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Abstract

In reinforcement learning (RL), the reward function is a concise yet complete form
of task specification. While often used to provide learning supervision to an RL
agent, different reward functions can also characterize the varying behaviors in
an environment by the optimal policies they induce. In unsupervised reinforce-
ment learning, an agent autonomously learns a family of intrinsic reward functions
and corresponding policies with shared latent skill codes. A skill discriminator
parametrizes the intrinsic reward function with a neural network where different
skill codes correspond to different behaviors. In Intrinsic Reward Matching (IRM),
we propose to use this often discarded skill discriminator to understand and use
the learned skill policies. Given a downstream task reward function, we use the
EPIC reward comparison metric to compare the extrinsic reward function to the
skill discriminator-parameterized intrinsic reward function, enabling us to deter-
mine which skills correspond to policies that are behaviorally similar to the optimal
policys for the new task. We then optimize this metric as a black-box to find the
optimal skill and evaluate the skill policy on the downstream task. We demonstrate
experimentally that the skill policies IRM selects zero-shot achieve high rewards on
the Fetch Tabletop Manipulation and Franka Kitchen domains. Furthermore, we
show how IRM can provide insight into the relationships between pretrained skills
and downstream tasks.

1 Introduction

Reinforcement learning has seen a rise in multi-task, generalist agents with vast skill repertoires
that rival the performance of specialist agents and can even generalize to out-of-distribution tasks
(Reed et al., 2022; Kalashnikov et al., 2021). In particular, skill-based unsupervised RL (Laskin
et al., 2022; Liu & Abbeel, 2021; Sharma et al., 2020) shows promise of acquiring similarly useful
behaviors but without the expensive per-task supervision required for conventional multi-task RL.
During pretraining, unsupervised skill discovery methods learn a discriminator-parameterized family
of reward functions corresponding to a family of policies, or skills, through a shared latent code.
While prior work has typically focused on learning and composing skills (Sharma et al., 2020; Laskin
et al., 2022; Park et al., 2022), we explore how the skill discriminator’s intrinsic rewards from
pretraining can shed light on the behavioral semantics of the skill policies they induce.

In this work, we present Intrinsic Reward Matching (IRM), an algorithmic methodology for lever-
aging the learned intrinsic reward function to understand and use pretrained skills. Centrally, we
introduce a novel approach to viewing the intrinsic reward model as a multitask reward function
that, via zero-shot task inference, enables us to select the optimal pretrained policy for a down-
stream, extrinsic task reward. Instead of discarding the skill discriminator during finetuning as is
often done in prior work (Sharma et al., 2020; Laskin et al., 2022; Park et al., 2022; Gregor et al.,
2016; Achiam et al., 2018; Baumli et al., 2020), we discover that the discriminator is an effective
task specifier for its corresponding skill policies which can be matched with extrinsic reward func-
tions. Our approach views the extrinsic reward as a distribution with measurable proximity to a
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Figure 1: Our proposed method, Intrinsic Reward Matching (IRM), selects an optimal skill that best
solves a user-specified reward function. (1) After learning the skills using an off-the-shelf method,
(2) our method identifies the most relevant skill based on reward similarity.

pretrained multitask reward distribution and formulates an optimization with respect to skills over
a reward distance metric called EPIC (Gleave et al., 2020). We demonstrate experimentally that by
minimizing the EPIC distance between the discriminator-parameterized intrinsic reward and a new
downstream extrinsic reward as a black box, we can select a skill policy from pretraining that best
accomplishes the new task without environment interactions. Furthermore, by analyzing the EPIC
loss profile over skill trajectories for different task rewards, we derive insight into the behavioral
relationships between pretrained policies and downstream tasks.

2 Background

2.1 Unsupervised Skill Pretraining

The skill learning literature has long sought to design agents that autonomously acquire structured
behaviors in new environments (Thrun & Schwartz, 1994; Sutton et al., 1999; Pickett & Barto,
2002). Recent work in competence-based unsupervised RL proposes generic objectives encouraging
the discovery of skills representing diverse and useful behaviors (Eysenbach et al., 2019; Sharma
et al., 2020; Laskin et al., 2022). A skill is defined as a latent code vector z ∈ Z that indexes the
conditional policy π(a|s, z). In order to learn such a policy, this class of skill pretraining algorithms
maximizes the mutual information between sampled skills and their resulting trajectories τ (Gregor
et al., 2016; Eysenbach et al., 2019; Sharma et al., 2020) :

I(τ, z) = H(z) − H(z|τ) = H(τ) − H(τ |z)

Commonly, methods consider τ = s or τ = (s, s′) (Eysenbach et al., 2019; Gregor et al., 2016). We
leave more details in Appendix A.2. Since the mutual information I(s, z) is intractable to calculate
in practice, competence-based methods instead maximize a variational lower bound proposed in
(Barber & Agakov, 2003) which is parameterized by a learned neural network function qϕ(τ, z) called
a skill discriminator. This discriminator, along with other terms independent of z, parameterizes an
intrinsic reward that the skill policy π(·|s, z) maximizes during pretraining. Given an unseen task
specification, the agent needs to infer which skill produces the most relevant behaviors.

2.2 Pretrained Multitask Reward Functions

We observe that the intrinsic reward function learned during skill pretraining can be viewed as a
multitask reward function, where the continuous skill code z determines the task. In other words,
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we have some function:
Rint(τ, z) := VLB(τ, z)

where VLB ≤ I(τ, z) is the variational lower bound proposed in (Barber & Agakov, 2003) (τ is a
trajectory, e.g. (s, s′)). Since skill discovery algorithms maximize I(τ, z), we view its parameterized
lower bound VLB as a multitask reward function: scoring transitions based on alignment with a
skill code (Laskin et al., 2022).

2.3 Equivalent-Policy Invariant Comparison

We can formalize a general notion of reward function similarity by equivalent-policy invariant com-
parison (EPIC) as established in (Gleave et al., 2020). EPIC defines a distance metric between two
reward functions such that similar reward functions induce similar optimal policies. We consider the
case of action-independent reward:

DEPIC(RA, RB) = EsP ,s′
P

∼DP ,SC ,S′
C

∼DC
[Dρ(C(RA)(sP , s′

P , SC , S′
C), C(RB)(sP , s′

P , SC , S′
C))].

where Dρ(X, Y ) =
√

1−ρ(X,Y )
2 is the Pearson distance between two random variables X and Y ,

sP , s′
P are samples from the Pearson distribution DP , and SC , S′

C are batches sampled from the
Canonical distribution DC . We compute the Pearson distance over Pearson samples sP , s′

P , with
additional canonicalization with batches Sc, S′

c to ensure invariance over constant shifts and scaling.
The canonicalized reward function is defined as:

C(R)(sP , s′
P , SC , S′

C) = R(sP , s′
P ) + E[γR(s′

P , S′
C) − R(sP , S′

C) − γR(SC , S′
C)]

where R : S × S → R is a reward function and γ is the discount factor (Gleave et al., 2020). The
expectation is taken over the Canonical distribution DC ; for simplicity, we sample these batches
SC , S′

C ∼ DC ahead of time. The canonicalization ensures invariance to reward shaping, so rewards
that have different shaping but induce similar optimal policies are close in distance. In practice, the
final term can be omitted as the Pearson correlation is invariant to constant shifts and scaling.

The EPIC psuedometric has typically been used for benchmarking algorithms and evaluating learned
reward functions (Michaud et al., 2020; Liang et al., 2022). To our knowledge, IRM is the first to
use EPIC in an optimization objective, particularly for complex tasks and larger state dimensions.

3 Intrinsic Reward Matching

3.1 Task Inference via Intrinsic Reward Matching

A multitask reward function that can supervise the learning of diverse behaviors is useful in its own
right. However, in the case of skill-based RL, we have additionally learned a corresponding π(a|s, z).
Therefore, for any “task” that can be specified by our intrinsic reward function, we already have an
optimal policy, so long as we condition on the corresponding skill. If we have learned a sufficiently
diverse library of skills, we might expect that some of our skills share behavioral similarity to the
optimal policy for the downstream task. Thus, we may also expect that the corresponding intrinsic
reward for that skill is a semantically similar task specification to the downstream task.

Given this interpretation of intrinsic reward, we posit that identifying which of our pretrained skills
to apply to a downstream task can be reframed as inferring which task in our multitask reward
function is most similar to the downstream task. Moreover, we should hope to find the skill code z
that produces the reward function most semantically aligned with the downstream task reward.

With this formalism, we can formulate the task inference problem as the following optimization:

z∗ = arg min
z

DEPIC(Rint(τ, z), Rext(τ))
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in order to find z∗ most aligned with Rext. Moreover, Equation 3.1 performs a minimization of a
novel loss we name the EPIC loss with respect to the skill z. By EPIC’s equivalence class invariance
(Gleave et al., 2020), we know that if the EPIC loss is small for some z∗, and π(a|s, z∗) is near
optimal for Rint(τ, z∗), then π(a|s, z∗) approaches the optimal policy for the task specified by Rext.
Notably, we require access to the task reward function Rext to compute the EPIC loss.

Computing Rint during reward matching For many skill pretraining methods (Laskin et al.,
2022; Sharma et al., 2020), the agent requires negative samples in order to compute the variational
objective in Equation 2.2 and avoid a degenerate optimization where all embedded trajectories have
high similarity with all skills. Negative samples correspond to trajectories collected by other skill
codes z′ ̸= z. However, during the selection phase when skills are fixed, negative sampling amounts
to a constant reward offset which does not impact the task semantics. Furthermore, since we may
not in general have access to a large amount of negative samples on a given downstream task, we
choose to simplify the objective to the following:

Rint(τ, z) := VLB(τ, z) ≡ qϕ(τ, z)

where qϕ is the skill discriminator. This parameterization of the intrinsic reward preserves the
alignment semantics of VLB without the normalization by negative samples.

3.2 EPIC Sample-Based Approximation

We make a number of sample-based approximations of various unknown quantities in order to
concretize the continuous optimization Equation 3.1 as a tractable loss minimization problem.

Canonical State Distribution Approximation: In order to canonicalize our reward functions,
we estimate the expectation over the state and next state distributions with a sample-based aver-
age over 1024 samples. These distributions can be entirely arbitrary, though using heavily out-of-
distribution samples with respect to pretraining can weaken the accuracy of the approximation. We
choose to instantiate a uniform distribution bounded by known workspace constraints for both of
these distributions.

Sampling Distribution for Pearson Correlation: We find that generating samples uniformly
roughly within the environment workspace bounds, just as with the reward canonicalization, often
leads to strong approximations. Furthermore, as both sample generation and relatively inexpen-
sive function evaluation are independent of any online interactions, we can perform the full skill
optimization as a self-contained preprocess to downstream policy adaptation without any environ-
ment samples. Rough knowledge of workspace bounds represents some amount of prior environment
knowledge. We ablate various sampling distribution choices in Table 3 and present the full algorithm
in Algorithm 1.

Algorithm 1: Intrinsic Reward Matching (IRM)
Require: Downstream task T , DP , DC

Require: Pretrained policy πθ(a|s, z), intrinsic reward rint(s, s′, z), and extrinsic reward
rext(s, s′) for T .

1 while not converged do
2 Sample a batch of Pearson samples SP , S′

P ∼ DP , DP .
3 Sample Canonical samples SC , S′

C ∼ DC , DC .
4 Calculate EPIC Loss as DEPIC(rint, rext) = Dρ(CDC

(rint), CDC
(rext)) (Equation 2.3).

5 Take optimization step on batch with respect to z (Equation 3.1).
6 end while

4 Experiments
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Fetch and Franka Kitchen
Environments

Figure 2: In our Fetch Push en-
vironment, we discover skills that
move the block in different direc-
tions. Downstream tasks may in-
volve simple goals or more distant
goals that require composition of
multiple skills across an extended
time horizon and around obstacles.
In Franka Kitchen, the agent dis-
covers skills that interact with var-
ious rigid and articulated objects in
the scene, which are then leveraged
to accomplish diverse tasks.

In this section we experimentally evaluate whether IRM can
leverage the intrinsic reward function to identify relevant skills
for a downstream reinforcement learning task.

Environments We design both a goal reaching and a tabletop
pushing environment in the OpenAI Gym Fetch environment
(Brockman et al., 2016). For the reaching tasks, the robot
arm is tasked with reaching towards one (Reach) or many suc-
cessive (Reach Seq) specified target locations. For the block
pushing (Push) environments, we introduce obstacles (Barrier,
Tunnel) around which the policy must manipulate the object
(Figure 2). Further task design details are provided in Ap-
pendix A.5. In addition, we evaluate IRM on 4 manipulation
tasks in the Franka Kitchen benchmark (Fu et al., 2020). We
use default shaped environment rewards for each task.

Baselines We evaluate 2 variants of IRM that use different
optimization methods for minimizing EPIC loss. First, IRM
CEM uses the Cross Entropy Method (CEM), a Monte-Carlo
optimization method, to minimize EPIC loss (described in Ap-
pendix A.7). IRM Gradient Descent minimizes the EPIC loss
using the Adam optimizer to backpropagate through the dis-
criminator to regress the optimal skill.

In addition, we benchmark traditional skill selection ap-
proaches. The Grid Search (GS) baseline coarsely sweeps each
of 10 skills evenly from the all 0’s skill vector to the all 1’s skill
vector and selects the skill which achieves the best empirical
reward over an episode (Laskin et al., 2022). Env Rollout sam-
ples 10 skills uniformly at random from the skill distribution to evaluate with a rollout and chooses
the skill with the highest empirical reward (Laskin et al., 2022). Env Rollout CEM optimizes the
episode reward by using the Cross-Entropy Method (described in Appendix A.7). Random Skill se-
lects a skill uniformly at random from the skill distribution to use for the downstream task (Laskin
et al., 2021; Eysenbach et al., 2019).

Figure 3: IRM approaches with various optimization
methods, even without environment samples, perform
favorably in reward compared to environment rollout-
based and random skill selection methods.

Evaluation For pretraining skills, we use
the Contrastive Intrinsic Control (CIC)
(Laskin et al., 2022) algorithm. We use a
skill dimension of 8 for Fetch Tabletop Ma-
nipulation and a skill dimension of 2 for
Franka Kitchen. First, we pretrain each
RL agent with the intrinsic rewards for
2M steps. We then evaluate the rewards
achieved by the selected skill policy but
without any RL updates on the task re-
ward. We report all results averaged over 3 seeds with standard error bars.

4.1 Fetch Tabletop Manipulation and Franka Kitchen

On the Fetch Reach task, IRM outperforms or performs similarly to environment-rollout methods
while requiring no environment samples to perform skill selection. As shown in Figure 3, the random
skill policy performs poorly and with high variance relative to IRM and environment-rollout based
methods. Next, we evaluate IRM on more complex manipulation tasks involving pushing a block
to a goal position. This more complex task similarly benefits from bootstrapping the appropriate
pretrained skill policy, evidenced by the performance gap of selection based methods over random
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Figure 5: The IRM methods outperform trial-based baselines on Franka Kitchen tasks and without
the additional requirement of online environment samples to determine the optimal skill for the
downstream reward. When IRM CEM is not visible, note that its value is the same as the IRM GD.

Figure 7: The IRM methods achieve high rewards without environment samples on more complex,
long-horizon tasks by finding the skill that matches the intrinsic reward of the discriminator and the
task extrinsic reward.

skill selection. Although Env Rollout CEM can be a strong interaction baseline for of zero-shot
reward, far exceeding a reasonable budget of interactions entirely on skill selection.

EPIC Loss Visualizations

Figure 4: EPIC losses between extrin-
sic rewards and intrinsic rewards condi-
tioned on the skill. We sweep over the
2D skill vector for a planar agent.

On the Franka Kitchen tasks shown in Figure 5, IRM
matches or outperforms the evaluated baselines, while not
requiring access to the environment to select an optimal
skill. In the case of the Slide Cabinet and Hinge Cabinet
tasks, the selected skill is able to fully solve the down-
stream task zero-shot. For the Light Switch task, IRM
performs comparably to the best rollout-dependent base-
lines, however, does so without any access to the envi-
ronment, making IRM plausibly more practical for task
adaptation when a downstream task reward is provided.
Overall, the very low zero-shot performance and often high
variance of the random skill policy baseline on this bench-
mark points to the importance of skill selection methods
for adapting pretrained behaviors.

4.2 Skill Sequencing for Long-Horizon Manipulation

Many realistic downstream tasks derive additional complexity from temporally extended planning
horizons. We demonstrate that IRM can be used to select sequences of skills to solve longer-horizon
tasks with a few assumptions. We consider the long-horizon setting where we have a sequence of
reward functions over task horizon H. Central to the skill selection problem is determining over
what time intervals should potentially different pretrained skills be selected. In this work, we also
predetermine a fixed skill horizon ⌊H/N⌋, where N is the number of rewards. However, this skill
horizon could also be specified as a parameter and learned from the task reward signal. Next,
to perform skill selection over each time interval, we perform the IRM algorithm in parallel or
sequentially for each reward. We note the key assumption that IRM requires access to the reward
functions for each of the subtasks. For example, for a sequential goal reaching task, we divide the
episode into N segments for each of the N goals and corresponding rewards. We perform the IRM
skill selection algorithm for each reward to select the optimal skill per interval.

We demonstrate that IRM can be extended to solving long-horizon tasks in the setting of tabletop
manipulation. During the unsupervised pretraining phase, skill discovery methods can acquire useful
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Figure 8: (left) Scatter plot of extrinsic reward vs. EPIC loss. (middle left-middle right) Skill
trajectories with low / high EPIC losses for planar goal-reaching. (right) Skill traj. for Fetch Reach.

skills such as directional block pushing or pushing the block to certain spatial locations. We show
that IRM can select a sequence of such skills to via reward matching. For the Fetch Reach Sequential
tasks, we consider an extended horizon where the agent reaches a sequence of goals in a particular
order. For the Fetch barrier tasks, we consider the environments such as depicted in Figure 2, where
the agent navigates around a barrier unseen during the pretraining phase. The tunnel environments
consists of a goal enclosed in a tunnel; the agent navigates around and into the tunnel to complete
the task. We compare IRM methods to an environment rollout baseline, Env Seq, and a hierarchical
RL baseline, HRL, similar to (Eysenbach et al., 2019) in Figure 7. The IRM Seq methods select skills
based on each defined sub-task’s reward function according to the IRM optimization scheme. Env
Seq chooses the best combination of skills based on extrinsic reward from rollouts. HRL initializes
a low-level policy with the pretrained skills and optimizes a randomly initialized manager policy
over the skill policies. In both experimental settings, IRM methods perform favorably, and crucially,
unlike the evaluated baselines, do rely heavily on environment trial-and-error to select a skill. While
HRL can take advantage of the shaped rewards to choose skills, optimizing another skill selection
policy with reinforcement learning requires many more expensive samples and can often be difficult
to tune in practice (Eysenbach et al., 2019; Pertsch et al., 2020). Further task and algorithm baseline
implementation details are provided in Appendix A.10.

4.3 Analysis and Ablations

Figure 6: The IRM method outperforms baselines with
the DADS skill discovery algorithm, whilst still using
no environment interactions to find the best skill.

How Can We Understand IRM Op-
timization? In Figure 8, we verify that
EPIC loss is negatively correlated with ex-
trinsic reward on a Planar Goal Reaching
task detailed in Appendix A.9. This pro-
vides some evidence that optimizing for a
low EPIC loss can lead to higher environ-
ment reward. In Figure 4, we plot EPIC
losses between intrinsic rewards and goal-reaching rewards across the 2D continuous skill space. Not
only is the loss landscape smooth, motivating optimization methods like gradient descent, but there
is also a banded partitioning of the manifold. The latent skill space is well-structured: different
darker-colored partitions of the skill space correspond to the skills with low EPIC loss from each
task reward. In Figure 8, skills with the lowest EPIC loss receive high extrinsic reward, reaching
the goal with high spatial precision. Skills with the highest losses produce the opposite behavior,
moving in the direct opposite direction of the goal. In the sequential case, low-EPIC loss skills
attempt to reach the 1st goal then the 2nd goal, while high-EPIC loss skills perform the behavior in
the inverse order. The intrinsic reward module provides deeper insight into the semantics of skills
than the extrinsic rewards obtained by skill policy rollouts.

Matching Metric Ablation We validate the importance of employing the EPIC pseudometric by
ablating its contribution against more naive selections in Figure 9. L1 and L2 losses are common
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metrics in supervised regression problems but are poor choices for comparing task similarity with
rewards. Moreover, rewards can have arbitrary differences in scaling and shaping that L1 and L2 are
not invariant to. To strengthen these comparisons, we include a learned reward scaling parameter
for L1 and L2 and similarly observe that EPIC is a superior matching metric.

Figure 9: The IRM method is more
effective due to the scale and shap-
ing invariances of the EPIC metric.

Skill Discovery Algorithm Ablation We show that IRM
can work for another popular mutual information maximiza-
tion, RL skill discovery algorithm, DADS (Sharma et al., 2020).
We validate on the Fetch Reach task that IRM CEM and IRM
GD match or outperform all episode rollout baselines in zero-
shot episode reward as shown in Figure 6.

4.4 Related Work

Several works, including Sharma et al. (2020); Eysenbach et al.
(2019); Achiam et al. (2018); Gregor et al. (2016); Baumli et al.
(2020); Florensa et al. (2017); Laskin et al. (2022); Campos
et al. (2020), employ mutual information maximization for skill pretraining. Recent works, such as
Park et al. (2022; 2023a;b); Yang et al. (2023); Zhao et al. (2022), derive alternate intrinsic rewards
for skill discovery due to known issues with mutual-information objectives. For skill selection,
Laskin et al. (2022) leverages coarse grid search, while Sharma et al. (2020) plan through a learned
skill dynamics model during finetuning. Rather than generating reward maximizing plans through
possibly complex environment dynamics, we match the policy to task rewards directly through a
pretrained discriminator.

Related to zero-shot skill selection is zero-shot reinforcement learning, in which an RL agent can
zero-shot solve a task after reward-free pretraining. In Forward-Backward (FB) (Touati et al.,
2023; Touati & Ollivier, 2021), learning expected state occupancy can enable quick adaptation to
new tasks, and in Successor Features (Barreto et al., 2016) arbitrary rewards can be parameterized
linearly in some learned features and a task vector (Liu & Abbeel, 2021; Barreto et al., 2016) enabling
task inference to become a linear regression problem. By contrast, our approach searches for a
pretrained task with minimal proximity to an arbitrarily parameterized task reward. In addition,
zero-shot adaptation using successor features uses Generalized Policy Improvement to extract an
improved policy (Barreto et al., 2016), thus requiring access to successor features for previous
policies and tasks during inference. By contrast, IRM selects a skill within the existing policy, and
does not require access to other policies or rewards during execution.

4.5 Discussion

We present Intrinsic Reward Matching (IRM), a framework for understanding the behaviors of
pretrained skills and using them to solve new tasks. We instantiate a practical algorithm for imple-
menting this framework and demonstrate that IRM is effectively able to select pretrained skills for
new task rewards without additional environment rollouts. IRM diverges from past works in lever-
aging the skill discriminator to match the learned family of intrinsic rewards to the new extrinsic
task reward. Central to our contribution is a novel loss function, the EPIC loss, which serves as both
a skill selection utility as well as a new way to interpret the task-level semantics of pretrained skills.
We demonstrate experimentally on a variety of tasks that with two different black-box optimizers,
we can minimize the EPIC loss to find the best pretrained skill for the downstream reward.

We acknowledge a number of limitations of our approach. IRM relies on samples of the state, roughly
within workspace boundaries as well as access to an external reward function, ideally well-shaped,
which trades off with IRM’s reduced reliance on environment interactions. In order to obtain realistic
image samples to compute the EPIC loss, an agent could learn an expressive generative model over
the image states obtained during pretraining and sample from the model to generate diverse and
realistic sampled states. This represents an interesting direction for future work.

8



Under review for the Reinforcement Learning Conference (RLC)

References
Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery

algorithms. CoRR, abs/1807.10299, 2018. URL http://arxiv.org/abs/1807.10299.

David Barber and Felix V. Agakov. The im algorithm: A variational approach to informa-
tion maximization. In NIPS, pp. 201–208, 2003. URL http://papers.nips.cc/paper/
2410-information-maximization-in-noisy-channels-a-variational-approach.

André Barreto, Rémi Munos, Tom Schaul, and David Silver. Successor features for transfer in
reinforcement learning. CoRR, abs/1606.05312, 2016. URL http://arxiv.org/abs/1606.05312.

Kate Baumli, David Warde-Farley, Steven Hansen, and Volodymyr Mnih. Relative variational in-
trinsic control. CoRR, abs/2012.07827, 2020. URL https://arxiv.org/abs/2012.07827.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Víctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giró-i-Nieto, and Jordi
Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. CoRR,
abs/2002.03647, 2020. URL https://arxiv.org/abs/2002.03647.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2019.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical rein-
forcement learning. CoRR, abs/1704.03012, 2017. URL http://arxiv.org/abs/1704.03012.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Adam Gleave, Michael Dennis, Shane Legg, Stuart Russell, and Jan Leike. Quantifying differences
in reward functions. CoRR, abs/2006.13900, 2020. URL https://arxiv.org/abs/2006.13900.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. CoRR,
abs/1611.07507, 2016. URL http://arxiv.org/abs/1611.07507.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic re-
inforcement learning at scale, 2021. URL https://arxiv.org/abs/2104.08212.

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Ler-
rel Pinto, and Pieter Abbeel. URLB: unsupervised reinforcement learning benchmark. CoRR,
abs/2110.15191, 2021. URL https://arxiv.org/abs/2110.15191.

Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel.
Cic: Contrastive intrinsic control for unsupervised skill discovery, 2022. URL https://arxiv.
org/abs/2202.00161.

Xinran Liang, Katherine Shu, Kimin Lee, and Pieter Abbeel. Reward uncertainty for exploration in
preference-based reinforcement learning, 2022. URL https://arxiv.org/abs/2205.12401.

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features, 2021.

Eric J. Michaud, Adam Gleave, and Stuart Russell. Understanding learned reward functions. CoRR,
abs/2012.05862, 2020. URL https://arxiv.org/abs/2012.05862.

Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
constrained unsupervised skill discovery, 2022.

9

http://arxiv.org/abs/1807.10299
http://papers.nips.cc/paper/2410-information-maximization-in-noisy-channels-a-variational-approach
http://papers.nips.cc/paper/2410-information-maximization-in-noisy-channels-a-variational-approach
http://arxiv.org/abs/1606.05312
https://arxiv.org/abs/2012.07827
https://arxiv.org/abs/2002.03647
http://arxiv.org/abs/1704.03012
https://arxiv.org/abs/2006.13900
http://arxiv.org/abs/1611.07507
https://arxiv.org/abs/2104.08212
https://arxiv.org/abs/2110.15191
https://arxiv.org/abs/2202.00161
https://arxiv.org/abs/2202.00161
https://arxiv.org/abs/2205.12401
https://arxiv.org/abs/2012.05862


Under review for the Reinforcement Learning Conference (RLC)

Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsupervised
skill discovery, 2023a.

Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-aware
abstraction, 2023b.

Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. Accelerating reinforcement learning with learned
skill priors, 2020.

Marc Pickett and Andrew G Barto. Policyblocks: An algorithm for creating useful macro-actions
in reinforcement learning. In ICML, volume 19, pp. 506–513, 2002.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake
Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals,
Mahyar Bordbar, and Nando de Freitas. A generalist agent, 2022. URL https://arxiv.org/
abs/2205.06175.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=HJgLZR4KvH.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):
181–211, 1999. ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(99)00052-1. URL
https://www.sciencedirect.com/science/article/pii/S0004370299000521.

Sebastian Thrun and Anton Schwartz. Finding structure in reinforcement learning. In
G. Tesauro, D. Touretzky, and T. Leen (eds.), Advances in Neural Information Processing Sys-
tems, volume 7. MIT Press, 1994. URL https://proceedings.neurips.cc/paper/1994/file/
7ce3284b743aefde80ffd9aec500e085-Paper.pdf.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards, 2021.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist?,
2023.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding, 2019.

Rushuai Yang, Chenjia Bai, Hongyi Guo, Siyuan Li, Bin Zhao, Zhen Wang, Peng Liu, and Xuelong
Li. Behavior contrastive learning for unsupervised skill discovery, 2023.

Andrew Zhao, Matthieu Gaetan Lin, Yangguang Li, Yong-Jin Liu, and Gao Huang. A mixture of
surprises for unsupervised reinforcement learning, 2022.

10

https://arxiv.org/abs/2205.06175
https://arxiv.org/abs/2205.06175
https://openreview.net/forum?id=HJgLZR4KvH
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://proceedings.neurips.cc/paper/1994/file/7ce3284b743aefde80ffd9aec500e085-Paper.pdf
https://proceedings.neurips.cc/paper/1994/file/7ce3284b743aefde80ffd9aec500e085-Paper.pdf


Under review for the Reinforcement Learning Conference (RLC)

A Appendix

A.1 Background and Notation

Markov Decision Process: The goal of reinforcement learning is to maximize cumulative reward
in an unknown environment it interacts with. The problem can be modelled as a Markov Decision
Process (MDP) defined by (S, A, P, r, γ), where S is the set of states, A is the set of actions, P is
the transition probability distribution, r is the reward function and γ is the discount factor.

Unsupervised Skill Discovery: In competence-based unsupervised RL the aim is to learn skills
that generate diverse and useful behaviors (Eysenbach et al., 2019). The broad aim is to learn policies
that are skill-conditioned and generalizable. Formally, we also learn skills z ∈ Z and take actions
according to a ∼ π(·|s, z). As an illustrative example, applying this formalism to the Mujoco Walker
domain, we might hope to find a skill-conditioned policy and skills zwalk, zrun such that π(·|s, zwalk)
makes the agent walk, while π(·|s, zrun) makes it run. Further, if we allow for continuous skills, we
can also imagine being able to use the policy to “jog" at different speeds by interpolation the zwalk
and zrun skills. That is, taking zα

jog = α · zwalk + (1 − α) · zrun should, intuitively, yield a policy
π(·|s, zα

jog) that makes the agent jog at speed dictated by the parameter α.

A.2 Competence-Based Skill Discovery

Competence-based skill discovery algorithms aim to maximize the mutual information between tra-
jectories and skills:

I(τ ; z) = H(z) − H(z|τ) = H(τ) − H(τ |z)
Since the mutual information I(s; z) is intractable to calculate, in practice, competence-based meth-
ods maximize a variational lower bound. Many mutual information maximization algorithms, such
as Variational Intrinsic Control (Gregor et al., 2016) and Diversity is All You Need (Eysenbach
et al., 2019), use the estimate I(τ ; z) = H(z) − H(z|τ). Other competence-based methods, such as
Dynamics-Aware Unsupervised Discovery of Skills (Sharma et al., 2020), Active Pretraining with
Successor Features (Liu & Abbeel, 2021), and Contrastive Intrinsic Control (CIC) (Laskin et al.,
2022), maximize a lower bound for H(τ) − H(τ |z).

While the decompositions of the mutual information objective are equivalent, algorithms make dif-
ferent design choices regarding how to approximate entropy, represent trajectories, and embed skills.
These choices affect the distillation of skills: for instance, without explicit maximization of H(τ)
in the decomposition of mutual information, behavioral diversity may not be guaranteed when the
state space is much larger than the skill space (Laskin et al., 2022).

A.3 CIC

Contrastive Intrinsic Control (CIC) (Laskin et al., 2022) is a state of the art algorithm for
competence-based skill discovery. CIC maximizes a lower bound for I(τ ; z) = H(τ) − H(τ |z)
through a particle estimator for H(τ) and a contrastive loss from Contrastive Predictive Coding
(CPC) (van den Oord et al., 2019) for H(τ |z). The lower bound for I(τ ; z) is:

I(τ ; z) ≥ FCIC(τ ; z) := Hparticle(τi) + E

qϕ(τi, zi) − log 1
N

N∑
j=1

exp(qϕ(τj , zi))


where Hparticle(τ) ∝

∑n
i=1 log ||hi −h∗

i ||, h∗
i is the k-Nearest Neighbors embedding, Nk is the number

of k-NNs used to approximate entropy, and N − 1 is the number of negative samples.

A.4 DADS

We additionally use Dynamics-Aware Unsupervised Discovery of Skills (DADS) (Sharma et al.,
2020) for skill discovery, as it is one of the few skill discovery algorithms to successfully scale up
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to continuous skills. DADS maximizes a lower bound for I(τ ; z) = H(τ) − H(τ |z) through learning
skill-conditioned transition distributions. The lower bound for I(τ ; z) is:

I(τ ; z) ≥ FDADS(τ ; z) := log qϕ(s′|s, z)∑L
i=1 qϕ(s′|s, zi)

+ log L

For our experiments, we reimplement the on-policy DADS algorithm in PyTorch. We follow the
default hyperparameters and train for 20 million environment steps (Sharma et al., 2020).

A.5 Environment Details

For our Fetch Reaching environment, we use the Gym Robotics Fetch environment (Brockman et al.,
2016). We set the time limit to 200. For the fetch push environment, we partition the continuous
action space into 4 actions, which involve pushing the block forward, backward, left, and right. This
is a modification from the original environment, which we implement to ensure more coherent skill
learning in a continual action space. We set the time limit to 10 for skill learning.

We evaluate sequential skill selection on Fetch Reach and Fetch Push. For the Fetch Push agent,
we have a Barrier and Tunnel environment, each with 3 waypoints, depicted in Figure 2. We fix a
time horizon of 30 pushes per waypoint. For Fetch Barrier, the easy task consists of the first two
waypoints (L shape), and the hard task consists of all three (U shape). For Fetch Tunnel, the easy
task consists of the last two (into the tunnel), and the hard task consists of all three waypoints (side
of the tunnel, and then into the tunnel). For Fetch Reach, we consider 2 waypoints and a time
horizon of 25 for each waypoint. The extrinsic reward function for Fetch Reach and Push tasks are
negative L2 distances from the goals.

Our plane environment is a 2D world with observations in [-128, 128] x [-128, 128] and continuous
actions in [-10, 10] x [-10, 10]. The extrinsic reward function is the negative L2 distance from the
goal.

The Franka Kitchen Environment is a standard benchmark consisting of a 9 dof Franka Arm in
a Kitchen Environment with a variety of rigid and articulated objects. The benchmark specifies
several goals with rewards for reaching those goals. The 7d action space includes the end-effector 3d
translation, 3d rotation, and a gripper open/close dimension. The state includes the joint positions
corresponding to each dof of the arm in addition to the joint positions of articulated bodies and
7-dimensional position and orientation information for rigid objects in the scene. The Kettle task
involves moving the kettle to a target burner location on the stove. The Hinge and Slide Cabinet
tasks involve opening cabinet drawers with revolute and prismatic joints respectively. The Light
Switch task involves flipping the switch for the stove light.

The Franka kitchen rewards are negative L2 distances to goals. For the Kettle task, the goal is a
translational and rotational space position goal. For the hinge cabinet task, it is a target rotational
angle. For the slide cabinet task, it is a target prismatic joint position. For the light switch task, it
is a target rotation angle. The latter three task rewards are somewhat sparse because there is no
negative L2 distance reward in 3D Cartesian space for reaching the correct articulated object.

A.6 Pretraining Hyperparameters

We include hyperparameters in Table 1. For the on-policy DADs algorithm, we do not keep any
off-policy samples in a replay buffer.

A.7 Cross-Entropy Method (CEM)

In IRM CEM and Env Rollout CEM, we use the Cross-Entropy Method, a Monte-Carlo method for
optimization. The Cross-Entropy Method consists of iterating between two phases: (1) Sampling
from a probability distribution (2) Fitting a probability distribution on the drawn samples. In our
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Fetch Reach Franka Kitchen
Skill Dim 8 2
Discriminator MLP Hidden Dim 64 64
α (CIC entropy weight) 0 0.1
Replay Buffer Size 100k 100k

Table 1: Pretraining Hyperparameters.

implementation of CEM, we draw a batch of samples (hyperparameters listed in the section below)
and select the number of elites, which are the samples with the ideal optimization value (i.e. the
lowest EPIC loss or highest environment reward). Then, we fit the mean and standard deviation
of a Gaussian to the domain of the elites (i.e. mean and variance of sampled skills). Then, we
repeat the process of sampling skills from the updated distribution, selecting elites, and refitting the
probability distribution.

A.8 Matching Algorithm Hyperparameters

IRM CEM and Env Rollout CEM are trained for 5 iterations with 1000 samples at each iteration
and 100 elites selected each iteration. Env Rollout CEM consumes the entire downstream finetuning
budget on just skill selection. For illustrative purposes, we start its plot at 50k steps to show that
finetuning still occurs; however, sample-inefficiency suffers due to excessive rollouts for skill selection.
This problem only worsens for long time horizons. IRM Gradient Descent is trained for 5000 steps
with a learning rate of 5e-3 and initialized at the skill vector of all 0.5s. IRM Random selects 100
random skills. Env Rollout trials 10 random skills for a fully episode. Grid Search coarsely trials 10
skills from the skill of all 0s to the skill of all 1s as in (Laskin et al., 2021).

A.9 Planar Goal Reaching

The planar goal reaching task consists of a simple 2D plane with a point with a 2D Cartesian state
space that can displace in the x and y coordinates with a 2D action space. Skills learned tend to
span the 2D space reaching to diverse locations distributed broadly across the environment.

A.10 Sequential Skill Selection

For sequential skill selection, we compare IRM Sequential and Environment Sequential skill selection.
IRM Sequential consists of an iterative process. The first skill is chosen entirely free of environment
samples, exactly identical to the single-skill tasks. Once the first skill is chosen, we roll out a
trajectory with the skills we have chosen so far and use the latter half of the trajectory as the
Pearson samples for our EPIC loss. For our Fetch Reach environments, each skill is rolled out for
25 steps, and for Fetch Barrier and Tunnel environments, each skill is rolled out for 30 steps. For
instance, Fetch Barrier Hard and Fetch Tunnel Hard consist of tasks with 3 sequential skills: thus,
during skill selection, the first skill is selected without any environment steps, the second skill is
selected by rolling out the first skill (30 environment steps), and the third skill is selected by rolling
out the first two skills (60 steps). Thus, for our sequential skill selection tasks, this amounts to 25
environment steps in Fetch Reach Seq Easy and Hard; 30 environment steps for Fetch Barrier Easy;
30 + 60 = 90 steps for Fetch Barrier Hard; 30 steps for Fetch Tunnel Easy; 30 + 60 = 90 steps for
Fetch Tunnel Hard.

We use Gaussian noise with variance 1 for our Canonical samples as described in Appendix A.13.
At each step of the skill selection process, we use the corresponding IRM optimization methods.

For our Environment Sequential skill selection method, we select skills iteratively as well. For
each waypoint or subtask, we randomly sample N skills and commit to the best, where N =
⌊10/n_subtasks⌋. Per each subtask, we roll out the selected skills from the previous subtasks (if
there are previous subtasks), and then roll out N different skills. Concretely, for Fetch Reach Seq
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EPIC Loss Visualizations

Figure 10: We examine EPIC losses between extrinsic rewards and intrinsic rewards conditioned on
the skill vector. We sweep across the 2D skill vector for a pretrained planar agent. Left: Sparse
goal-reaching reward with tolerance of 0.03. Right: Sparse goal-reaching reward with tolerance of
of 0.07.

Skill Dim IRM CEM IRM GD Env Roll. Env CEM GS Rand
8 21.1 ± 0.51 15.7 ± 1.61 18.4 ± 0.18 18.8 ± 0.48 17.9 ± 0.101 13.5 ± 1.85
16 17.4 ± 1.30 14.6 ± 0.63 22.7 ± 0.83 23.1 ± 0.36 14.0 ± 0.19 11.2 ± 2.32
32 20.1 ± 0.54 22.5 ± 0.25 22.2 ± 0.58 21.5 ± 0.67 24.0 ± 0.12 19.9 ± 0.67
64 21.9 ± 0.48 1.68 ± 0.069 22.5 ± 0.70 21.6 ± 0.89 18.2 ± 0.059 13.3 ± 2.15

Table 2: IRM methods and environment rollout methods ablated over multiple skill dimensions on
Fetch Push

Easy and Hard, there are a total of 25 * 3 = 75 environment steps for selecting the first skill, and
(25 + 25) * 3 = 150 environment steps for selecting the second skill, leading to a total of 225 steps.
For Fetch Barrier Easy, N = 5, and there is a total of 30 * 5 + (30 + 30) * 5 = 450 steps. For Fetch
Barrier Hard, N = 3, and there is a total of 30 * 3 + (30 + 30) * 3 + (30 + 30 + 30) * 3 = 540
steps. For Fetch Tunnel Easy, N = 5, and there is a total of 30 * 5 + (30 + 30) * 5 = 450 steps.
For Fetch Tunnel Hard, N = 3, and there is a total of 30 * 3 + (30 + 30) * 3 + (30 + 30 + 30) * 3
= 540 steps.

A.11 Sparse Reward Ablation

We ablate our planar EPIC Loss visualizations with sparse rewards. Instead of a well-shaped goal-
reaching reward, we use sparse rewards based on the tolerance to the goal. We define the tolerance
as the radius the agent must be within if our 2d planar environment is scaled to [0, 1] x [0, 1]. With
a very sparse reward, we show that EPIC losses are largely uninformative. However, by slightly
relaxing the tolerance, we show a much better shaped EPIC loss landscape that bears similarity to
that of Figure 4. Thus, while our method is dependent on access to extrinsic rewards, and ideally,
shaped rewards, we show that the EPIC loss landscape over sparse reward landscapes with sufficient
tolerance can be optimized.

A.12 Skill Dimension Ablation

We ablate skill dimension and evaluate the zero-shot performance of all skill selection methods.
IRM’s performance generally increases with increased skill dimension despite discriminator over-
fitting issues associated with larger skill spaces. The IRM GD learning rate is chosen as 5e-3 for
all experiments in this work and is not tuned at all. Such likely explains the divergence of the 64
dimensional result.
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A.13 Pearson & Canonical Distribution Ablation

We experiment with many ways to approximate the Pearson and Canonical distributions. We de-
fined Full Random to be our uniform samples from a reasonable estimate of the upper and lower
bounds for each dimension of the state. For our planar environment, the bounds are defined explic-
itly and thus known; for more complex environments, we estimate the bounds. For example, for
a tabletop manipulation workspace, we sample 2-dimensional block positions uniformly within the
rectangular plane of the table surface. In practice, IRM is fairly robust to the distributions, though
there are subtleties that emerge in the various choices for the Pearson and Canonical distributions.
For instance, we also ablate a Uniform(0,1) distribution, which generally performs much worse, due
to lack of state coverage for most environments. For the Canonical distribution, we also approxi-
mate samples by perturbing the Pearson samples by ϵ sampled from a Gaussian distribution. We
experiment with hyperparameters of variance, which may be adjusted based on the environment.
For our sequential IRM method, we use this Canonical distribution to ablate on-policy samples.

We leave more general options such as sampling from a learned generative model over trajectories
encountered during pretraining or sampling from saved pretraining data to future work.

Pearson Distribution Canonical Distribution IRM CEM
Full Random Full Random 20.341 ± 0.306
Full Random Uniform(0,1) 16.343 ± 0.708
Full Random ϵ ∼ N (0, 1) 21.191 ± 0.629
Full Random ϵ ∼ N (0, 0.1) 21.027 ± 0.419
Uniform(0,1) ϵ ∼ N (0, 1) 5.905 ± 3.157
Uniform(0,1) ϵ ∼ N (0, 0.1) 2.851 ± 0.605

Table 3: EPIC Loss Sampling Distribution Ablations.

None of the distributions ablated above require on-policy environment samples. It is possible to use
on-policy samples for the state distributions, and we choose to do so for our sequential IRM method,
as previous skill rollouts may provide useful Pearson samples for the subsequent skill selection. Note
that while on-policy Canonical samples are possible, they are incredibly expensive and require access
to the environment simulator, so we focus on other choices of distributions.

Task IRM CEM IRM GD Env Roll. Env CEM GS Rand
Fetch Reach 95.9 ± 1.0 87.5 ± 0.20 85.0 ± 6.2 87.8 ± 1.9 97.3 ± 0.00 16.7 ± 19
Fetch Push 80.2 ± 2.5 73.1 ± 0.48 74.3 ± 0.92 75.4 ± 2.6 72.1 ± 0.00 51.5 ± 12.5

Table 4: IRM with various optimization methods compared to environment rollout-based skill se-
lection and random skill selection. IRM based methods rival or exceed skill selection baselines that
are reliant on expensive environment trials.

Task IRM CEM IRM GD Env Roll. HRL
Fetch Reach Seq Easy 89.5 ± 0.34 86.7 ± 0.64 80.7 ± 4.7 28.4 ± 31.0
Fetch Reach Seq Hard 66.4 ± 1.1 72.4 ± 3.3 62.7 ± 6.1 28.0 ± 30.6
Fetch Barrier Easy 49.0 ± 22.1 57.5 ± 9.5 65.5 ± 9.0 30.1 ± 20.0
Fetch Barrier Hard 48.1 ± 17.8 88.2 ± 10.4 65.4 ± 5.6 42.8 ± 18.2
Fetch Tunnel Easy 40.8 ± 13.0 49.1 ± 8.4 52.2 ± 9.1 32.2 ± 13.9
Fetch Tunnel Hard 58.4 ± 1.8 35.7 ± 1.3 14.5 ± 4.8 33.7 ± 13.9

Table 5: Rewards on long-horizon manipulation tasks
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Task IRM CEM IRM GD Env Roll. Env CEM GS Rand
Kettle 105 ± 0.00 96.2 ± 6.3 105 ± 0.27 105 ± 0.00 89.1 ± 0.00 18.7 ± 26.4
Slide Cabinet 5.00 ± 0.00 5.00 ± 0.00 4.81 ± 0.13 5.00 ± 0.00 3.51 ± 0.00 2.00 ± 0.34
Hinge Cabinet 175 ± 0.00 175 ± 0.00 175 ± 0.00 175 ± 0.00 175 ± 0.00 7.02 ± 75
Light Switch 182 ± 9.3 187 ± 12.9 190 ± 13.4 208 ± 0.32 141 ± 0.00 53.7 ± 31

Table 6: Rewards for Franka Kitchen tasks
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