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Abstract

A hallmark of intelligent agents is the ability to learn reusable skills purely from1

unsupervised interaction with the environment. However, existing unsupervised2

skill discovery methods often learn entangled skills where one skill variable si-3

multaneously influences many entities in the environment, making downstream4

skill chaining extremely challenging. We propose Disentangled Unsupervised5

Skill Discovery (DUSDi), a method for learning disentangled skills that can be6

efficiently reused to solve downstream tasks. DUSDi decomposes skills into dis-7

entangled components, where each skill component only affects one factor of the8

state space. Importantly, these skill components can be concurrently composed9

to generate low-level actions, and efficiently chained to tackle downstream tasks10

through hierarchical Reinforcement Learning. DUSDi defines a novel mutual-11

information-based objective to enforce disentanglement between the influences of12

different skill components, and utilizes value factorization to optimize this objective13

efficiently. Evaluated in a set of challenging environments, DUSDi successfully14

learns disentangled skills, and significantly outperforms previous skill discovery15

methods when it comes to applying the learned skills to solve downstream tasks1.16

1 Introduction17

Reinforcement learning (RL) algorithms have achieved many successes in complex tasks, from18

magnetic plasma control [10] to automobile racing [47]. However, applying existing RL algorithms19

to every new task in a tabula rasa manner often results in low sample efficiency that limits RL’s20

broader applicability. Unsupervised skill discovery holds the promise of improving the sample21

efficiency of Reinforcement Learning, by learning a set of reusable skills through reward-free22

interaction with the environment that can be later recombined to tackle multiple downstream tasks23

more efficiently. In practice, prior unsupervised RL skills are represented as a policy that conditions24

on a skill variable to generate diverse behaviors, and have led to successful and efficient learning of25

downstream tasks when combined with skill fine-tuning or hierarchical RL skill selection [12, 22].26

Despite prior successes, a common limitation of the skills learned by existing unsupervised RL27

methods is that they are entangled: any change in the skill variable causes the agent to induce changes28

in multiple dimensions of the state space simultaneously. Learning to use and recombine these29

entangled skills can be extremely hard for an agent trying to solve downstream tasks, especially in30

complex domains like multi-agent systems or household humanoid robots, where the agent needs to31

concurrently change multiple independent dimensions of the state to complete the task. For example,32

consider an agent learning to drive: if a single skill variable simultaneously changes the speed,33

steering, and headlights of the car, it will be extremely challenging for the agent to learn how to34

1Website: https://sites.google.com/view/dusdi
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Prior Works DUSDi (ours)

Figure 1: Consider an agent practicing driving skills by learning to control a car’s speed (length of orange arrow),
steering (curvature of orange arrow), and headlights (blue symbol), (Left) previous unsupervised skill discovery
methods learn entangled skills, where a change in the skill variable can cause all three environment factors to
change (Right) DUSDi learns disentangled skills with concurrent components, where each skill component only
affects one factor of the state space, enabling efficient downstream task learning with hierarchical RL.

turn on/off the headlights while keeping the car at the right speed and direction. In contrast, humans35

naturally have the ability to concurrently and independently adjust the car’s acceleration, steering,36

and headlights based on the car’s current speed, surroundings, and lighting conditions. In other words,37

humans learn disentangled skill components where each component only affects one or few state38

variables, and can be easily recombined into compositional skills.39

In this work, we aim to create such a mechanism for artificial agents to learn disentangled skills40

that facilitate solving downstream tasks. We introduce Disentangled Unsupervised Skill Discovery41

(DUSDi), a novel method for unsupervised discovery of disentangled skills. A key insight of42

DUSDi is to take advantage of state factorization that is naturally available in unsupervised RL43

environments [12, 32, 16] (e.g. speed, direction, and lighting conditions of the car in the driving44

example; the state of different objects in a household environment). These factored state spaces45

provide a natural inductive bias we leverage for disentanglement: DUSDi decomposes skills into46

disentangled components, and encourages each skill component to affect only one state factor while47

discouraging it from affecting any other factors. To that end, DUSDi designs a novel intrinsic reward48

based on mutual information (MI) between disentangled skills and state factors: the learning agent49

receives high reward for 1) increasing the MI between a state factor and the skill component assigned50

to change it, and 2) for decreasing the MI between that skill component and all other state factors.51

DUSDi introduces a set of technical innovations to efficiently optimize the proposed mutual infor-52

mation objective. Once the DUSDi skills are learned, they can be used as the low-level policy in a53

hierarchical reinforcement learning (HRL) setting to tackle downstream tasks. Compared to using54

entangled skills, a key benefit of using the disentangled DUSDi skills is that they guarantee more55

efficient exploration during downstream task learning and therefore often lead to significantly better56

performance. Furthermore, the structured skill space of DUSDi opens up additional possibilities to57

inject domain knowledge into the learning process to further improve downstream task learning.58

DUSDi is easy to implement and can be integrated into any MI-based unsupervised skill discovery59

approach. In our experiments, we integrate DUSDi with DIAYN [12] and evaluate the performance60

on four domains: a 2D agent navigation domain, a DMC walker domain, a large-scale multi-agent61

particle domain, and a 3D realistic simulated robotics domain. Our experiments indicate that DUSDi62

can indeed learn disentangled skills, and significantly outperforms other Unsupervised Reinforcement63

Learning methods on solving complex downstream tasks with HRL.64

2 Preliminaries65

Factored Markov Decision Process (f-MDP) In this work, we consider unsupervised skill discov-66

ery in a reward-free Factored Markov Decision Process. Following Osband and Van Roy [30], we67

define a Factored Markov Decision Process by the tuple M = (S , A, P), where S = S1 × · · · × SN68

is a factored state space with N factors such that each state s ∈ S consists of N state factors:69

s = (s1, . . . , sN ), si ∈ Si. A is the action space, and P is an unknown Markovian transition model,70

S ×A → S. Notice that a factored state space is often naturally available in domains used by71

prior works [12, 22, 32, 16, 8] as it can naturally represent environments with separate elements72

(e.g., objects) that can be changed independently. In domains with only image-based (unfactored)73
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Figure 2: Two learning stages of DUSDi: (a) in disentangled skill learning stage, DUSDi creates a one-to-one
mapping between state factors and skill components — each disentangled skill component zi only influences
state factor si. DUSDi designs a novel mutual-information-based intrinsic reward to enforce disentanglement
and utilize Q-value decomposition to learn the skill policy πθ efficiently. (b) in the task learning stage, the skill
policy is used as a frozen low-level policy and a high-level policy πhigh is learned to select skill z for every L
steps, by maximizing the task reward rtask.

observations, a factored state space can be extracted using disentangled representation learning or74

object-centric representation learning methods [29, 18], which we empirically evaluated in Sec. 4.5.75

Mutual-Information-Based Skill Discovery Mutual-information-based skill discovery methods,76

such as the paradigmatic DIAYN [12], specify the skills with a latent variable z ∈ Z , and learns a77

skill-conditioned policy π(a|s, z). The optimization objective these methods use to learn the skills78

is to maximize the mutual information (MI) between the state, s, and the skill latent variable, z:79

I(S;Z), which incentivizes the agent to reach diverse and distinguishable states. One popular way to80

determine the MI, I(S;Z), is to decompose it as I(S;Z) = H(Z)−H(Z | S), where H denotes81

entropy. Since the skill variable is typically sampled from a fixed distribution, H(Z) can be assumed82

constant: maximizing I(S;Z) is thus equivalent to minimizing H(Z | S). Following the definition83

of conditional entropy, −H(Z | S) = Es,z[log p(z|s)], DIAYN proposes to approximate p(z|s) with84

a learned discriminator q(z|s) that predicts the skill latent, z, given the state, s.85

After discovering the skills, mutual-information-based methods apply them to learn downstream86

reward-supervised tasks. Many methods (e.g., DIAYN) adopt a hierarchical RL structure for this87

second phase, where the skill policy is used as a low-level “frozen” element, and a high-level policy88

πhigh(z|s) learns to sequentially activate skill z based on observations. The high-level policy is trained89

to maximize the provided task reward, R, with Z as the action space.90

3 Learning Disentangled Skills with DUSDi91

DUSDi acts in two phases: in the first phase, DUSDi learns disentangled skills without external92

reward (Sec. 3.1). The key to DUSDi’s success is to encourage disentanglement between different93

skill components through a novel learning objective that restricts the effect of each disentangled skill94

component to independent factors. In the second phase, DUSDi learns to perform downstream tasks95

with explicit reward supervision using a Hierarchical RL architecture, achieving higher returns than96

methods with entangled skills (Sec. 3.3). In practice, learning disentangled skills in environments97

with many factors can be challenging. To address this challenge, we introduce improvements to98

DUSDi’s first phase based on Q-function decomposition (Sec. 3.2). We present the entire DUSDi99

pipeline in Fig. 2, and the pseudo-code in Appendix A.100

3.1 Disentangled Skill Spaces and Learning Objective101

DUSDi aims to create disentangled skill components that can be easily recombined to solve down-102

stream tasks. To that end, DUSDi proposes a novel factorization of the latent skill conditioning103

variable, z, into N independent disentangled components such that the latent space Z becomes104

Z = Z1 × · · · × ZN . We equate N to the number of state factors and consider zi ∈ Zi the disentan-105

gled skill component that affects state factor i. The skill policy π(a|s, z) takes in z ∈ Z , which is a106

composition of the skill components.107
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While, in principle, the factored latent space could be discrete or continuous, without loss of generality108

we assume in this paper that the skill space is discrete, which also leads to more clarity in the109

presentation. We can then assume that each disentangled component zi takes the form of an integer,110

zi ∈ [1, k], resulting in a compositional skill, z, with the form of a N -dimensional multi-categorical111

vector with kN possible values. During skill training, we independently sample each disentangled112

component zi from a fixed uniform distribution p(zi), similar to Eysenbach et al. [12].113

Given this factored skill space, our goal is to learn a skill policy network, πθ : S ×Z 7→ A,114

such that each disentangled component Zi affects and only affects the value of a state factor,115

Si. For each disentangled component and state factor pair (Zi,Si), we encourage diverse and116

distinguishable behaviors by maximizing their mutual information I(Si;Zi). While this objective117

enables a disentanglement skill component to affect the corresponding factor, it does not restrict the118

component from affecting other factors. This is undesirable since the resulting skill components119

would still be entangled in their effects. To prevent that, we propose to ensure that each skill120

component, Zi, minimally affects the rest of the state factors, S¬i, where S¬i denotes the subspace121

formed by all other state factor spaces except Si: S1 × . . . ,Si−1 ×Si+1 × · · · × SN . Specifically,122

we incorporate an entanglement penalty to minimize, I(S¬i;Zi), which corresponds to the mutual123

information between a skill component and all other state factors that it should not affect.124

Formally, the skill policy aims to maximize the following objective:125

J (θ) =

N∑
i=1

I(Si;Zi)− λI(S¬i;Zi), (1)

where λ < 1 is a hyperparameter that controls the importance of the entanglement penalty relative to126

the skill-factor association. We restrict λ to be smaller than one for the following reason: in some127

environments, due to intrinsic dynamical dependencies between state factors themselves, controlling128

a state factor, Si, has to introduce some association between Zi and other factors in S¬i, e.g., when129

controlling an object whose manipulation requires the agent to use other objects as tools. In these130

cases, as the policy learns to maximize the MI between a skill and a factor, I(Si,Zi), the MI with131

other factors, I(S¬i;Zi), may also increase. For these cases, the use of λ < 1 will ensure that the132

entanglement penalty does not overpower the association reward, and the policy is still incentivized133

to learn disentangled skill components that change Si distinguishably while introducing minimal134

changes on other factors. In practice, we simply set λ = 0.1 in all our experiments.135

Optimizing DUSDi’s Objective: Directly maximizing the objective in Eq. 1 is intractable. Alter-136

natively, we propose to approximate the objective using a variational lower bound of the mutual137

information [1]:138

I(Si;Zi) = H(Zi)−H(Zi|Si) ≥ C + Ez,s log qiϕ(zi|si), (2)

where C represents the constant value of H(Zi), the entropy of the prior distribution over the skill139

latent variable, which does not change during training, and qiϕ is a variational distribution.140

Similarly, we can approximate the MI in the entanglement penalty by:141

I(S¬i;Zi) ≥ C + Ez,s log qiψ(zi|s¬i), (3)

where qiψ is another variational distribution. Importantly, when these q approximations perfectly142

recover the posterior distribution of zi, we obtain equality in Eq. 2 and Eq. 3. We implement the143

variational distributions, qϕ and qψ , as neural network discriminators mapping input state factor(s) to144

the predicted disentangled component values, zi.145

To optimize J (θ), we alternate between two steps: 1) performing variational inference to train the146

discriminators qiϕ and qiψ through gradient ascent, and 2) using qiϕ and qiψ to learn a disentangled skill147

policy πθ through RL by maximizing the following intrinsic reward approximating Eq. 1:148

rz(s, a) ≜
N∑
i=1

qiϕ(z
i|si)− λqiψ(z

i|s¬i) (4)

Notice that because of the negative sign in front of the entanglement penalty, −qiψ(z
i|s¬i), we are no149

longer optimizing a variational lower bound on J (θ). Despite that, we found empirically that our150
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optimization procedure works well as an approximation for J (θ), possibly because both qiϕ and qiψ151

quite accurately approximate the underlying simple categorical distribution.152

Interestingly, the decomposed nature of our intrinsic reward allows a convenient avenue for shaping153

skill behaviors based on domain knowledge. In particular, we can restrict a state factor si to only154

take certain values by constraining qiϕ(z
i|si) accordingly. While not the main focus of this work, we155

briefly explore this further optimization enabled by DUSDi in Appendix I.156

3.2 Accelerating Skill Learning through Q Decomposition157

When using reinforcement learning (RL) to optimize the intrinsic reward function defined in Eq. 4,158

standard RL algorithms treat the reward function as a black box and learn a single value function159

from the mixture of intrinsic reward terms. While this approach may be sufficient for environments160

with few state factors, doing so for complex environments with many state factors (large N ) often161

leads to suboptimal solutions. A key reason is that the mixture of 2N reward terms leads inevitably162

to high variance in the reward, making the value of the Q function oscillate. Furthermore, the sum of163

reward terms obscures information about each term’s value, which hinders credit assignment.164

DUSDi overcomes this issue by leveraging the fact that the intrinsic reward function in Eq. 4 is165

a linear sum over terms associated with each disentangled component. Thanks to the linearity of166

expectation, we can decompose the Q function into N disentangled Q functions as follows:167

Qπ(s, a, z) =

N∑
i=1

Qi(s, a, z) (5)

where Qi represents each disentangled Q function, one for each disentangled component. We proof168

Eq. 5 in Appendix H. The disentangled Q functions can be then updated only with their corresponding169

intrinsic reward terms, ri ≜ qiϕ(z
i|si)−λqiψ(z

i|s¬i). During policy learning, we sum all disentangled170

Q functions together to recover the global critic, Qπ , as shown in Fig. 2 (a), top. Compared to learning171

Qπ directly from all 2N reward terms, learning disentangled Q functions significantly reduces reward172

variance, allowing Qπ to converge faster and more stably.173

Notice that the decomposed Q function provides a convenient way to inject domain prior and improve174

training efficiency. This can be done by constraining each decomposed Q function to only attend to a175

(often small) subset of the state and skill factors that matter, which we leave for future work.176

3.3 Downstream Task Learning177

Similar to Eysenbach et al. [12], in DUSDi we utilize hierarchical RL to solve reward-supervised178

downstream tasks with the discovered skills, as depicted in Fig.2 (b). The skill policy, πθ : S ×Z →179

A, acts as the low-level policy and is kept constant while a high-level policy, πhigh : S → Z , learns180

to select which skill to execute for L steps using the skill latent variable, z. Thus, the skill latent181

conditioning space, Z , acts as the action space of the high-level policy, πhigh. As extensively evaluated182

in our experiments, without any additional “ingredient”, performing downstream task learning in the183

action space formed by DUSDi skills often results in significantly superior performance compared to184

an action space formed by entangled skills. We show that the superior performance of DUSDi can be185

explained by more efficient exploration when using the DUSDi skills for hierarchical RL, which we186

elaborate on in Appendix B.187

Depending on the nature of the downstream tasks, we can often take further advantage of the188

disentangled skills learned by DUSDi through leveraging its structure. One such scenario is when189

the downstream task has a composite reward function consisting of multiple terms. Previous works190

[15, 42] have shown that when the causal dependencies from action dimensions to reward terms are191

available (e.g., the reward for speed only depends on actions that affect speed), one can use Causal192

Policy Gradient (CPG) to decompose the policy update (e.g., only the “speed actions” get updated193

by the speed reward) and greatly improve sample efficiency, especially when the dependencies are194

sparse. In downstream task learning, with an action space (of the high-level policy) consisting of195

the skills learned by DUSDi, we have a convenient way of applying causal policy gradient, where196

the causal dependencies between the action dimensions (i.e., skill components) and reward terms197

are often sparse and can be easily obtained by examining the state factor that a skill component is198

associated with, which we evaluate empirically in Sec. 4.6.199
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Table 1: Evaluation of skill disentanglement based on the DCI metric, shown as mean and standard deviation
across skill policies trained with 3 random seeds.

2D GUNNER MULTI-PARTICLE IGIBSON
DUSDi (ours) DIAYN-MC DUSDi (ours) DIAYN-MC DUSDi (ours) DIAYN-MC

Disentanglement (↑) 0.864 ± 0.018 0.016 ± 0.002 0.705 ± 0.037 0.002 ± 0.000 0.833 ± 0.022 0.017 ± 0.006
Completeness (↑) 0.864 ± 0.017 0.024 ± 0.004 0.750 ± 0.041 0.003 ± 0.000 0.834 ± 0.021 0.019 ± 0.005

Informativeness (↑) 0.897 ± 0.012 0.821 ± 0.010 0.849 ± 0.052 0.791 ± 0.032 0.854 ± 0.006 0.752 ± 0.015

4 Experimental Evaluation200

In the evaluation of DUSDi, we aim to answer the following questions: Q1: Are skills learned by201

DUSDi truly disentangled (Sec. 4.2)? Q2: Can Q-decomposition improve skill learning efficiency202

(Sec. 4.3)? Q3: Do our disentangled skills perform better when solving downstream tasks compared203

to other unsupervised reinforcement learning methods (Sec. 4.4)? Q4: Can DUSDi be extended to204

image observation environments (Sec.4.5)? Q5: Can we leverage the structured skill space of DUSDi205

to further improve downstream task learning efficiency (Sec.4.6)?206

4.1 Evaluation Environments207

Previous works [12, 31, 32, 40, 21] extensively rely on standard RL environments such as DMC [43]208

and OpenAI Fetch [3] to evaluate unsupervised RL methods. However, unlike previous unsupervised209

skill discovery methods, DUSDi focuses on learning a set of disentangled skill components that210

can be concurrently executed and re-combined to complete downstream tasks. As such, it only211

makes sense to examine the performance of DUSDi in challenging tasks that require concurrent212

control of many environment entities (e.g. multi-agent systems, complex household robots). Previous213

environments lack this property: in DMC for example, while the state and action space can be very214

complex, the predominant downstream tasks are just to move the center-of-mass of the agent to215

different places. In such cases, there is no need for concurrent skill components, and therefore we216

do not expect large gains from using DUSDi’s disentangled skills. Nevertheless, we include an217

evaluation on the DMC-Walker [43] environment to demonstrate that our method is also applicable218

to those environments, but focus the majority of our evaluation on environments that DUSDi is219

designed for, including 2D Gunner, Multi-Particle [28], and iGibson [24].220

The 2D gunner is a relatively simple domain, where a point agent can navigate inside a continuous221

2D plane, collecting ammo and shooting at targets. Multi-Particle is a multi-agent domain modified222

based on [28]. In this domain, a centralized controller simultaneously controls 10 heterogenous223

point-mass agents to interact with 10 stations, where each agent can only interact with a specific224

station. We evaluate in this domain to test the scalability of our methods to a large number of state225

factors. iGibson [24] is a realistic simulated robotics domain, where a mobile manipulator can226

navigate in a room, inspect the room using its head camera, and interact with electric appliances in227

the room by pointing a remote control to them and switching them on/off. We evaluate in this domain228

to examine whether our method can handle home-like environments with complex dynamics. We229

provide visualizations and additional information about each of the environments in Appendix C.230

4.2 Evaluating Skill Disentanglement231

First, we examine whether the skills learned by DUSDi are truly disentangled (Q1) using the DCI232

metric proposed by Eastwood and Williams [11]. The DCI metric consists of three terms, namely233

disentanglement, completeness, and informativeness, explained in detail in Appendix F. We234

compare against DIAYN-MC (Multi-channel DIAYN) that uses the same skill representation as235

DUSDi but optimizes the DIAYN objective of I(S;Z), and show results in Table 1. Unsurprisingly,236

DUSDi significantly outperforms DIAYN-MC, especially on Disentanglement and Completeness,237

across all three environments. These results indicate that DUSDi learns truly disentangled skills,238

enabling efficient downstream task learning, as we will show in Sec. 4.4. Qualitatively, we showcase239

some of the learned skills in https://sites.google.com/view/dusdi.240
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(a) 2D Gunner (b) Multi-Particle (c) iGibson
Figure 3: Evaluation of the effect of Q-decomposition in skill learning. The plots depict the mean and standard
deviation of accuracy (↑) when predicting the skill component zi based on the state factor si, computed across 3
training processes. The higher prediction accuracy indicates that the policy learns to control more state factors in
more distinguishable ways, leading to more efficient downstream task learning.

4.3 Evaluating Skill Learning Efficiency with Q-decomposition241

To examine the importance of Q-decomposition (Q2), we measure the performance of optimizing the242

DUSDi objective during skill learning with and without a decomposed Q network. We compare the243

classification accuracy of the skill discriminators qiϕ(z
i|si), averaged over all skill channels, which244

indicates progress towards discovering diverse and distinguishable skills, with higher accuracy being245

better. We depict our results in Fig. 3. We observe that Q-decomposition has a similar performance to246

the regular Q network in the simplest 2D gunner domain, but significantly outperforms the regular Q247

network in domains with more state factors (Multi-Particle) and more complex dynamics (iGibson),248

suggesting that Q-decomposition is necessary for scaling towards complex domains.249

4.4 Evaluating Downstream Task Learning250

The promise of DUSDi is to incorporate disentanglement into skills so that the skills can be effectively251

used in downstream task learning. Therefore, the most critical evaluation of our work focuses on252

comparing the performance of different unsupervised RL methods on task learning (Q3). We253

compare against existing state-of-the-art unsupervised reinforcment learning algorithms, including254

DIAYN [12], CIC [22], CSD [32], METRA [33], ICM [34], RND [4], ELDEN [16], and Vanilla255

RL [13], where these baselines are further explained in Appendix E.256

Similar to the evaluation setting in the URLB benchmark [21], we allow each method to train for257

4 million steps without access to reward (i.e., pretraining phase) before the reward is revealed to258

the agent and the downstream learning takes place. During the pre-training phase, all methods use259

soft actor-critic (SAC) [13] to optimize the intrinsic reward. For all skill discovery methods (i.e.,260

DUSDi, DIAYN, CIC, CSD, METRA), a skill-conditioned policy, πθ(a|s, z), is learned during the261

pretraining phase. During downstream learning, the skill network is fixed, whereas an upper policy,262

πhigh(z|s), is trained using proximal policy optimization (PPO) [39] to optimize the task reward.263

Similar to previous works [12, 40], we omit proprioceptive states from the MI optimization for all264

skill discovery methods. For exploration methods (i.e., RND, ICM, ELDEN), a policy πθ(a|s) is265

learned during the pretraining phase on intrinsic reward and fine-tuned using the task reward during266

the downstream learning phase. The hyperparameters are specified in Appendix G.267

We evaluate all methods in four environments and 13 downstream tasks, detailed in Appendix D. The268

results are depicted in Fig. 4. As expected, DUSDi performs similarly to previous unsupervised RL269

methods in the DMC walker environment due to the simplicity in terms of its downstream objectives270

(all related to center-of-mass locomotion), but significantly outperforms all previous methods on271

domains where downstream tasks require coordinative control of multiple state factors. The most272

crucial comparison is between DUSDi and DIAYN. DIAYN is a special case of DUSDi where273

there is only one state factor (consisting of the entire state) and one skill component. Therefore274

comparing against DIAYN offers a straightforward examination of the effect of disentangled skills275

for downstream task learning. DUSDi significantly outperforms DIAYN in all downstream tasks,276

demonstrating the effectiveness of using disentangled skills. In general, we found exploration-based277

methods to be less capable than skill discovery methods, possibly due to their lack of temporal278

abstraction. CIC performs very poorly, likely because the CIC objective does not explicitly encourage279

distinguishable skills and instead generates the intrinsic reward solely based on state entropy, making it280

very hard for the upper policy to select the right skill. This result again shows the importance of having281

a proper skill representation. DUSDi also outperforms CSD and METRA on most downstream tasks,282

especially on the more complex and high-dimensional domains, like Multi-Particle. This superiority is283
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(a) Walker-run (b) Walker-goal (c) 2DG-unlim (d) 2DG-lim

(e) MP-seq-easy (f) MP-seq-medium (g) MP-seq-hard (h) MP-fp-easy (i) MP-fp-medium

(j) MP-fp-hard (k) IG-look (l) IG-housekeep (m) IG-inspect

Figure 4: Training curves of DUSDi and baselines on multiple downstream tasks (reward supervised second
phase). The plots depict the mean and standard deviation of the return of each method over 3 random seeds.
DUSDi outperforms all baselines that learn entangled skills, converging faster and to higher returns.

perhaps surprising considering that in our experiments, DUSDi only relies on the simple DIAYN-style284

intrinsic reward for skill discovery, but further demonstrates the importance of learning a disentangled285

skill space. It is important to notice that many techniques proposed to improve skill discovery quality286

(e.g., Baumli et al. [2], Zhao et al. [50]), can be seamlessly incorporated into DUSDi. Therefore, we287

expect our method to perform even better as new advances are made in unsupervised skill discovery.288

4.5 Extending DUSDi to Image Space289

Although this paper primarily focuses on applying DUSDi to factored state space, we can straightfor-290

wardly extend it to image space through existing works in factored / object-centric representation291

learning [27, 18, 46, 26, 48] (Q4). We empirically illustrate this capability in the Multi-Particle envi-292

ronment, where we replace the low-dimensional state observation with 64× 64 image observations.293

Specifically, we first pretrain an object-centric encoder following Yang et al. [48], and then use our294

method on top of the extracted representation to learn disentangled skills. Hence, essentially, the295

skill policy uses images as observation. As shown in Fig. 5, when learning from image observation,296

DUSDi achieves similar performance to learning from state space, whereas the baseline methods are297

unable to learn these two tasks even when learning from the low-dimensional state space as in Fig. 4.298

4.6 Leveraging Structure of DUSDi Skills299

While DUSDi can already learn downstream tasks quite efficiently, it is possible to further improve300

the sample efficiency of downstream task learning through leveraging the structured skill space of301

DUSDi (Q5), as described in the second paragraph of Sec.3.3. Specifically, we apply Causal Policy302

Gradient [15] to the Multi-Particle domain, where the causal dependencies between state factors and303

reward terms are easy to identify. We present our results in Fig. 6, where the sample efficiency of304

downstream task learning is greatly improved thanks to the structured skill space of DUSDi.305

5 Related Work306

Unsupervised Skill Discovery In unsupervised skill discovery, the goal of an agent is to learn307

task-agnostic skills without external rewards. To learn such skills, previous methods propose various308

forms of intrinsic reward: (1) maximizing the mutual information between visited states and the skill309

variables [12, 40, 5, 22], (2) maximizing the traveled distance along the direction specified by the310

skill variables [31–33], (3) learning to reach a diverse set of goals [45, 37, 35]. These skills can be311
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(a) MP-fp-medium (b) MP-fp-hard

Figure 5: Performance of DUSDi with image ob-
servations on two multi-particle downstream tasks
over three random seeds. With the help of dis-
entangled representation learning, DUSDi effec-
tively learns skills based only on image observa-
tions and leverages the skills to solve challenging
downstream tasks where baseline methods fail.

(a) MP-fp-medium (b) MP-fp-hard

Figure 6: Performance of DUSDi in two multi-
particle downstream tasks when combined with
Causal Policy Gradient (CPG, orange). The disen-
tangled skills of DUSDi provide opportunities for
leverage structure and speed up downstream task
learning, greatly improving the sample efficiency
when learning downstream tasks.

used to boost the sample efficiency of downstream task learning, for example, (1) using hierarchical312

RL where a high-level policy learns to select which skill to execute [12], or (2) using the skill policy313

to initialize the task solving policy and then fine-tuning it [22].314

State Space Factorization in RL In RL, there is a long history of leveraging state factorization,315

including learning a world model between state factors for planning [20, 44], augmenting data [36],316

and providing intrinsic rewards [38, 16]. Relevant to our work are skill discovery methods that317

learn to either reach a goal for each controllable object [17, 8] or achieve interactions between a318

pair of specified objects [7]. Though these methods achieve disentanglement by influencing one or319

a pair of objects during a skill, they do not apply to tasks that require controlling multiple objects320

simultaneously, like driving where we need to control the car’s speed and heading directions at the321

same time. In contrast, our method can combine disentangled skill components into concurrent skills322

[9] to solve a wide range of tasks.323

Disentanglement in Skill Learning There are a few works investigating disentanglement in un-324

supervised skill discovery. Lee et al. [23] consider a special case of disentangled skills — for a325

multi-arm robot, learning independent skills for each arm. However, they rely on manually factored326

action spaces which is an assumption that often limits the behavior of the agent. Kim et al. [19]327

encourage the disentanglement between different dimensions of the skill variable by regularizing it328

with β-VAE objective [14], but Locatello et al. [25] point out such regularization is impossible to329

achieve disentanglement. To learn disentangled skills, Song et al. [41] learns a decoder from skill330

variables to state trajectories and their generation factors, which is then used to train the skill policy331

through imitation learning. However, their training of the decoder requires pre-collected trajectories332

and corresponding generation factors, whereas our method is fully unsupervised with no expert data.333

6 Conclusion334

We present DUSDi, an unsupervised skill discovery method for learning disentangled skills by lever-335

aging the factorization of the state space. DUSDi designs a skill space that exploits the factorization336

of the state space and learns a skill-conditioned policy where each sub-skill affects only one state337

factor. DUSDi enforces disentanglement through an intrinsic reward based on mutual information,338

and shows superior performance on a set of downstream tasks with naturally factored state spaces339

compared to baselines and state-of-the-art unsupervised RL methods.340

One limitation of DUSDi is the assumption of access to a factored state space. While a factored state341

space is naturally available in many existing RL environments, and can be extracted from images342

as we have shown in our experiment (Sec. 4.5), we believe that future advances in disentangled343

representation learning will greatly broaden the applicability of DUSDi. Secondly, DUSDi primarily344

focuses on learning a structured skill space for more efficient downstream learning, and its exploration345

capability during skill learning is largely determined by the specific algorithm used to optimize for346

our mutual information objective. While we used DIAYN [12] in this work due to its simplicity,347

it would be interesting to examine extending the idea of learning disentangled skills to other skill348

discovery methods, e.g., Zhao et al. [50], Laskin et al. [22], including those that are not based on349

mutual information [32, 49].350
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A Pseudo-code for DUSDi Skill Learning480

Algorithm 1 DUSDi Skill Learning

1: Initialize skill policy πθ, discriminators qiϕ, qiψ and value function Qi for each state factor Si.
2: for each skill training episode do
3: Sample skill z ∼ p(z).
4: Collect state transitions with actions from πθ(a|s, z).
5: Sample a batch of (s, a, z) from the replay buffer.
6: for i = 1, . . . , N do
7: Update qiϕ(z

i|si) and qiψ(z
i|s¬i) with discrimination losses.

8: Update Qi(s, a, z) with reward ri using SAC.
9: end for

10: Update πθ with Q =
∑N
i=1 Q

i using SAC.
11: end for

B Entangled vs. disentangled components for Policy Learning481

Compared to entangled skills, the advantages of using disentangled components mainly reside in482

an easier exploration in the skill space. For skill spaces of equivalent capacity, the DIAYN latent483

skill variable is a single integer between 1 and kN , and the DUSDi skill variable is a N -dimensional484

vector with each dimension representing a disentangled component with k possible values. In this485

section, we analyze the benefits and search complexity of DUSDi’s space over DIAYN’s for two main486

cases: when there are no dynamical dependencies between state factors (optimal case for disentangled487

components) and where there are intrinsic dependencies between state factors.488

State Factors without Dynamical Dependencies: In this case, for DIAYN to find the correct489

skill to execute at the current time step, in the worst case, it needs to iterate through all skills,490

resulting in 1-step exploration sample-efficiency of O(kN ). In contrast, for DUSDi, as disentangled491

components are independent of each other, with one skill trial, the agent can simultaneously observe492

the effects of setting each disentangled component as Zi = zi. Hence, for an intelligent agent, to493

understand the effects of each disentangled component at the current state, it only needs to sweep494

through each disentangled component space with k trials (e.g., setting all disentangled components495

Zi = 1, . . . , k). After that, as the effects of each disentangled component are independent, by496

compositing disentangled components in novel ways, the agent has the ability to imagine the effects497

of all skills, leading to O(k) exploration efficiency.498

State Factors with Dynamical Dependencies: When there are dynamical dependencies, we denote499

PAi as parent indices of state factors that Si depends on, e.g., when moving a mouse (Si), SPAi

500

denotes the hand. In such cases, the effect of Zi is conditioned on the value of ZPAi

, and we501

need to iterate through all (Zi,ZPAi

) pairs to observe all possible influences on Si. As a result,502

the exploration is constrained by the state factor with the largest number of parents. Denoting503

|PAi| as the number of parent factors for Si, the exploration sample-efficiency is O(k1+maxi |PAi|).504

We can see that the O(k) efficiency when there is no dynamical dependencies is a special case505

of maxi |PAi| = 0. Despite lower efficiency than O(k), in many environments, the dynamics of506

each state factor only depend on a small number of other factors, i.e., maxi |PAi| ≪ N . Hence,507

exploration with disentangled components is still more sample-efficient than using entangled skills.508

C Environment Details509

We test DUSDi on four environments, where a visualization of each of the environments is presented510

in Fig. 7.511

2D Gunner: Shown in Fig. 7 (a), the blue star marks the position of the agent, the blue line marks512

its shooting direction, the red diamond marks ammo location, and the orange cross marks the target513
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(a) 2D Gunner (b) DMC Walker (c) Multi-Particle (d) iGibson

Figure 7: Environments Visualization

position. The agent has a 7-dimensional observation space, consisting of 3 state factors: [Agent514

Position, Ammo State, Target State]. The action is 5-dimensional, 2 for agent movement, 2 for ammo515

pickup, and 1 for shooting direction.516

DMC-Walker: Shown in Fig. 7 (b), a 6 degree-of-freedom robot can locomote on a 2D plane through517

joint motions. The agent has a 26-dimensional observation space consisting of 3 state factors: [Body518

Position, Body Velocity, Robot Proprioception].519

Multi-Particle: Shown in Fig. 7 (c), the agents are marked by small circles, while the stations are520

marked by large circles. Only stations and agents of the same color can interact with each other. The521

Multi-Particle environment has a 70-dimensional observation space, consisting of 20 state factors.522

The state factors include states for each landmark and states for each agent. The action space is523

50-dimensional, with 5 dimensions per agent that control their motions and interactions with the524

landmarks.525

iGibson: Shown in Fig. 7 (d), iGibson has 42-dimensional observation space consisting of 4 state526

factors, including [Agent Location, Electric Appliances State, Object(s) in View, Robot Propriocep-527

tion]. The action space is 11-dimensional, consisting of base velocity (2D), head motion (2D), arm528

motion (6D), and gripper motion (1D).529

D Downstream Tasks530

DMC-Walker (Walker):531

• Run: In this task, the walker agent is rewarded for moving forward at a particular velocity.532

• Goal Reaching: In this downstream task, the agent has to reach randomly generated goal positions.533

2D Gunner (2DG):534

• Unlimited Ammo (unlim): In this downstream task, a set of targets will randomly appear, where535

the agent needs to navigate to a position close to the target and shoot them in order to score. The536

ammo is unlimited so the agent does not need to worry about picking up ammo.537

• Limited Ammo (lim): This downstream task is different from the “unlimited ammo” in that the538

agent starts with no ammo and needs to pick up ammo in order to shoot. Everything else is identical.539

Multi-Particle (MP):540

• Sequential interaction (seq) (easy, medium, hard): In this task, agents need to sequentially interact541

with their corresponding station following an instruction sequence given at the start of each episode.542

Interacting with stations in the wrong order will be penalized. The easy version of this task has a543

sequence length of 2, while medium and hard have a sequence length of 5 and 8 respectively.544

• Food-poison (fp) (easy, medium, hard): In this downstream task, each station will offer either545

food or poison to the corresponding agent. Each agent needs to decide whether to interact with546

its corresponding station based on a sequence of binary indicators provided to the agents. The547

difficulty level has the same meaning as in the sequential interaction task.548

iGibson (IG):549

• Look around: In this task, the robot needs to look at objects in the room sequentially.550

• Appliances inspection: In this task, the robot needs to navigate to different electric appliances,551

and test whether each of them is working correctly by pointing a remote control towards it.552
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• Housekeeping: In this task, the robot needs to manage the electric appliances intelligently. Specifi-553

cally, the robot needs to first look at a screen to receive instructions. Depending on the instruction,554

the robot needs to turn on / off certain electric appliances using the remote control.555

E Baseline Methods556

During downstream task evaluation, we compared against the following state-of-the-art unsupervised557

RL methods:558

• DIAYN [12] represents skill variable z as an integer between 1 to kN and learns skills by maximiz-559

ing I(S;Z), the MI between Z and all state factors S.560

• CIC [22] learns a state representation with contrastive learning and learns skills by maximizing561

transition entropy in the representation space.562

• CSD [32] learns skills maximizing distance traveled along the direction of z in the state space,563

where distance is measured in a controllability-aware manner.564

• METRA [33] learn a set of behaviors that collectively cover as much of the state space as possible565

through optimizing a Wasserstein variant of the state-skill Mutual Information.566

• ICM [34]: encourages visiting novel states by using prediction errors of action consequences as567

intrinsic rewards.568

• RND [4] encourages visiting novel states by using prediction errors of features computed from a569

randomly initialized network as intrinsic rewards.570

• ELDEN [16] operates in a factored state space similar to our approach, and encourages visiting571

states that induce novel factor dependencies.572

• SAC [13] where no pretraining is used, and vanilla RL is directly applied to tackle the downstream573

tasks.574

F Evaluating Skill Disentanglement Details575

The DCI metric consists of three terms, namely disentanglement, completeness, and informative-576

ness. In the context of this work, disentanglement (↑) measures, on average, to what extent each skill577

component only affects a single state factor. Completeness score (↑) measures, on average, to what578

extent each state factor is only influenced by a single skill component. Informativeness score (↑)579

measures the repeatability of learned skills: given the skill z, how accurately we can predict which580

states will be visited. We refer the reader to the work by Eastwood and Williams [11] for a detailed581

discussion of these metrics and how they are calculated.582

In the original work, measuring DCI requires knowing the ground truth generative factors. In our583

case, the generative factors are simply the state factors, and we only need to discretize the value of584

each state factor to make it compatible for evaluation. For each method on each domain, we collect585

100K rollout steps using the learned skill policy, π(s, z), where the skill is (re)sampled from the586

uniform prior distribution, p(z), every 50 steps. These (state, skill) pairs are then used to calculate587

DCI.588

G Hyperparameters589

Skill Dimensions: For all skill learning methods with discrete skills (i.e. DUSDi, DIAYN), we make590

sure that they have equivalent capacity. Specifically, for igibson and 2D gunner, each DUSDi skill591

consists of 3 skill components, each component with 5 possible values. As a result, DIAYN skill is an592

integer between 1 to 125 in these two domains. The only exception is Multi-Particle, where DUSDi593

has ten sub-skills, each with 5 possible values. Since skill as an integer between 1 and 510 = 9765625594

is obviously challenging for DIAYN to converge, we set the number of discrete skills to be 4096 for595

DIAYN. For continuous skills (i.e. CSD, CIC, METRA), we follow the skill dimensions specified in596

the original papers (64D for CIC, 3D for CSD and METRA), which were shown to be effective for597

the respective methods.598

Skill Learning Parameters: All skill learning methods in our baselines use SAC to optimize for599

the intrinsic reward, with the same policy and value network architecture. DUSDi applies additional600
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decomposition and masking to the value networks, as described in Section. 3.2, which is not applicable601

to the baseline methods. Due to Q-decomposition, when using the same value network architecture,602

DUSDi’s value network capacity is N times of the capacity of other methods’ value networks603

(including when comparing the variations of DUSDi, i.e., no decomposition). For a fair comparison,604

we also tried to increase value network capacity for other methods to match the capacity for DUSDi,605

but found that their skill/task learning performances do not improve significantly. This suggests606

(1) that, for skill learning, reward variance, rather than network capacity, is the key reason for no607

Q-composition variation of DUSDi to converge slowly, and (2) that, for task learning, disentangled608

skills, rather than network capacity, is what make DUSDi significantly outperform baselines.609

We present the hyperparameters for SAC in Table. 2. All methods use a low-level step size of L = 50.610

Table 2: Hyperparameters of Skill Learning.

Name Value

SAC

optimizer Adam
activation functions ReLu

learning rate 1× 10−4

batch size 1024
critic target τ 0.01

MLP size [1024, 1024]
steps per update 2

# of environments 4
Temperature α 0.02
log std bounds [-10, 2]

Downstream Hierarhical Learning: For all skill discovery methods, downstream learning of the611

skill selection policy is implemented with PPO. We used the same hyperparameters for all methods612

across all tasks, as specified in Table. 3.613

Table 3: Hyperparameters of Downstream Learning.

Name Value

PPO

optimizer Adam
activation functions Tanh

learning rate 1× 10−4

batch size 32
clip ratio 0.1
MLP size [128, 128]
GAE λ 0.98

target steps 250
n steps 20

# of environments 4
# of low-level steps L 50

Downstream Finetuning: For all non-skill discovery methods, downstream learning is done using614

the same hyperparameters as pretraining (table. 2), replacing the intrinsic reward with the task reward.615
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H Proof of Q Decomposition616

Proof.

Qπ(s, a, z) = Eθ[
∞∑
t=0

γtrt]

= Eθ[
∞∑
t=0

γt
N∑
i=1

qiϕ(z
i|si)− λqiψ(z

i|s¬i)]

=

N∑
i=1

Eθ[
∞∑
t=0

γt(qiϕ(z
i|si)− λqiψ(z

i|s¬i))]

=

N∑
i=1

Qi(s, a, z)

617

I Behavior Restriction of Skills via Domain Knowledge618

Due to the decomposable nature of the intrinsic reward of DUSDi, we can conveniently restrict the619

behavior of skills by constraining the skill predictor qiϕ(z
i|si) for a particular state factor i. For620

example, if we want si to stay within a certain range, we can set qiϕ(z
i|si) to be a uniform distribution621

for all si not within this range, effectively discouraging the agent from going out of range. In the622

extreme case, we can fully specify the mapping between zi and si, essentially resulting in performing623

goal-conditioned RL for state i (as pointed out in [6]) while performing DUSDi for the rest of the624

state factors.625

We qualitatively examine this idea in the iGibson domain. By restricting a mobile manipulator to only626

locomote in regions that are close to a whiteboard, our robot successfully learns diverse board-wiping627

behaviors which are otherwise extremely hard to learn. Visualizations of the learned skills can be628

seen at https://sites.google.com/view/dusdi.629
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