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Agent Q: Combining Search, Self-Critique and Re-
inforcement Learning for Autonomous Web Agents

Abstract

Large Language Models (LLMs) have shown remarkable capabilities in natural lan-
guage tasks requiring complex reasoning. However, they struggle with generalizing
to multi-step reasoning tasks in interactive environments like web navigation. This
is primarily due to their pre-training on imitation learning datasets, which do not
encompass the behaviors needed for interactive decision-making. Recent works have
tried to overcome this challenge by supervised-fine tuning on curated expert demon-
strations in such environments, however such behavior cloning objectives, suffer from
compounding errors and yield sub-optimal policies due to limited exploration data.
To overcome these challenges, we propose a new methodology that combines guided
MCTS search and AI self-critique with iterative fine-tuning on agent interactions
with an off-policy variant of the Direct Preference Optimization (DPO) algorithm.
Our method allows LLM agents to learn effectively from aggregate datasets of both
successful and unsuccessful trajectories, improving their generalization in multi-step
reasoning tasks. We validate our approach in the WebShop environment, where an
agent navigates a simulated shopping website. Starting with an LLM pre-trained
on agentic tasks, our iterative fine-tuning demonstrates enhanced performance and
success rates compared to the behavior cloning and reinforced fine-tuning baseline,
showcasing the potential for improved multi-step reasoning and decision making in
interactive environments. In our real world booking experiments, we boost LLaMa-
3 zero-shot performance from 18.6% to 81.7% success rate after a single day of
data collection

1 Introduction

The recent successes of Large Language Models (LLMs) represent a significant leap in artificial
intelligence, particularly within the domain of natural language processing. Foremost models like
ChatGPT John Schulman et al. (2022), Gemini Anil et al. (2023), Opus Anthropic (2024), and
LLaMA-3 Touvron et al. (2023) demonstrate capabilities that match or even surpass human perfor-
mance on a number of tasks. These breakthroughs have extended the utility of LLMs from traditional
text-based applications to more dynamic, agentic roles, in which they do not just generate text but
can take actions autonomously in a number of environments from code to web applications (Zhang &
Zhang, 2023; Hong et al., 2023; Zhou et al., 2024; Deng et al., 2023; Gur et al., 2024) among others.
However, despite these advancements, a significant challenge persists: LLMs struggle to generalize
effectively in interactive, multi-step environments, since they are not native trained for such applica-
tions. This limitation is primarily due to traditional training approaches that rely heavily on static
imitation learning datasets, mostly consisting of web text or human-written instructions, which do
not adequately equip models to navigate the dynamic real-world interactions.

A growing literature on agentic formulation seeks to address these issues, however these works mostly
focus on building frameworks around prompt-based learning on existing models or limited fine-tuning
on static datasets, and are thus limited in their core reasoning and decision making capabilities. In
this work, we seek to design an approach that allows a web agent to improve with autonomous
experience and limited supervision.
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Figure 1: We use Monte Carlo Tree Search (MCTS) to guide trajectory collection and iteratively
improve model performance using direct preference optimization (DPO). We begin on the left by
sampling a user query from the list of tasks in the dataset. We iteratively expand the search
tree using UCB1 as a heuristic to balance exploration and exploitation of different actions. We
store the accumulated reward obtained for each node in the tree, where in this image darker green
indicates higher reward and darker red indicates lower reward. To construct the preference dataset,
we compute a weighted score of the MCTS average Q value and score generated by a feedback
language model to construct contrastive pairs for DPO. The policy is optimized and can be iteratively
improved.

Towards this goal, we introduce Agent Q - a novel approach that combines several key concepts -
search, self-critique and reinforcement learning (RL) - to demonstrate SOTA results on web inter-
action tasks. We first evaluate and find that existing open-source LLMs struggle with search and
navigation. To alleviate this issue we formulate an Monte Carlo Tree Search (MCTS) approach on
web interfaces to autonomously generate data. In order to limit the need for human supervision we
combine this data generation approach with AI-based self-critique at step level. This turns out be
critical as in our experiments LLMs struggle to learn from sparse signal in long horizons. Finally we
use this AI feedback pipeline to improve the model’s zero-shot capabilities with Direct Preference
Optimization training. This allows for a scalable self-improvement with AI feedback pipeline for
autonomous web agents.

Our methodology is rigorously tested within the WebShop environment Yao et al. (2022), a simulated
platform where an LLM agent is tasked with navigating a complex e-commerce site to locate and
select products. Starting with a robustly pre-trained LLM on agentive tasks Zhang et al. (2024),
we apply our novel training framework, which demonstrably surpasses traditional behavior cloning
methods in efficacy with close to 50% relative improvement in success rates. We further evaluate our
approach on a real world reservations booking website and improve the LLaMa 3-70B model zero-shot
absolute success rate from 18.6% to 81.7% after a single day of autonomous data collection. We
believe that our approach is an efficient pipeline for autonomous web agent improvement through
it’s search and self-critique capabilities, but a number of safety critical challenges remain before
larger scale real web deployment.

2 Preliminaries

In this section we will outline the agent framework we use for our model, and our fine-tuning
approaches.
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2.1 Agentic LLM Formulations

Consider a general setup where an agent interacts with an environment to solve tasks over discrete
time steps. At each time step t, the agent receives an observation ot ∈ O from the environment
and selects an action at ∈ A based on a policy π(at|st). Here, st = (o1, a1, . . . , ot−1, at−1, ot) is the
current state of the agent, representing the context history. For example the actions of a web agent
could be "CLICK [ELEMENT ID]", "SCROLL", "TYPE [CONTENT]" etcc.. However, directly
mapping st to at can be difficult, particularly with complex tasks that require extensive reasoning.
In this setting "zero-shot" LLM models that directly output actions from observations might struggle,
similar to standard LLM reasoning applications. Following Wei et al. (2022) a number of agentic
architectures have incorporated similar prompting approaches to improve planning and reasoning
capabilities. The ReAct framework extends the agent’s action space by incorporating "thoughts",
resulting in an augmented action space (with some abuse of notation) A = A∪L, where L denotes the
space of language actions. A language action at ∈ L, also referred to as a thought or reasoning trace,
does not affect the environment state, but allows the model additional compute time to produce the
actual environment action. Instead of using reasoning traces at each step PlanAct Liu et al. (2023)
creates a plan at the first action step and subsequently outputs direct actions, and PlanReAct is
a combination, which produces both a general plan and thoughts at each step. For our simulated
experiments on WebShop, we use ReAct prompting, following Zhang et al. (2024), while our real
website experiments utilize a version of PlanReAact, which also includes a reactive explanation for
the chosen action. For an example of a full agent trace with this format, consult appendix C.

2.2 Fine-Tuning Language Models From Feedback

Classical RLHF has used policy gradient type of algorithms, such as PPO Schulman et al. (2017),
however, they tend to require online data and are quite complex to scale and unstable to train.
While PPO has shown some success in prior web agent applications Nakano et al. (2021), the issues
above largely make the approach not practical for general web tasks, beyond information retrieval.
In this work we utilize some recent alternatives, outlined below.

2.2.1 Reinforced Fine-Tuning

Reinforced fine-tuning algorithms Zelikman et al. (2022); Gulcehre et al. (2023); Yuan et al. (2023);
Singh et al. (2024) (we collectively refer to these methods as "RFT" approaches) have grown in
popularity due to their simplicity and scalability. These methods iteratively sample a large number
of responses form a model and filter out the sub-optimal data based on some reward model or a
verifier to construct a growing dataset of high-quality examples, which is then used to train the model
with standard supervised fine-tuning (SFT), which we can easily extend to the agentic multi-step
setting.

2.3 Direct Preference Optimization

Direct Preference Optimization (DPO) Rafailov et al. (2023) is an alternative to the classical
RLHF optimization pipeline. The original formulation considers feedback of pairwise comparisons
(s, aw, al), where s is a single prompt and sw and sl are two responses with sw ≻ sl indicating that
sw is preferred over sl. While the algorithm was developed in a bandit setting Rafailov et al. (2024)
has extended it to multi-turn settings over trajectories, using an objective of the form:

LDPO(πθ; πref) = −E(τw,τl)∼D
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where πref is a reference distribution (usually the base model being fine-tuned) and where at are
again composite actions. The DPO algorithm has recently gained popularity, due to it’s simplicity
and performance Dubois et al. (2024); Tajwar et al. (2024). In addition, a key advantage is the ability
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to utilize offline and off-policy data, which is crucial for agentic applications where online learning
and exploration can be potentially unsafe. In our experiments we contrast successful trajectories τw

with unsuccessful ones τ l for the same task (i.e. both trajectories start with the same user prompt).
While this work did not explicit formulate the algorithm for agentic settings, it is easy to adapt the
derivations there to the web navigation problem, since the environment is also deterministic.

3 Preliminary End-to-End Approach

In this section we first explore a preliminary approach to optimizing web agents based on end-to-
end training with DPO. Our initial approach applied DPO in an online iterative fashion similar to
Munos et al. (2023); Yuan et al. (2024); Pang et al. (2024), which yielded some improvement, but
training was unstable and had variable performance. We attribute to a form of over-optimization
Gao et al. (2023); Park et al. (2024), with concurrent works on DPO reasoning approaches making
similar observations Pang et al. (2024); Hwang et al. (2024). Inspired by the Q-learning formulation
of DPO Rafailov et al. (2024) we design a data accumulation with a replay buffer approach, which
we found to be more stable, since the data training distribution is more stationary. Moreover, in
this algorithm the reference probability πref is the data-generation distribution of the replay buffer
B and by caching the log-likelihoods during the trajectory generation phase we can dispose of the
separate reference model during training, which can be computationally quite untactful at larger
scales.

For our initial experiments we use the standard WebShop environment Yao et al. (2022), where the
agent needs to find particular products by browsing a simulated web shop. In this environment, we
are provided with continuous rewards at the terminal state which use a combination of programmatic
matching functions that consider the attributes, type, options, and price for a product. We use ReAct
prompting Yao et al. (2023) with the AgentOhana xLAM-v0.1-r model Zhang et al. (2024), which is
a fine-tune of a pre-trained Mixtral-8x7B-Instruct-v0.1 model Jiang et al. (2024) on a mix of agentic
applications, including WebShop SFT data. We incorporate the same system prompt specified by
the AgentLite Liu et al. (2024) work to ensure a fair comparison between our trained model and the
xLAM base model performance.

Figure 2: Succeess rate of different approaches on
the WebShop Yao et al. (2022) task. All models
are based on xLAM-v0.1-r Zhang et al. (2024).

The results of our experiments are shown in
Fig. 2. The base model achieves a success rate
of 28.6% and improves to 31.3% with STaR-
based RFT training, as outlined in Section 2.2.1
and 40.6% with outcome-based trajectory DPO
training as in Section 2.3. We hypothesize
that the RFT approach yields limited improve-
ment as the base xLAM model has already been
trained on WebShop demonstrations data and
similarly to the standard language generation
problem, in the agent setting mode-covering ob-
jectives also under-perform DPO Tajwar et al.
(2024). The best-of-n approach independently
samples n trajectory rollouts for the same ini-
tial prompt at temperature of t = 0.2 (we found
higher temperature sampling to under-perform)
and reports the performance of the best roll-
out (in this case success). While end-to-end
DPO yields significant improvement over the
base model, it still meaningfully under-performs
the best-of-8 baseline, which is close to the av-
erage human performance. We identify that one

of the core failure modes of the policy at this stage is that it executes a greedy search when looking
for matches to the product query. For example, for every search query, the WebShop environment
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yields a number of pages of results. However, we find that the model nearly always greedily searches
for the best matching item in the first page of results rather than using the "[Next]" and "[Prev]"
buttons to navigate between pages. Moreover using the DPO-tuned model in this setting does not
yields only marginal improvement (0.2%) over the base model, despite significant difference in zero-
shot performance of the two models. We can gain further inside from combining the DPO-trained
model with beam-search during generation. As shown in Rafailov et al. (2024) this is equivalent to
a best-first search using a DPO implicit value function when generating composite actions. This
approach yields only marginal improvement over standard sampling-based approach from the DPO
agent. These results reveal two related issues with the end-to-end approach for agent optimiza-
tion - a simple exploration approach such as best-of-8 outperforming the DPO agent indicates that
the agent is not able to learn an optimal exploration strategy. Moreover, adopting the Q-learning
formulation of DPO Rafailov et al. (2024), we see that search-based optimization does improve
meaningfully over the sub-optimal exploration strategy. Given that the environment is determinis-
tic and tree-structured, this indicates that the DPO agent is not able to learn full credit
assignment from outcome supervision only. This finding matches recent works on training
LLM reasoning systems on math/code generation Xie et al. (2024); Hwang et al. (2024) with find
meaningful improvement from step-level feedback and verification.

4 Combining Search and DPO

As we discovered in the previous section, while end-to-end training with DPO yields meaningful
improvement, the model is not able to learn optimal search and credit assignment from sparse
feedback. In this section, we aim to demonstrate further improvements to model performance by
using a guided search strategy (MCTS) for data collection and AI feedback to generate process
supervision at the step level.

4.1 Monte-Carlo Tree Search

The Monte Carlo Tree Search (MCTS) algorithm employed in this work leverages a mathematical
framework to guide the iterative preference learning effectively. MCTS consists of four phases:
selection, expansion, simulation, and backpropagation. Each phase plays a critical role in balancing
exploration and exploitation while iteratively refining the policy.

4.1.1 Selection

The selection phase uses the Upper Confidence Bound (UCB1) formula to select nodes which aims
to balance exploration and exploitation:

a∗
t+1 = arg max

a

[
Q(st, a) + cexp ·

√
log N(st)

1 + N(st+1)

]
,

where Q(st, a) represents the estimated value of taking action a in state st, N(st) is the visitation
frequency of state st, and cexp is an exploration constant. For each rollout added to the tree, we
start at the root node and follow the child states that maximize the UCB1 score until we reach a
leaf node. This process is repeated for each tree/prompt in the batch.

4.1.2 Expansion

In the expansion phase, unlike traditional finite action spaces in games such as Chess or Go, web
interactions have a free-form nature. To sample the space of actions, we generate K completions
from the policy to expand the given state. To effectively learn from self-generated data, we require
a diverse set of explored actions at each state. We encourage generation diversity using a high
sampling temperature and instructions to generate creative actions in the system prompt. These
modifications significantly improve the diversity of actions.
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4.1.3 Simulation and Backpropagation

Once actions are expanded, the simulation phase begins; beginning from the selected state node’s
trace, we roll out the trajectory using the current policy πθ until a terminal state is reached. The
environment returns a reward at the end of the trajectory, R. We then backpropagate this reward
multiplied by some discount factor, γ by updating the values of each node bottom up from the leaf
node to the root as follows:

Q(st, a)← Q(st, a) + γT −tR

N(st, a)← N(st, a) + 1

where γ is the discount factor for future state values.

Each state node tracks two values: Q(st, a), the total sum of rewards that were achieved by passing
through this state and choosing action a and N(st, a), the number of times it was visited during
search. Hence, the expression Q(st,a)

N(st,a) provides an approximation (that improves with more rollouts)
of the value of taking this action.

4.2 Preference Pair Construction with AI Feedback

We incorporate AI-collected feedback to provide process supervision at the step level to enhance
the quality of the preference pairs we will train on. We use the LLaMA-3-70B-Instruct model to
produce a feedback score for each action by asking it to rank the generated actions by its perceived
utility in helping the agent complete the user task. We use the following prompt:

"{System Prompt} Rather than generate an action for the instructions above, choose between the
following actions. Each action has been given feedback, which is also provided. Actions and Feed-
back: {Generated Actions and Feedback} Select the better action. Give your answer as JSON, with
the keys ’reasoning’ and ’ranking’. The value of ’ranking’ should be an integer corresponding to the
best action. The value of ’reasoning’ should be a string explaining your reasoning for the ranking.
Reflect on the feedback provided for each action."

We query the feedback model for multiple iterations, each time removing the best action selected
from the previous iteration from the list, until we have a full ranking of all actions. The resulting score
for each action is recorded as F (st). To construct the preference dataset for policy improvement,
we evaluate each inner node in the MCTS and attempt to find contrastive pairs. Each child node
receives a score based on two components: the Q value from the MCTS iteration and the LLM
feedback score. The LLM feedback score is derived from the prompt mentioned above and provides
an additional evaluation layer.

Using the ordering generated from the LLM prompt, we assign an F (st) score to each child state.
The total Q value at each state is then a weighted sum of the original Q value and the feedback
score:

Q′(st, a) = αQ(st, a) + (1− α)F (st).

We then compute the average Q value, normalized by visitation count for each node, and construct
pairs where the positive sample branch has a reward at least greater than a threshold value Qmin.
By comparing each pair of nodes (if there are k children, we consider

(
k
2
)

pairings), we identify
higher reward trajectories and lower reward trajectories to form pairs. Once we have collected the
preference dataset, we apply Direct Preference Optimization (DPO) over the pairings to fine-tune
the final model. Our full algorithm is outlined in detail in Appendix A.
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5 Extended Experiments

5.1 Tasks

For our full set of experiments, we test our method over the Webshop environment and a more
complex real world environment, OpenTable.

5.1.1 OpenTable

In OpenTable, the agent is tasked with booking a restaurant reservation for a user. The agent must
find a restaurant page on the OpenTable site, look for a reservation at a certain date and time,
choose seating options that align with a user’s preference and submit the user contact information
to complete the task successfully. Since OpenTable is a live environment and is difficult to progra-
matically measure metrics for, we use a language model, GPT-4-V to collect sub-rewards for each
trajectory, based on the following metrics: Date and Time set correctly, Party Size set correctly,
User information entered correctly, clicked complete reservation. Task completion is measured by
the above properties being satisfied. To generate queries for the OpenTable benchmark dataset, we
programatically generate a diverse set of user queries by combining the restaurant name, desired
date and time, and user information.

Navigating on live websites pose a wide variety of challenges. Some examples include: (1) If the user
specifies a restaurant in a different city than the location the browser is initialized in, the model will
have to take extra steps to find the restaurant. (2) If the exact user requested date and time are
not available, the model may have to choose the closest available reservation slot. (3) If there are
preferences, such as indoor or outdoor seating options that the model is presented with, the desired
behavior is to interact with the user to determine the best course of action. OpenTable presents
a different much more complex set of challenges for web navigation agents; the number of steps
required to complete the task is on average 13.9 steps, over double the average number of steps for
Webshop, 6.8. We show that collecting data via MCTS and improving the policy via DPO we can
significantly boost performance of the model.

Figure 3: Success rates of different approaches on
the OpenTable benchmark.

For the observation space for this environ-
ment, we design a condensed state represen-
tation that crawls the raw HTML content of
a website to retrieve relevant visual compo-
nents, and highlight interactive elements to
the model. See appendix C for more details
on the condensed representation. The agent
is allowed the actions, "CLICK [ID]", "GOTO
[URL]", "TYPE [ID] [TEXT]", "SUBMIT [ID]",
"CLEAR [ID]", "SCROLL [UP/DOWN]", and
"ASK USER HELP". For OpenTable experi-
ments, we use the LLaMA-3-70B-Instruct model
as the initial policy. We find that the superior
reasoning abilities of this class of model is re-
quired for effective task completion, which is
necessary to produce the diverse success and
failure trajectories required to effectively im-
prove the policy using DPO.

5.2 MCTS

In this set of experiments, we extend our iterative DPO method by collecting data via guided search
(MCTS) as outlined in the prior section. Note that while our proposed algorithm is designed for
iterative policy improvement, the results in this section are only from a single iteration due to time
and compute constraints.
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We conduct two different ablations for collecting data in the Webshop environment, where we change
the number of sampled actions per node during the MCTS expansion phase. We found that MCTS
guided sampling improved WebShop performance, but was not able to significantly improve suc-
cess rates we achieve from best-of-n performance. Further, we found that larger branching factor
rollouts slightly boosted performance. With the branching factor, k set to 3, we see a performance
improvement to 42.03% success rate. When k is set to 5, we see performance up to 42.4% success
rate. In Webshop, due to the model’s tendency to select products in the first set of search results,
we speculate that this improvement from higher branching comes from more effective search queries
that the model learns to prioritize, as well as learning to inspect products in more detail before
selecting them, as can be seen in Figure 1.

MCTS enables significant improvements in performance over the base policy in the OpenTable
environments. Since the condensed DOM representations we designed for general websites are too
large to fit multiple observations in a single context, we don’t use ReaAct prompting in this setting.
Rather, we provide the agent with the system prompt, condsed summary of action history, and the
current observation. We conduct 3 experiments in the OpenTable environment, first using outcome
supervision DPO as we did with Webshop, MCTS without LLM feedback during preference pair
construction, and MCTS with LLM feedback. We find that due to the larger action space and
more diverse observations, it was easy to incentivize the language model agent to produce diverse
actions for every node expansion, and speculate that this enables a stronger learning signal for policy
improvement. From the supervised fine-tuned model performance, MCTS and DPO without LLM
feedback yields a gain from 67% success rate to 75.2%, and with LLM feedback, we gain 67% to
81.7% success rate. We speculate that the improvement from LLM feedback can be attributed from
being able to precisely fix minute errors where value estimates might be sparse. For example, we
found many instances where the agent intended to click a particular date/time but used the wrong
element ID. The model would occasionally recover from these scenarios or obtain a partial reward
from the environment, but these situations were easy for the LLM feedback agent to mark as negative
samples during preference pair construction and provide a stronger learning signal. Please refer to
Appendix C to see examples of the agent trajectories and failure modes.

6 Discussion

In this work we developed algorithms for autonomous improvement of web-agents with limited human
supervision. While most prior works build frameworks around existing models without additional
training, we specifically seek to fine-tune pre-trained models for web navigation tasks based on
synthetic data. We extend the Direct Preference Optimization algorithm to multi-turn planning
and reasoning interactive agents and show that we can meaningfully improve performance on a
simulated web shopping environment. However with harder tasks and increased complexity of a real
world reservation booking website we discover that the agent struggles with learning coherent search
and credit assignment from sparse outcome feedback only, achieving only small overall improvement.
To alleviate these issues we combine guided MCTS search over the web in combination with step-level
AI self-critique for data generation. We then deploy a DPO feedback optimization at branch-level,
which boots the performance of our real website agent by close to 15% total success rate. We
believe our work opens up a number of avenues for further study. In particular, given the weekly
supervised nature of our approach, we believe it is quite promising for autonomous self-improvement
of general web-agents, beyond applications to a single task. While we did not explicitly pursue this
direction in the current work, we believe that deploying smart search algorithms at inference time
as alternative to zero-shot performance is another promising direction. However this approach also
faces a number of limitations - doing tree-based search in dynamic and long-context environments can
be complex and challenging, especially given the large scale DOM representation of web-pages and
limited model context lengths. This can also be a challenge at inference time, given longer horizon
tasks. Moreover, potentially deploying agents with free access to the web and personal details carries
a number of security and privacy risks, which would require a robust safety infrastructure in place
before deploying to safety-critical applications, such as personal communication, banking etc.
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A Full MCTS Guided Direct Preference Optimization Algorithm

Algorithm 1 MCTS Guided Direct Preference Optimization
Input: πθ0 : initial LLM policy, DT : dataset of tasks the agent must complete in the environment,
N : Number of iterations, B: Number of samples per iteration, T : MCTS tree depth, B: replay
buffer, K: Number of actions to sample for MCTS
Output: πθN

, the trained LLM policy
for i = 1 to N do

πref ← πθi
, πθi

← πθi−1

Sample a batch of B tasks from DT

for each task in batch do
Initialize the root node s0
for t = 1 to T do

Selection: Traverse the tree from the root node to a leaf node using tree policy (UCB1)
Expansion: If the leaf node is not a terminal state, sample K actions from policy
Simulation: Simulate the rollout from the expanded node to obtain a value estimate
Backpropagation: Backpropagate the value estimate bottom-up

end for
Collect trajectories from rollouts and store them in replay buffer B

end for
Construct preference pairs P = {(st, a

(t)
w , a

(t)
l )}T −1

t=1 where st ∼ DP . For each node at step
level t, compare each pair of child nodes, and construct the pair of generated actions (aw, al) if
the values of taking the action, |Q′(st, aw)−Q′(st, al)| > θthreshold

Optimize LLM policy πθi using DPO objective with P and πref
end for
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B Webshop Environment Details

Here we show the Webshop system prompt which outlines the observation and action spaces of the
environment.

C OpenTable Agent Interaction Examples

C.1 Example of Agent Input and Output

Here we demonstrate an example of the agent’s input from the environment which includes a system
prompt about the rules that the agent must follow, a execution history which is a condensed history
actions that the agent has executed in prior steps and the current observation which is a condensed
representation of the HTML DOM.

The agent output involves an optional plan, chain of thought, and the finally the list of commands
that the agent must output.

C.2 Successful Task Completion

C.3 Failure Mode: Wrong Date

C.4 Failure Mode: Stuck in a loop
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Figure 4: Example of the agent’s prompting and interaction with live websites.
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Figure 5: Examples of the agent’s prompting and interaction with live websites.
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(a) Step 1: Agent generates a correct plan and successfully clicks search bar and searches for the user
restaurant

(b) Step 2: Agent clicks on correct restaurant.

(c) Step 3-8: Agent modifies the party size, date, and time to match user request.

(d) Step 9: Agent successfully enters user contact information and completes reservation

Figure 6: Examples of a successful interaction.
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(a) Agent thinks it has set the date and time, but has only set the search query date/time.

(b) Agent does not realize the search query date and time has not applied to the actual reservation.

Figure 7: Examples of agent not setting correct date time.
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(a) Agent continues clicking element ID 12, presumably expecting something to change in the environment,
but is clicking on the textbox.

(b) Agent continues to click the same button in a loop.

Figure 8: Examples of agent not setting correct date time.


