). There are two predominant flavors of preference learning for LLMs: online
reinforcement learning (RL) methods such as PPO (Christiano et al., 2017; Ouyang et al., 2022) and
offline contrastive methods like Direct Preference Optimization (DPO) (Rafailov et al., 2024b) and
Identity Preference Optimization (IPO) (Azar et al., 2024).

Online RL methods usually follow the two-stage procedure prescribed in Ouyang et al. (2022): one
first trains a reward model (classifier) on a fixed offline preference dataset before using it to provide
reward labels for on-policy generations, which are then fed to a downstream RL algorithm like
Proximal Policy Optimization (PPO) (Schulman et al., 2017). Since the reward model is learned
from static offline preference data, to avoid over-optimizing the reward model (Gao et al., 2023),
one typically adds a reverse KL penalty to encourage the model to stay close to some reference
policy. We will refer to this procedure as reinforcement learning from human feedback (RLHF) in this
paper. While empirically performant, RLHF requires repeated querying of the reward model (which
is often itself an LLM) as well as sampling from the current policy. In response to the computational
expense and relatively complex nature of this procedure, purely offline methods like DPO (Rafailov
et al., 2024b) and IPO (Azar et al., 2024) have been proposed as alternative methods for preference
fine-tuning. These methods do not need to fit separate reward models, instead opting to simply train
the policy directly on the offline preference dataset via a ranking loss.
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Offline contrastive methods like DPO are usually derived via applying a reparameterization trick
to the closed-form solution of the minimum relative entropy problem (Ziebart et al., 2008) that
RLHF techniques attempt to approximate. Thus, several authors have described these methods as
equivalent (at least in theory) to the standard RLHF procedure (Rafailov et al., 2024b; Azar et al.,
2024). However, recent (mostly empirical) work has contradicted this perspective: Tang et al. (2024)
find that online methods out-perform offline methods and attribute this fundamentally to on-policy
sampling, Xu et al. (2024) argues that the online RL methods produce an often desirable subset of
the possible DPO loss minimizers, and Tajwar et al. (2024) provide empirical support for the claim
that online and contrastive training provide orthogonal benefits. However, a rigorous theoretical
separation is still lacking in the pre-existing literature, which motivates our key questions:

What is the statistical separation between the online RLHF method and
offline contrastive methods? What causes this separation and what does

it imply?

To answer these questions, we focus on the coverage of the preference dataset, a key concept that
is widely used in RL Kakade & Langford (2002); Bagnell et al. (2003); Song et al. (2022); Xie et al.
(2023) for analyzing the impact of offline or exploratory data distributions. Through the lens of
coverage of the offline preference dataset, we make the following contributions:

1. We prove that the global coverage condition, the strongest possible coverage condition
in RL, is necessary for offline contrastive algorithms like DPO to converge to the optimal
policy. In contrast, we identify a weaker local coverage condition that is sufficient for online RLHF
algorithms, thus provably separating the two types of algorithms. The separation is due to the
difference in reward modeling and on/offline regularization – in short, there is no free lunch from
bypassing explicit reward learning and online rollouts. As global coverage is an unrealistic condition
in practice, our separation result can perhaps explain why RLHF works better than offline methods
(Tajwar et al., 2024; Tang et al., 2024; Yuan et al., 2024).

2. Although offline contrastive methods are derived from a reverse-KL objective, we
prove that the policies trained via offline methods can still have infinite reverse-KL in
the partial coverage setting. In contrast, we show that RLHF can always control the reverse
KL via directly optimizing reverse KL using online samples. This means that on realistic problems,
RLHF has stronger guarantees for remaining close to the reference policy than offline contrastive
methods.

3. We propose Hybrid Preference Optimization (HyPO) to address the deficiencies of
offline contrastive methods while maintaining some of their computational simplicity.
HyPO is a hybrid RL algorithm (Song et al., 2022) where offline data is used for the DPO objective
while online samples are used to explicitly control the reverse KL divergence to the reference policy.
We empirically demonstrate that HyPO outperforms DPO, on the TL;DR summarization task
Stiennon et al. (2020) on all metrics including both the GPT4 win-rate and the reverse KL divergence
to the reference policy.

4. We provide a coverage-based explanation of why RLHF and offline contrastive
methods decrease the probability of preferred responses. In particular, under our function
approximation-based global coverage condition, we show that such behavior is actually desirable
for DPO and RLHF policies to extrapolate and generalize to optimal actions that do not appear
in the dataset. This establishes the importance of function approximation for the success of the
algorithms such as DPO.

Take together, our results establish the critical role coverage plays in terms of convergence properties
of preference learning algorithms as well as in the design of new, performant empirical approaches.

2 Preliminaries
Following a wide range of recent works (Rafailov et al., 2024b; Azar et al., 2024), we consider the
RLHF problem in the contextual bandit formulation (Langford & Zhang, 2008). This is a reasonable
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simplification, as one can consider the generated sequence of tokens as one single action, due to the
fact that the states are the generated tokens, and the dynamics are deterministic. We denote the
context (prompt) space as X , and the action (response) space as Y. Note that due to the finiteness
of the possible tokens, the action space is finite but combinatorially large. We use ρ ∈ ∆(X ) to
denote the distribution of the prompts, and π : X → ∆(Y) as policies (LLMs) that map prompts
to a distribution of responses. We also consider the reward function class R : X × Y → R, which
assigns a reward to each context-response pair.

We assume access to a reference policy πref , which is usually referred to as the policy learnt using
supervised data when training the LLM, that needs to be further fine-tuned to align with human
values. An offline preference dataset is collected in the format of D = {x, y+, y−} triplets: given
context x ∼ ρ, the preference policy samples two responses y1, y2 ∼ µ(· | x), where µ is the offline
response distribution. Previous works assume either µ to be the same distribution as πref (Rafailov
et al., 2024b) or different offline distribution (Azar et al., 2024; Rosset et al., 2024; Gao et al., 2024).
Then, y1 is labelled as y+ (thus y2 as y−) with probability p∗(y1 ≻ y2 | x), where p∗ is defined by
the Bradley-Terry model (Bradley & Terry, 1952):

p∗(y1 ≻ y2 | x) = exp(r∗(x, y1))
exp(r∗(x, y1)) + exp(r∗(x, y2)) ,

where r∗ is the human’s implicit reward function. Note that this rules out intransitive preferences
(Swamy et al., 2024; Munos et al., 2023). Through out the paper we will make the following
assumption on the reward function:
Assumption 2.1 (Boundedness of the reward). ∥r∗∥∞ ≤ R.

In many previous works, this formulation has been the canonical way to model the preference data
in the RLHF literature (Christiano et al., 2017; Rafailov et al., 2024b; Azar et al., 2024). The goal is
to learn a policy π to maximize the objective J(π), where

J(π) = Ex∼ρEy∼π(·|x)[r∗(x, y)] − βKL(π(· | x)||πref(x)), (1)

i.e., we want to both maximize the human implicit reward, and not deviate too much from the reference
policy. We denote the optimal policy π∗ ∈ argmaxπ∈Π J(π). Here we call KL(π(· | x)||πref(x)) reverse
KL because π – the policy to be optimized, appears first. We will call KL(πref(x)||π(· | x)) forward
KL. By the definition of KL, we have

Definition of reverse KL: KL(π(· | x)||πref(x)) := Ey∼π(x) ln(π(y|x)/πref(y|x)). (2)

Note that the expectation in reverse KL is under π (highlighted by red in Eq. 2), indicating that
evaluating and optimizing reverse KL requires drawing online samples from π. In contrast, evaluating
forward KL only requires offline samples drawn from πref . As we will show, this key difference
between reverse KL and forward KL plays an important role of separating online RLHF and offline
contrastive methods such as DPO. In this paper, we consider two types of algorithms: online RL-based
algorithms, and offline contrastive-based algorithms.

Online RLHF Algorithms. We consider algorithms such as Christiano et al. (2017); Ahmadian
et al. (2024) as the online RL based methods. We abstract these algorithms as the following procedure:
the algorithm performs the following two-stage procedure: one first trains a reward model r̂ that
minimizes the Bradley-Terry loss 1

r̂ ∈ argmax
r∈R

Êx,y+,y−∼D log
(

exp(r(x, y+))
exp(r(x, y+)) + exp(r(x, y−))

)
, (3)

and perform policy optimization (such as PPO (Schulman et al., 2017)) to optimize the policy
optimization problem with the reward model r̂:

πrlhf ∈ argmax
π

Êx∼DEy∼π(·|x)[r̂(x, y)] − βKL(π(· | x)||πref(x)).

1We use Ê to denote the empirical expectation over the dataset.
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However, this policy optimization step requires extensive online sampling, and training an additional
critic model (e.g., PPO), in addition to the reward model and policy.

Offline Contrastive Algorithms. To circumvent the above-mentioned computational burden,
several purely offline contrastive-based methods (i.e., without RL) have been proposed. In this
paper, we focus on the following two most representative methods. The first is Direct Preference
Optimization (DPO) (Rafailov et al., 2024b), where the objective is πdpo ∈ argmaxπ ℓdpo(π) with

ℓdpo(π) = Êx,y+,y−∼D log

 exp
(

β log
(

π(y+|x)
πref (y+|x)

))
exp

(
β log

(
π(y+|x)

πref (y+|x)

))
+ exp

(
β log

(
π(y−|x)

πref (y−|x)

))
. (4)

Another offline contrastive method we will discuss in our paper is Identity Preference Optimization
(Azar et al., 2024), but we will defer its technical details to the appendix.

3 Offline Contrastive Methods Require a Stronger Coverage Condition
than Online RL Methods

We start by introducing the mathematical formulation of coverage framework. The strongest coverage
condition is the following global coverage condition (Munos & Szepesvári, 2008): we say any offline
distribution µ covers a policy π if we have maxx,y:ρ(x)>0

π(y|x)
µ(y|x) ≤ Cglo. Throughout this section, we

will adopt the setting where µ = πref (Rafailov et al., 2024b). Formally, we assume the following
condition:
Assumption 3.1 (Global Coverage). For all π, we have

max
x,y:ρ(x)>0

π(y | x)
πref(y | x) ≤ Cglo.

For the coverage terms, we always adopt the convention that 0
0 = 0. Note that one sufficient condition

for this assumption is that, for any prompt x, and any token sequence y, we have πref(y | x) ≥ 1/Cglo.

As been recognized in the offline RL literature, global coverage is a strong assumption, and efforts
have been made to circumvent this assumption with more relaxed coverage conditions (Uehara
& Sun, 2021; Zhan et al., 2022). In this paper, we will consider the following partial coverage
assumption that is weaker than Assumption 3.1:
Assumption 3.2 (Local KL-ball Coverage). For any policy π such that Ex∼ρKL(π(· | x)||πref(· |
x)) ≤ εkl, we have

max
x,y:ρ(x)>0

π(y | x)
πref(y | x) ≤ Cεkl .

This coverage notion is relatively new in the RL theory literature, but it appears in previous analysis
for RLHF algorithms, e,g., Chang et al. (2024). We call this local coverage condition since it only
requires πref to cover the policies that is within some KL-divergence ball centered at πref . The
intuition of this assumption is, for any algorithm that can control the reverse KL of the output
policy, we can leverage the coverage condition to relate the error under the output policy to its
error under the offline distribution, and thus guarantee its performance. Finally, we note that since
the policies with bounded KL is a subset of all policies, for a fixed πref , we always have Cεkl ≤ Cglo.

Taking a closer look at Assumption 3.2, we can see that this assumption is always true: for any
policy with εkl < ∞, maxx,y:ρ(x)>0

π(y|x)
πref (y|x) < ∞. However, a simple calculation can show that

maxx,y:ρ(x)>0
π(y|x)

πref (y|x) can be as large as maxx,y:π(y|x)>0 exp
(

εkl
π(y|x)

)
, even though bounded. This is

undesirable because this suggests bounded reverse KL itself is not enough to guarantee optimality: the
error can have an exponential amplification switching from π to πref . Thus this motivates Assumption
3.2, which assumes that Cεkl is reasonably small, but always bounded in the worst case.
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In what follows, we will show that the global coverage assumption (Assumption 3.1) is necessary for
offline contrastive-based algorithms such as DPO and IPO, but partial coverage assumption such as
Assumption 3.2 is sufficient for online RL based algorithms. This establishes a separation between
the two types of algorithms. We emphasize this theoretical separation explains why in practice online
methods is less prone to problems such as reward hacking and producing out-of-distribution responses
that are due to dataset with insufficient coverage.

3.1 Global Coverage is Necessary for Offline Contrastive Algorithms

Failure of DPO Under Partial Coverage. Now we show that if the strong coverage Assumption
3.1 breaks, then DPO can not guarantee any performance with respect to the objective function
Eq. (1). The intuition is based on a rather common observation of the DPO algorithm: the DPO
policy πdpo may generate out of distribution responses, while in contrast, RLHF does not generate
responses outside of the support of πref due to online reverse-KL constraint. For example, (Xu et al.,
2024) provides a construction where πdpo chooses a response where RLHF policy assigns 0 mass onto,
thus proving that RLHF policies are a subset of DPO policies.

However, such construction assumes that the reward learning procedure of DPO makes arbitrarily
large errors. Also, previous constructions assume deterministic preference, which is only true if the
underlying reward function is unbounded. This violates the natural assumption of Assumption 2.1. In
the following, we relax these constraints and thus show that DPO fails to guarantee any performance in
a rather strong sense. Concretely, DPO constructs the following implicit reward class with the policy
class Π: Rdpo =

{
β log

(
π(y|x)

πref (y|x)Z(x)

)
| π ∈ Π

}
, where Z(x) is a partition function that maps context

to a real number and is independent of y. Plugging this formulation into the BT loss (Eq. (3)) recovers
exactly the DPO loss (Eq. (4)) as the partition functions are canceled. Now we can characterize the
returned policy by DPO as exactly whose corresponding reward function is accurate in distribution:
Assumption 3.3 (In Distribution Reward Learning). We assume the DPO policy πdpo satisfies that:

Ex,y∼ρ◦πref

(
β log

(
πdpo(y | x)

πref(y | x)Z(x)

)
− r∗(x, y)

)2
≤ εdpo.

Note that this is a rather strong assumption for BT loss – by Lemma C.2, at best one can only
hope: for any learned reward function r̂, for each context x, there exists a constant c(x) such that

Ex,y∼ρ◦πref (r̂(x, y) − r∗(x, y) − c(x))2 ≤ ε, (5)

i.e., the reward model predicts the human reward up to a gap that is independent of y. This is due
to the nature of BT loss only requires the reward function to capture the relative difference, or in the
other word, any constant shift (with respect to context) in the reward will be cancelled in the BT loss.
However, for the rest of the section, we will make the stronger learning assumption that the gap c(x) =
0 (such as in the case of Assumption 3.3). Previous counterexamples analysis violates this assumption,
but we will show that even under this assumption, DPO can not guarantee any performance.
Proposition 3.1. Denote πref as any reference policy such that Assumption 3.1 breaks. Let Πdpo be
the set of DPO returned policies such that Assumption 3.3 holds. Then there exists policy π ∈ Πdpo

such that J(π) = −∞.

Proof sketch. Without loss of generality, we consider a promptless setting, and assume that the
response space is Y = {y1, y2, y3}. Again without loss of generality, we assume πref only covers y1
and y2, and thus Assumption 3.1 breaks. We assume partition function Z = 1 for all π but we will
be rigorous in the formal proof. Then consider the following policy π such that

β log
(

π(y1)
πref(y1)

)
= r∗(y1) − √

εdpo, and β log
(

π(y2)
πref(y2)

)
= r∗(y2) − √

εdpo,

One can check π satisfies Assumption 3.3. Now consider the optimal policy π∗(yi) =
πref(yi) exp

(
1
β r∗(yi)

)
, for i ∈ {1, 2}, and π∗(y3) = 0. Since π∗(y1) + π∗(y2) = 1, combining
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everything we get π(y3) > 0, which implies KL(π||πref) is unbounded, thus we complete the proof.

One can first relate the above construction to the parital coverage assumption Assumption 3.2: since
the policy π considered in the proof has unbounded reverse KL with respect to πref , thus it is not in
the KL-ball of εkl around πref , which implies that Assumption 3.2 is not sufficient for DPO. Next we
show that the global coverage is necessary for the IPO algorithm.

Failure of IPO Under Partial Coverage. To show that the global coverage is necessary for
IPO, we can even assume a stronger in-distribution learning guarantee, that is, the returned policy
achieves the smallest error on its population loss in distribution.
Proposition 3.2 (Informal). Denote πref as any reference policy such that Assumption 3.1 breaks.
Let Πipo be the set of IPO returned policies such that it is the minimizer of in-distribution error on
its population loss. Then there exists policy π ∈ Πipo such that J(π) = −∞.

We defer the detailed setup and formal version to Appendix E, but the construction for the above
proofs share the same intuition: the reverse KL term in the objective function can be unbounded.
For offline contrastive-based algorithms, the KL regularization is only enforced under the data
distribution, and thus the algorithm can not guarantee bounded reverse KL if the reference policy
does not cover the response space well. Although we only showed counterexamples for DPO and
IPO, we conjecture that the same intuition holds for other offline contrastive-based algorithms.

3.2 Global Coverage is Sufficient for Offline Contrastive Algorithms

After showing that global coverage is necessary for DPO to guarantee any performance, we now show
that it is sufficient for the performance guarantee.
Theorem 3.1. Let πref be any reference policy such that Assumption 3.1 holds. For any policy πdpo
such that the event in Assumption 3.3 holds, we have that

J(π∗) − J(πdpo) = O(Cglo
√

εdpo).

Proof. By Lemma C.1, we have

J(π∗) − J(πdpo) ≤ Ex∼ρEy1∼π∗(·|x),y2∼πdpo(·|x)
[
r∗(x, y1) − r̂dpo(x, y1) − r∗(x, y2) + r̂dpo(x, y2)

]
≤

√
Ex∼ρEy1∼π∗(·|x),y2∼πdpo(·|x)

[
(r∗(x, y1) − r̂dpo(x, y1) − r∗(x, y2) + r̂dpo(x, y2))2

]
≤

√
C2

gloEx∼ρEy1,y2∼πref (·|x)

[
(r∗(x, y1) − r̂dpo(x, y1) − r∗(x, y2) + r̂dpo(x, y2))2

]
,

and we can complete the proof by plugging in the error guarantee from Assumption 3.3.
Note that as the proof suggests, the result holds with the more general reward learning guarantee as
in Lemma C.2 – one only need to be accurate on predicting the relative rewards between response
pairs.

3.3 Online RL method Under Partial Coverage

Finally, we contrast the previous negative results in Section 3.1 for offline contrastive-based algorithms
to a positive result for online RL-based algorithms, under the partial coverage setting. We will show
that in general global coverage is not necessary for RLHF, i.e., it can guarantee performance under
partial coverage. In fact, one might still be able to show an impossibility result for RLHF under
partial coverage, by reusing the same counterexample as in the previous section (c.r., Proposition 3.1).
Concretely, as long as the learned reward r̂(y3) → ∞, πrlhf(y3) will be 1 and thus the reverse KL will
be unbounded. However, this is a rather unrealistic scenario, as the construction requires a neural
network to output an unbounded value. Thus this motivates the following assumption:
Assumption 3.4. For any reward model r̂ in the reward model class, we have that ∥r̂∥∞ ≤ R′.
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At this point, one might argue why a similar assumption is missing for the offline contrastive-based
analysis. The reason lies in the different construction of the model class r̂ for those algorithm: for
DPO and IPO, the reward model is constructed as r̂dpo = β log

(
π

πref ·Z

)
, and there is no natural

function class for π such that Assumption 3.4 holds. In contrast, on-the-fly normalization of rewards
is standard in practice, which the policy will always witness bounded rewards (Gao et al., 2024;
Chang et al., 2024; 2023; Ahmadian et al., 2024). As we will show in the following, the difference in
the reward function (which is tied to the offline vs. online nature of the algorithms) can explain the
different coverage requirement of the algorithms.

To relate to Assumption 3.2, we first show that the reverse KL divergence of the RLHF policy is
always bounded under Assumption 3.4.
Lemma 3.1. Suppose that Assumption 3.4 holds. Then for any RLHF policy πrlhf , we have that

KL(πrlhf ||πref) := Ex∼ρEy∼πrlhf (·|x)

[
log

(
πrlhf(y | x)
πref(y | x)

)]
≤ 2R′

β
.

Then we can show that the RLHF algorithm can guarantee performance under partial coverage:
Theorem 3.2. Suppose that Assumption 3.4 holds. Then for any reference policy πref for which
Assumption 3.2 holds with εkl = 2R′

β , and any RLHF policy πrlhf with r̂ such that (c.r. Assumption

3.3) Ex,y∼ρ◦πref

[
(r∗(x, y) − r̂(x, y))2

]
≤ εreward, we have

J(π∗) − J(πrlhf) ≤ O(Cεkl

√
εreward).

Conditioned on Lemma 3.1, the proof of this theorem is similar to that of Theorem 3.1 so we defer it to
Appendix E. Similar to Theorem 3.1, we note that Theorem 3.2 holds under a weaker reward learning
guarantee as in Lemma C.2. We also remark that as long as εkl is finite, Cεkl is finite, so the bound
is never vacuous. Since Cεkl ≤ Cglo for all εkl, it indicates the regret bound of RLHF is never worse
and can be much better than the regret bound of DPO. Combining Theorem 3.1 and Theorem 3.2,
we complete the separation result between offline contrastive methods and online RL methods.

A natural question at this point could be: can we further relax the local KL-ball coverage condition in
Assumption 3.2 to a single-policy coverage condition, i.e., just assuming maxx,y π∗(y|x)/πref(y|x) ≤ C?
Prior work Zhan et al. (2023) shows that with explicit pessimism, it is possible. However, using
pessimism makes the algorithm from Zhan et al. (2023) not computationally tractable and hard to
scale to LLM experiments. Our conjecture is that for the RLHF policy πrlhf , it is not possible to
achieve meaningful regret under the single policy coverage condition, due to KL not being strong
enough to induce pessimism (i.e., bounded KL between π and πref can still imply exponentially large
density ratio π/πref). Developing a lower bound for πrlhf under single policy coverage in this case can
be an interesting future work.

4 Hybrid Preference Optimization: Regularizing Offline Learning with
Online Samples

In this section, we will provide a practical algorithm that bridges the gap between the offline
contrastive-based algorithms and the online RL-based algorithms. As we see in the previous sections,
the difference between the two types of algorithms is their reward model parametrization, and whether
to perform online rollouts. In the following we will show that these two properties are in fact tightly
intervened with each other.

Here we will focus on the DPO algorithm. One way to fix the issue of the unbounded reward model
class for DPO is to consider the following ideal procedure: at the beginning of the algorithm, we
first go through the policy class Π, and then we filter out all the policies such that KL(π||πref) ≥ 2R′

β ,
where R′ is the boundedness of the reward function class for RLHF. Now applying the same analysis
of Theorem 3.2, we can show that this revised DPO algorithm can guarantee performance under
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Table 1: Results on TL;DR dataset. Winrate is evaluated by GPT4 and RM score is from the trained re-
ward model. Experiments are repeated for 3 random seeds. Mean and standard deviation are reported.

Algorithm Winrate (↑) RM score (↑) KL(π||πref)(↓)
DPO 42.17% (2.5%) 0.16 (0.05) 44.90 (1.29)
HyPO 46.17% (0.17%) 0.56 (0.03) 25.23 (0.55)

the partial coverage assumption, because now the DPO implicit reward function is bounded by R′,
recovering Assumption 3.4. We defer the detailed statement and analysis to Appendix F.1.

However, such filtering procedure is not possible in practice, but we can instead consider the following
constrained optimization problem: we call the definition of DPO loss in Eq. (4), we want to solve

max
π

ℓdpo(π) s.t. KL(π||πref) ≤ 2R′

β
, (6)

using the KKT conditions, we can show that the following Lagrangian form is equivalent to Eq. (6):
max

π
ℓdpo(π) − λKL(π||πref), (7)

where λ is the Lagrange multiplier. However, in reality, since we do not know the exact value of R′,
we can consider setting λ to be a hyperparameter. We present the pseudocode in Algorithm 1. Note
that due to the reverse KL term, the Hybrid Preference Optimization (HyPO) algorithm optimizes
Eq. (7) via both offline and online samples where the offline samples are used for constructing and
optimizing ℓdpo (here σ denotes the sigmoid function), and the online samples y ∼ π(x) are for KL.
Note that regularizing with reverse KL via online samples is widely used in online RLHF (e.g., PPO
(Stiennon et al., 2020), APA (Zhu et al., 2023), REBEL (Gao et al., 2024)). Here sg refers to the
stop gradient operation, which is a common practice in estimating KL in the LLM fine-tuning setting
(Ouyang et al., 2022; von Werra et al., 2020).

Experimental Results. We perform experiments on TL;DR dataset (Stiennon et al., 2020). Our
experiment setup mostly follows (Gao et al., 2024): we use a maximum context length of 512 and
the maximum generation length of 53. We use Pythia 1.4B (Biderman et al., 2023) as the pre-trained
model. For the supervised fine-tuning (SFT) model, we train it over 1 epoch of the dataset with
human reference responses as labels. We train the reward model on top of the SFT over 1 epoch
of preference data. Both HyPO and DPO are trained over 1 epoch of preference data with Low-rank
Adaptation (LoRA) (Hu et al., 2021). We defer more experiment details in Appendix F.

We summarize the results in Table 1: HyPO outperforms DPO in all metrics, including GPT4
win-rage, reward model (RM) evaluation, and KL. However, compared with PPO (e.g., Table 1 in
Gao et al. (2024)), HyPO is still lower in winrate and RM evaluation. However, we do preserve most
of the benefit of DPO: we avoid training additional reward and critic models, and although we need
to perform online generation, we only need to train for 1 epoch while PPO requires 4 epochs of online
generation.

Discussion. There are a few limitations of our work: 1) our theoretical analysis only considers
the statistical perspective of each algorithm, but we believe our result is complementary to the
other work that considers the optimization perspectives (Tajwar et al., 2024). 2) we only conduct
experiments on limited models and benchmarks. 3) The experiment result shows that HyPO is
still a gap compared to the online RL method: this might suggest that our theory does not fully
explain the benefit of all the component of online RL method. For example, one hypothesis is that
the learn reward function may have better generalization ability. 4) It is not clear that the KL-ball
coverage is necessary for online RL-based methods. However, as we discussed, since a bounded
reverse KL might still induce exponentially error amplification, we conjecture that at least a single
policy coverage Zhan et al. (2022) is not sufficient for online RL-based methods. We believe these
limitations lead to several interesting further directions. Finally, our method may not explicitly
address the potential hallucinations or toxic behavior of LLMs, which is a common shortcoming of
general-purpose fine-tuning algorithms.
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Algorithm 1 Hybrid Preference Optimization (HyPO)
require Pretrained LLM πθ0 , reference policy πref , offline data D, learning rate α, KL coefficient λ.

1: for t = 1, . . . , T do
2: Sample a minibatch of offline data Doff := {x, y+, y−} ∼ D.

3: Compute DPO loss ldpo :=
∑

x,y+,y−∈Doff
log

(
σ

(
β log

(
πθt−1 (y+|x)

πref (y+|x)

)
− β log

(
πθt−1 (y−|x)

πref (y−|x)

)))
.

4: Sample online data Don := {x, y} where x ∼ D, y ∼ πθt−1(x).
5: Compute lkl :=

∑
x,y∈Don

log(πθt−1(y|x)) · sg
(

log
( (πθt−1 (y|x))

(πref (y|x))

))
.

6: Update θt = θt−1 − α · ∇θt−1(ldpo − λlkl).
return πT .

A Related Work
Preference Fine-Tuning. As discussed in the introduction of our work, there are two major
paradigms for preference fine-tuning of LLMs. The first one, online RL methods Ouyang et al. (2022),
proposes to first train a reward model (classifier) to predict human preferences, followed by running
an RL method to optimize this learned reward function. While PPO Schulman et al. (2017) is
the most popular RL algorithm used in the online RLHF framework by far Ouyang et al. (2022);
Stiennon et al. (2020); Touvron et al. (2023), more recent work by Ahmadian et al. (2024) shows that
simpler online RL algorithms like REINFORCE Williams (1992) also work well. The second class of
methods, offline contrastive techniques (Rafailov et al., 2024b; Zhao et al., 2023; Azar et al., 2024),
avoid explicit reward modeling and directly optimize their objective on the offline preference dataset.
Recently there are hybrid methods that combine offline preference data with online preference labels
(Guo et al., 2024; Rosset et al., 2024; Azar et al., 2024) – we leave extending our analysis to this
setting to future work. Throughout our paper, we assume for simplicity of analysis that preferences
are generated by an underlying utility function and therefore contain no intransitivities (Swamy
et al., 2024; Munos et al., 2023). Future work could also explore the effect of using more efficient local
exploration-based RLHF algorithms (Chang et al., 2023; 2024; Swamy et al., 2023; Ren et al., 2024).

Understanding PFT. Prior work has studied different parts of the standard RLHF recipe (Gao
et al., 2023; Kirk et al., 2023; Singhal et al., 2023; Eisenstein et al., 2023) and the impact of preference
data quality (Sharma et al., 2024). In our work, we instead take a converge-based perspective on
the relationship between online RL methods and offline contrastive methods. Although derived from
the same minimum relative entropy objective (Ziebart et al., 2008) and perceived as equivalent by
some early work (Rafailov et al., 2024b; Azar et al., 2024), more recent work has started to unravel
the distinctions between these two classes of methods. Tang et al. (2024) repeatedly observe better
performance from online rather than offline methods and after rigorously validating a variety of
hypotheses, conclude that on-policy sampling is indispensable for ensuring a high quality policy.
Tajwar et al. (2024) perform an in-depth study of the effects of preference data, contrastive losses, and
on-policy sampling and conclude that a combination of contrastive losses and interactive training is
most preferable in practice. (Xu et al., 2024) also observe better performance from online PPO than
from offline DPO and argue this is because the former is able to eliminate a larger set of policies that
are undesirable from the perspective of the rater. We supplement these mostly empirical observations
with a rigorous theoretical explanation for the observed behavior through the lens of dataset coverage,
as well as designing an algorithm that addresses the key weaknesses of offline contrastive approaches.

Recent work Yuan et al. (2024); Pal et al. (2024); Rafailov et al. (2024a) has observed an interesting
effect of the DPO procedure: a simultaneously decreases in the likelihood of both preferred and
rejected responses. This behavior is surprising at the first glance because one would expect that DPO
will increase the likelihood of preferred responses and decrease the likelihood of rejected responses.
We provide a rigorous statistical explanation of this behavior and show that this behavior is natural
when the offline preference data only contains sub-optimal responses but the function approximation
allows DPO to extrapolate and generalize to the correct optimal responses. This highlights the role
of function approximation in the success of offline contrastive based methods.
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Coverage. We analyze online RLHF and offline contrastive-based methods via the concept of
coverage. Coverage measures how well an offline (data) distribution covers the support of the policy
of interest, which has been the key technical tool in offline RL (Munos & Szepesvári, 2008; Uehara
& Sun, 2021; Zhan et al., 2022), offline-online (I)RL (Xie et al., 2021; Song et al., 2022; Ren et al.,
2024) and online RL (Bagnell et al., 2003; Kakade & Langford, 2002). The data coverage plays
an important role in our analysis since both online RLHF and offline contrastive-based methods
rely on an offline preference dataset for learning.

B Function Approximation Coverage: Can Fine-tuned Policies
Extrapolate?

Our final result is a theoretical explanation of the extrapolation behavior of preference fine-tuning
algorithms under the global coverage assumption in the function approximation setting. The
extrapolation behavior refers to the phenomenon that policies assign decreasing likelihood to the
preferred responses, even to the preferred samples during the training, and instead increase the
likelihood outside the preference distribution data (Pal et al., 2024).

A previous attempt (Rafailov et al., 2024a) to explain this behavior is based on the assumption that
the responses from the reference policy have the same distribution as the preferred responses from
the dataset, i.e., y+ ∼ µ

d= y ∼ πref . However, as mentioned in Section 2, more realistically, one can
assume that y ∼ µ

d= y ∼ πref since it is implied by using the reference policy to generate the dataset,
including the not preferred responses; or even more generally by considering supp(D) ⊂ supp(πref).
The latter is common in practice, for example, the dataset is precollected, or the reference policy
might place a small mass on responses so they are not sampled during the data collection process.

In the following example, we consider the linear function approximation setting and an offline dataset
that does not contain the optimal action. We show that DPO can correctly increase the model’s
likelihood of the optimal action by decreasing the likelihood of both the preferred and rejected actions
from the offline data.
Example B.1. Consider a promptless setting, where the response space is Y = {y1, y2, y3}. Con-
sider the linear function approximation setting with feature map ϕ, where ϕ(y1) = [1, 0], ϕ(y2) =
[1/2, 1/2], ϕ(y3) = [0, 1]. Suppose all policies are parametrized as softmax linear policies, i.e.,
π(y) ∝ exp(w⊤

π ϕ(y)). Let wref = [1, 1], then we have πref(yi) = 1/3, ∀i ∈ {1, 2, 3}.

Consider the ground truth reward function r∗(y) = [10, 1]⊤ϕ(y), and suppose supp(µ) = {y1, y2}, i.e.,
the data only covers y1 and y2. And as always, the preference is based on the ground truth reward
function under the Bradley-Terry model.

We can first check that the data distribution indeed has global coverage in the linear function approxi-
mation case (Xiong et al., 2022), i.e., let Σµ = Ey∼µϕ(y)ϕ(y)⊤, then for all π,

Ey∼π∥ϕ(y)∥2
Σ−1

µ
≤ Cπ.

If we parameterize r̂(y) = ŵ⊤ϕ(y) (or in case of DPO, we can still check and see that r̂dpo(y) =
ŵdpo

⊤
ϕ(y) because of the softmax linear parametrization of the policies), for either direct reward

learning or DPO, we can have the learned reward function r̂(y) = [10, 1]⊤ϕ(y) + c, where c is the
constant reward shift (c.r. Eq. (5)). Then a simple calculation (by π(y) ∝ πref(y) exp(r̂(y)/β)) shows
that, as long as c is small enough, the policies will decrease the likelihood of y1 and y2 and increase
the likelihood of y3. ◁

B.1 Synthetic experiment for extrapolation

To validate our theory result, in this section we perform a synthetic experiment on global coverage with
linear function approximation. As shown in Figure 1, the extrapolation behavior is observed in both
online RL method and DPO. In addition, we show that without the linear function approximation, i.e.,
when each action is treated independently, DPO can erroneously assign a higher probability to unseen
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Figure 1: Extrapolation behavior of Online RL method and DPO under linear function approximation.
We plot the mean log probability of the preferred responses and the log probability of the best
response, which is unseen in the training data. We see that both algorithms correctly assigns
increasing probability to the best response.

suboptimal responses, indicating DPO can fail to extrapolate and generalize. Our investigation
identifies that function approximation plays an important role in the success of RLHF and DPO
algorithms in terms of generalizing to optimal actions beyond the offline data.

B.2 Extrapolation with function approximation

We first describe our experiment setup. We consider linear function approximation setting where
we have 100 responses (|Y| = 100). We consider a 16-dimensional feature vector ϕ : Y → R16, and
we generate ϕ(y) by simply sampling 99 random 16-dimensional vectors where the ℓ1 norm of each
vector is 1. We add one final ϕ(y) = [1, 0, 0, . . . ].

We construct the implicit human reward r∗(y) = w∗⊤ϕ(y), where w∗ = [5, ...], and the rest of the
entries are sampled from Unif(-2,2).

We parametrize the policies as softmax linear policies, i.e., we parametrize each policy π with
wπ ∈ R16 such that π(y) = wπ⊤ϕ(y)∑

y∈Y
wπ⊤ϕ(y)

. One can check in this formulation the implicit reward in

DPO (r̂dpo) is linear in ϕ.

We generate 10000 preference pairs, according to the BT model under r∗, for the first 50 responses.
We checked that the first responses indeed span R16. Thus the offline data has global coverage in
linear function approximation setting.

For on-policy RL methods, we first train a reward model. Then we simply perform gradient descent
on the KL-regularized bandit loss (we assume πref is uniform). For DPO, we simply perform SGD on
the offline preference dataset. We track two qualities over the training: the mean log probability of a
random subset of preferred responses, and the log probability of best response ϕ(y) = [1, 0, 0, . . . ].
We plot the results in Figure 1. We observe that both methods have the extrapolation behavior –
the probability of preferred responses decays but the probability of the optimal response goes up.

B.3 Extrapolation without function approximation

Now we describe the setting where function approximation fails, and this reduces to a Multi-arm
bandit setting. We set |Y| = 500, and the offline data only covers the first half of the responses. The
r∗(y) is set by sampling from Unif(-10,10), and we generate 10000 offline samples by uniformly sample
pairs of responses from the first half of the response space, and then label them with BT model
under r∗. We train DPO with 5000 iterations, and plot the mean probability of the responses outside
of the data support in Figure 2: we observe that the mean probability of the out-of-distribution
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Figure 2: Extrapolation behavior of DPO without function approximation. We plot the average
probability of out-of-distribution responses along the training and DPO assigns increasing probability
to out-of-distribution responses.

responses are increasing, however, this could be an undesirable behavior because the reward of the
out-of-distribution responses could be arbitrarily bad.

C Auxiliary Lemmas

Lemma C.1 (Objective decomposition). Let J(π) be the objective function defined in (1), and for
reward function r̂, we let

π̂ ∈ argmax
π

Ex∼ρEy∼π(·|x)[r̂(x, y)] − βKL(π(· | x)||πref(x)), (8)

then we have

J(π∗) − J(π̂) ≤ Ex∼ρEy1∼π∗(·|x),y2∼π̂(·|x)
[
r∗(x, y1) − r̂(x, y1) − r∗(x, y2) + r̂(x, y2)

]
.

Proof. We have

J(π∗) − J(π̂)
=Ex∼ρEy∼π∗(·|x)[r∗(x, y)] − βKL(π∗(· | x)||πref(x)) − Ex∼ρEy∼π̂(·|x)[r̂(x, y)] + βKL(π̂(· | x)||πref(x))
=Ex∼ρEy∼π∗(·|x)[r∗(x, y)] − βKL(π∗(· | x)||πref(x)) −

(
Ex∼ρEy∼π̂(·|x)[r̂(x, y)] − βKL(π̂(· | x)||πref(x))

)
+ Ex∼ρEy∼π̂(·|x)[r̂(x, y)] − βKL(π̂(· | x)||πref(x)) −

(
Ex∼ρEy∼π̂(·|x)[r̂(x, y)] − βKL(π̂(· | x)||πref(x))

)
≤Ex∼ρEy∼π∗(·|x)[r∗(x, y)] − βKL(π∗(· | x)||πref(x)) −

(
Ex∼ρEy∼π∗(·|x)[r̂(x, y)] − βKL(π∗(· | x)||πref(x))

)
+ Ex∼ρEy∼π̂(·|x)[r̂(x, y)] − βKL(π̂(· | x)||πref(x)) −

(
Ex∼ρEy∼π̂(·|x)[r̂(x, y)] − βKL(π̂(· | x)||πref(x))

)
=Ex∼ρEy∼π∗(·|x)[r∗(x, y) − r̂(x, y)] − Ex∼ρEy∼π̂(·|x)[r∗(x, y) − r̂(x, y)],

where the inequality is due to Eq. (8). To complete the proof, note that

Ex∼ρEy∼π∗(·|x)[r∗(x, y) − r̂(x, y)] − Ex∼ρEy∼π̂(·|x)[r∗(x, y) − r̂(x, y)]
=Ex∼ρEy1∼π∗(·|x),y2∼π̂(·|x)[r∗(x, y1) − r̂(x, y1)] − Ex∼ρEy1∼π∗(·|x),y2∼π̂(·|x)[r∗(x, y2) − r̂(x, y2)]
=Ex∼ρEy1∼π∗(·|x),y2∼π̂(·|x)

[
r∗(x, y1) − r̂(x, y1) − r∗(x, y2) + r̂(x, y2)

]
.

Lemma C.2 (Lemma C.2 from (Chang et al., 2024)). Assume that r∗ is bounded, let R be the
reward function class, and Let

r̂ = argmin
r∈R

Êx,y+,y−∼D log
(

exp(r(x, y+))
exp(r(x, y+)) + exp(r(x, y−))

)
,
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then we have with probability at least 1 − δ that

Ex,y1,y2∼µ◦πref

[(
r∗(x, y1) − r∗(x, y2) − r̂(x, y1) + r̂(x, y2)

)2
]

≤ cκ2 log(|R|/δ)
N

,

where κ measures the non-linearity of the link function, and c is a constant, N := |D| is the size of
the offline dataset.

D Results for IPO

In this section we give detailed technical details for IPO, and the negative results for IPO under
partial coverage. Recall that the empirical objective of IPO is is πipo ∈ argminπ ℓ̂ipo(π), where

ℓ̂ipo(π) = Êx,y+,y−∼D

[(
log

(
π(y+ | x)πref(y− | x)
π(y− | x)πref(y+ | x)

)
− β−1

2

)2]
.

The empirical objective is derived from the following population loss

ℓipo(π) = Ex,y1,y2∼ρ◦πref

[(
hπ

(
y1, y2)

− I
(
y1, y2)

/β
)2

]
, (9)

where

hπ(y1, y2) = log
(

π(y1)πref(y2)
π(y2)πref(y1)

)
,

and I(y1, y2) is a Bernoulli random variable with parameter p = p∗(y1 ≻ y2), where here p∗ can be
any underlying human preference (that is not necessarily parametrized by the Bradley Terry model).
To show the negative result, we can make the following learning assumption:
Assumption D.1 (In distribution guarantee for IPO). We assume that the returned policy πipo
satisfies that

πipo = argmin
π∈Π

ℓipo(π),

i.e., the returned policy πipo induces the smallest possible in-distribution error on its population loss.

With the setup, we can state and prove the formal version of the result:
Proposition D.1 (Formal version of of Proposition 3.2). Denote πref as any reference policy such
that Assumption 3.1 breaks. Let Πipo be the set of IPO returned policies such that Assumption D.1
holds. Then there exists policy π ∈ Πipo such that J(π) = −∞.

Proof. Without loss of generality, we consider a promptless setting, and assume that the response
space is Y = {y1, y2, y3}. Again without loss of generality, we assume πref only covers y1 and y2, and
thus Assumption 3.1 breaks. Specifically, let πref(y1) = πref(y2) = 1/2. Then we have

πipo = argmin
π∈Π

Ey1,y2∼πref

[(
log

(
π(y1)
π(y2)

)
− I

(
y1, y2)

/β

)2]
,

which gives

log
(

πipo(y1)
πipo(y2)

)
= p∗(y1 ≻ y2)/β,

and thus we have the relation that

πipo(y1) = πipo(y2) · exp(p∗(y1 ≻ y2)/β).

Let πipo(y2) = α ∈ (0, 1], then for any α such that πipo(y3) = 1 − (1 + exp(p∗(y1 ≻ y2)/β))α > 0, we
will have that KL(πipo||πref) is unbounded, and thus we complete the proof.
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E Missing Proofs

E.1 Proof of Proposition 3.1

Proposition E.1 (Restatement of Proposition 3.1). Denote πref as any reference policy such that
Assumption 3.1 breaks. Let Πdpo be the set of DPO returned policies such that Assumption 3.3 holds.
Then there exists policy π ∈ Πdpo such that J(π) = −∞.

Proof. Again as in the proof sketch, without loss of generality, we consider a promptless setting,
and assume that the response space is Y = {y1, y2, y3}. Again without loss of generality, we assume
πref only covers y1 and y2, and thus Assumption 3.1 breaks. Now consider the optimal policy

π∗(y) = πref(y) exp(r∗(y)/β)
Z∗(t) , ∀y ∈ Y,

where Z∗ =
∑

y∈Y πref(y) exp(r∗(y)/β), note that by construction π∗(y3) = 0.

Then consider the following policy π such that

β log
(

π(y1)
πref(y1) · Z∗

)
= r∗(y1) − √

εdpo, and β log
(

π(y2)
πref(y2) · Z∗

)
= r∗(y2) − √

εdpo,

Then we have

Ey∼πref

(
β log

(
πdpo(y)

πref(y) · Z∗

)
− r∗(x, y)

)2
= εdpo,

thus π satisfies Assumption 3.3. Rearranging we can see that π(y1) < π∗(y1) and π(y2) < π∗(y2).

Now since π∗ = 0, we have

π∗(y1) + π∗(y2) = 1,

and combine we get π(y3) > 0, which implies KL(π||πref) is unbounded, since πref(y3) = 0.

E.2 Proof of Theorem 3.2

In this section we prove Theorem 3.2:
Theorem E.1 (Restatement of Theorem 3.2). Suppose that Assumption 3.4 holds. Then for any
reference policy πref such that Assumption 3.2 holds with εkl = 2R′

β , for any RLHF policy πrlhf with r̂

such that (c.r. Assumption 3.3),

Ex,y∼ρ◦πref

[
(r∗(x, y) − r̂(x, y))2

]
≤ εreward,

or more generally, the event in Lemma C.2 holds for r̂, we have

J(π∗) − J(πrlhf) ≤ O(Cεkl

√
εreward).

To prove this we first prove the following lemma so we can leverage Assumption 3.2:
Lemma E.1 (Restatement of Lemma 3.1). Suppose that Assumption 3.4 holds. Then for any RLHF
policy πrlhf , we have that

KL(πrlhf ||πref) := Ex∼ρEy∼πrlhf (·|x)

[
log

(
πrlhf(y | x)
πref(y | x)

)]
≤ 2R′

β
.
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Proof. since we have that πrlhf(y | x) = πref (y|x) exp(r̂(x,y)/β)
Z(x) for all x ∈ supp(ρ), y ∈ Y, we have

KL(πrlhf ||πref) = Ex∼ρEy∼πrlhf (·|x)

[
log

(
exp(r̂(x, y))

βZ(x)

)]
= Ex∼ρEy∼πrlhf (·|x)

[
r̂(x, y)

β
− log(Z(x))

]
.

Plugging in the definition of Z(x) we get

log(Z(x)) = log
(
Ey∼πref (·|x)

[
exp

(
r̂(x, y)

β

)])
≥ Ey∼πref (·|x)

[
r̂(x, y)

β

]
due to Jensen’s inequality. Thus we have

KL(πrlhf ||πref) ≤ Ex∼ρEy∼πrlhf (·|x)

[
r̂(x, y)

β

]
− Ex∼ρEy∼πrlhf (·|x)

[
r̂(x, y)

β

]
≤ 2R′

β
.

Now with Lemma 3.1, we can prove Theorem 3.2:

Proof. By Lemma C.1, we have

J(π∗) − J(πrlhf)
≤ Ex∼ρEy1∼π∗(·|x),y2∼πrlhf (·|x)

[
r∗(x, y1) − r̂(x, y1) − r∗(x, y2) + r̂(x, y2)

]
≤

√
Ex∼ρEy1∼π∗(·|x),y2∼πrlhf (·|x)

[
(r∗(x, y1) − r̂(x, y1) − r∗(x, y2) + r̂(x, y2))2

]
≤

√
C2

gloEx∼ρEy1,y2∼πref (·|x)

[
(r∗(x, y1) − r̂(x, y1) − r∗(x, y2) + r̂(x, y2))2

]
(Lemma 3.1 and Assumption 3.2)

≤ C
√

εreward. (Lemma C.2)

F Details of Section 4

F.1 Theoretical guarantee

In this section, we consider the constrained optimization version of HyPO (Eq. (6)). Note that the
reward function class is identical to DPO, i.e., Rhypo =

{
β log

(
π(y|x)

πref (y|x)Z(x)

)
| π ∈ Π

}
, where Z(x) is

the partition function. Then for each output policy πhypo, we can denote its implicit reward function
r̂hypo(x, y) := β

πhypo(y|x)
πref (y|x)·Z(x) , and similarly to Theorem 3.2, we can obtain the following guarantee in

the partial coverage condition:
Theorem F.1. For any reference policy πref such that Assumption 3.2 holds with εkl = 2R′

β , for any
HyPO policy πhypo such that the event in Lemma C.2 holds, i.e.,

Ex,y1,y2∼µ◦πref

[(
r∗(x, y1) − r∗(x, y2) − r̂hypo(x, y1) + r̂hypo(x, y2)

)2
]

≤ εhypo,

we have

J(π∗) − J(πhypo) ≤ O(Cεkl

√
εhypo).

The proof is identical to the proof of Theorem 3.2 and thus we omit the proof.
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F.2 Experiment details

In this section, we provide more details of our experiment. We use the Pythia 1.4B model (Biderman
et al., 2023) with hugging face model card: EleutherAI/pythia-1.4b-deduped. The TL;DR dataset is
available at https://github.com/openai/summarize-from-feedback. The human reference dataset
contains 117k training, 6.45K validation and 6.55K testing data. The preference dataset contains
92.9K training and 83.8K validation data. The reward evaluation and KL computation is performed
on the whole validation data of the reference dataset. The GPT winrate is computed on a subset of
600 samples from the validation data. The GPT API checkpoint we use is gpt-4-0613. We follow the
standard prompt for the winrate evaluation (e.g., see Appendix D.3 of Gao et al. (2024)). Below we
provide the hyperparameter for HyPO and DPO.

For our experiment, we run on a cluster of mixture of Nvidia A6000 and L40 GPUs with 48 GB
VRAM. We use 4 GPUs in parallel for training, and for DPO the experiment time varies from 1 hour
to 2 hour to finish, and for HyPO the time varies between 4 hours to 5 hours.

Table 2: RM/SFT hyperparameters.
Learning rate 3e-6

Batch size 64
Learning rate scheduler cosine

Optimizer Adamw
LoRA False

Table 3: DPO hyperparameters.
Learning rate 3e-6

Batch size 64
Learning rate scheduler cosine

Optimizer Adamw
β 0.05

Table 4: HyPO hyperparameters.
Learning rate 3e-6

Batch size 64
Learning rate scheduler cosine

Optimizer Adamw
β 0.05
λ 0.02
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Table 5: Lora configurations.
r 1024
α 2048

Dropout 0
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