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Abstract

Human-in-the-loop reinforcement learning (HRL) allows the training of agents1

through various interfaces, even for non-expert humans. Recently, preference-2

based methods (PBRL), where the human has to give his preference over two3

trajectories, increased in popularity since they allow training in domains where4

more direct feedback is hard to formulate. However, the current PBRL methods5

have limitations and do not provide humans with an expressive interface for giving6

feedback. With this work, we propose a new preference-based learning method7

that provides humans with a more expressive interface to provide their preference8

over trajectories and a factual explanation (or annotation of why they have this9

preference). These explanations allow the human to explain what parts of the10

trajectory are most relevant for the preference. We allow the expression of the11

explanations over individual trajectory steps. We evaluate our method in various12

simulations using a simulated human oracle (with realistic restrictions), and our13

results show that our extended feedback can improve the speed of learning. Code14

& data: github.com/under-rewiev15

1 Introduction16

To allow for more flexible deployments of agents in all areas of human life, it is highly desirable that17

these can be quickly and easily adapted to different needs. While there are many different methods18

for training agents, Human-in-the-Loop Reinforcement Learning puts the responsibility on the human19

who gives feedback (or other methods like advice or demonstrations) from which the robots can learn20

(Amershi et al. [2014]). This has the advantage that there is no need to program hard-coded actions21

or extensive modeling for planning or designing reward functions, which can be a cumbersome22

and brittle process in itself (Booth et al. [2023]). Pushing the responsibility directly to the human23

in the training process alleviates some of these problems while opening the learning process up to24

more non-technical users (or trainers). Naturally, there are multiple options for how a human can25

direct their feedback toward the agent. In this work, we want to focus on one of the more prominent26

methods of teaching agents by giving preferences over two trajectories, often called preferences-based27

reinforcement learning (PBRL). While Human-in-the-loop Reinforcement Learning (HRL) recently28

gained more interest from the research community, most research is focused on purely technical29

aspects with the same interface. We argue that extending that interface and giving humans more30

options to control learning is important.31

Our work is also motivated by the concept of "scaffolding" (van de Pol et al. [2010], which human32

teachers often use when teaching tasks to students. While scaffolding contains many techniques, like33

breaking the task into sub-parts, using verbal cues, or relating the content to other knowledge, we34

focus on a single technique in this work. Teachers often highlight essential features of the tasks (or35

solutions) to the student. This highlighting is often called factual explanations.36
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Inspired by human scaffolding behavior, our main contribution is extending the common preference-37

based interface to allow the human to explain his decision more. More specifically, we allow the38

human to select timesteps of both trajectories (of the pair) to annotate which steps they deem important39

for his decision. This can be seen as a factual explanation. Our method then uses these explanations40

as additional training input. We archive this by generating an explanation of the reward model41

through gradients (e.g., saliency-based explanations) and comparing the generated explanations with42

the human explanations. This additional loss can be transparently integrated into the reward model43

learning of any preference-based reinforcement learning framework.44

2 Related Work45

Multiple works have attempted to extend the pipeline of Human-in-the-Loop RL to include more46

than (evaluative) feedback. Guan et al. [2020] implemented an HRL method that allows the user to47

highlight important areas of an image in addition to evaluative feedback. Our implementation can48

be used with any preference-based method (which can be used with any RL algorithm), while they49

designed a custom HRL method. Additionally, our proposed solution has the advantage that it is not50

restricted to an image-based state space but can deal with any state space.51

Mahmud et al. [2023] showed that human explanation on individual feature space level can help52

to create better rewards models from an offline dataset of demonstrations. Again, their method is53

limited to cases where humans can understand the feature space. And secondly, their work is on54

offline learning, while we learn online.55

Basu et al. [2018] allow the human to select which features influence their decision between two56

trajectories. While they show that their method can lead to increased learning performance, it is57

limited to a linear reward model, which limits its application quite drastically. Additionally, their58

work is limited in that they rely on complete trajectories (instead of segments in the case of PBRL).59

From the human viewpoint, the work of Basu et al. [2018] is the closest comparison to ours.60

Saran et al. [2021] improved the efficiency of Imitation Learning by collecting human gaze data,61

which is then used in an auxiliary loss constructed from the network attention and the human. Their62

idea of including additional information through an auxiliary loss, which is constructed through63

gradients of the network, is similar to the approach. But their focus is more on state regions, not64

timesteps, and the different settings of imitation learning.65

Karalus and Lindner [2022] used counterfactuals (instead of factuals like our method) to increase the66

learning speed of TAMER (Knox and Stone [2008] alternative to preference-based RL for evaluative67

feedback). They reported increased learning performance, but their methods are for different types of68

human explanations and formulated in a different framework.69

Gajcin et al. [2023] lets users select part of a trajectory that they do not like. With this information,70

they perform reward shaping. While they allow humans to select parts of trajectories that they don’t71

like, their annotations focus on either states or actions, not timesteps. Additionally, their setting of72

reward shaping still assumes the existence of an environmental reward and does not allow the training73

of agents purely from human feedback.74

Wu et al. [2024] let the user select text parts (i.e., parts of their trajectory) to specify if that part is75

relevant for one of their pre-defined classes (Relevance, Factuality, etc..) While their work is solely76

focused on LLM/RLHF, the concept of selecting parts of the input trajectory is similar to our work.77

But this additional information is then used to train a pre-selected hard-coded set of reward models,78

which makes the transfer to other domains different. While our method is much more flexible and79

requires less oversight.80

Therefore, the opportunity to extend the setting to allow humans to give additional explanations has81

been investigated in different settings but not in the preference-based framework. Additionally, most82

of the work requires hand-crafted algorithms, while our contribution is much more independent of the83

concrete PBRL method. However, most methods reported increased learning speeds when including84

additional human annotations (in any form); therefore, it’s realistic to expect changes in learning85

speed from our work.86

Metz et al. [2023] proposed an interface with multitudes of different annotation options for collecting87

human preferences over trajectories. Their focus was purely on the interface design, which is not88

connected to any real algorithm. To our knowledge, an explanatory annotation of timesteps inside89

trajectories is impossible in their theoretical interface because they drew heavy inspiration from90

existing research. This shows the importance of showcasing the technical feasibility of possible91
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feedback interface avenues so they can be included in future human-computer-interaction research.92

Casper et al. [2023] specified "fine-grained feedback" as a possibility for problems where precise93

information is necessary to solve the task.94

In settings other than PBRL, the concept of using gradient-based explanations to enhance training95

has been applied successfully. Saliency-based methods have been used in other contexts to speed96

up the learning process or force the learner to learn the right reasons. Common examples where97

gradient-based explanations have been used (in supervised learning) to accelerate learning are98

ExpectedGradients (Erion et al. [2021]), Right-for-the-right-reasons (Ross et al. [2017] or Ismail et al.99

[2021]. These ideas are not yet been explored in PBRL.100

3 Background101

We consider a setting wherein the sequential interactions between an agent and its environment are102

formally characterized by a Markov Decision Process (MDP), a mathematical framework comprising103

states, actions, and transitions. Within this formalism, the system evolves discretely at time intervals104

t. Within the episodic framework, the agent’s involvement persists until reaching a terminal time step105

T , signifying the conclusion of an episode. This temporal progression is succinctly represented by the106

trajectory, expressed as the ordered sequence (s1, a1), . . . , (sT , aT ), encapsulating the observation-107

action pairs throughout an episode.108

In RL the agent experiences rewards at each time step. In our Human-in-the-Loop context, we abstain109

from presuming access to such rewards. Instead, we introduce a human overseer controlling the110

agent’s task intention through two distinct feedback channels. First, their preferences (as generally in111

PBRL) and second, their explanations (our contribution).112

3.1 Preference-based Reinforcement Learning113

The main goal of preference-based reinforcement learning (PBRL, Christiano et al. [2017]) is to learn114

a reward function, denoted as r̂ψ, from a set of expressed segment pairs. These pairs of segments115

are collected from the human throughout the training process. Within this framework, a segment,116

σ, is defined as a sequence of states and actions, {sk, ak, ..., sk+H , ak+H}. Preferences, denoted as117

y, are elicited for segments σ0 and σ1, with y representing a distribution indicating the preferred118

segment, i.e., y ∈ {(0, 1), (1, 0), (0.5, 0.5)}. This evaluative judgment is recorded in a dataset D as a119

triple (σ0,σ1, y). This dataset of binary preference can be then used to train a reward model with the120

Bradley-Terry model (Bradley and Terry [1952]):121

Pψ[σ1 ≻ σ0] =
exp

P
t r̂ψ(s1t, a1t)P

i∈{0,1} exp
P

t r̂ψ(sit, ait)
(1)

Here, σi ≻ σj denotes that segment i is preferred to segment j. This formulation states that the122

probability of preferring a segment exponentially depends on the reward function’s sum over the123

segment. While r̂ψ itself is not inherently a binary classifier, the learning procedure is akin to binary124

classification, where a supervisor supplies labels y. To learn the reward function, instantiated as a125

neural network with parameters ψ, the following loss is minimized:126

Lpreference = −E(σ0,σ1,y)∼D [y0 logPψ[σ0 ≻ σ1] + y1 logPψ[σ1 ≻ σ0]] (2)

Even in PBRL the final goal is to learn a policy π that maximizes the expected cumulative reward.127

The reward function r̂ψ obtained from preferences is a surrogate to the true, unknown reward function.128

Therefore r̂ψ is utilized instead of the actual reward signal while optimizing the policy. The policy129

can be learned through standard RL algorithms like PPO (Schulman et al. [2017]) or SAC (Haarnoja130

et al. [2018]).131

3.2 Training Guided by Saliency-Based Methods132

Saliency-based explanation methods allow an understanding of neural network decision-making133

processes, offering a quantitative means to assess the impact of input features on model predictions.134

Consider a neural network fθ with parameters θ, trained on a dataset D = {(xi, yi)}Ni=1, where135
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xi denotes input samples and yi represents corresponding labels. To calculate a saliency-based136

explanation (or saliency map) for an input xi, a normal loss between the prediction of the network137

fθ and the label yi is calculated. That loss then allows us to calculate the gradients of the input xi138

(with respect to the before-mentioned loss). These gradients are then used as an explanation of the139

prediction.140

One notable saliency-based method is SmoothGrad (Smilkov et al. [2017]), designed to stabilize141

saliency maps. The smoothed saliency map SSmoothGrad is computed as the average gradient over142

Nsmooth perturbed samples:143

SSmoothGrad =
1

Nsmooth

NsmoothX

i=1

∇xfθ(x+ ϵi) (3)

Here, ϵi represents the perturbation, and ∇xfθ(x+ ϵi) is the gradient of the model’s prediction with144

respect to the perturbed input. This approach introduces controlled noise to the input, providing a more145

stable saliency map. The resulting map highlights the regions crucial for the network’s predictions,146

contributing to a nuanced understanding of feature importance in neural network decision-making.147

Similar methods like IntegratedGradients Sundararajan et al. [2017] calculate multiple explanations148

with respect to a baseline and average the results to increase stability.149

Saliency-based training methods (Ismail et al. [2021]), such as ExpectedGradients (Erion et al. [2021])150

and Right-for-the-Right-Reasons (Ross et al. [2017]), allow the shaping of the training dynamics151

of neural networks. These approaches utilize saliency information to refine the training process,152

enhancing model interpretability and predictive performance. Right-for-the-Right-Reasons emphasize153

salient features contributing to correct predictions during training, steering the model towards more154

meaningful representations. This is done by adding additional terms to the loss term. Instead of155

a single loss term between the prediction’s distance from the target (i.e., being right), a second156

(weighted) term is added to constrain the distance between a saliency-based explanation and a given157

explanation (i.e., the right reason).158

ExpectedGradients Erion et al. [2021] allows to guide the training even in cases where no ground-truth159

explanations are available. This is done by imposing priors on the structure of the explanation. For160

example, explanations should be either locally-smooth or sparse regarding features. These saliency-161

guided training strategies embody a synergy between interpretability and maintaining predictive162

accuracy.163

4 Implementation164

Our main contribution is the extension of the feedback possibilities in PBRL for humans. In addition to165

their preferences between the two trajectories, the human can now explain which timesteps they deems166

essential for their decision. This evaluative judgment, accompanied by detailed binary explanations167

provided by the human over timesteps, is recorded the dataset D as a quintuple (σ0,σ1, y, e1, e2).168

Here, e1 and e2 directly represent binary vectors of human-provided explanations, each having the169

same length as the corresponding segments σ0 and σ1. These binary vectors, e1 and e2, serve to170

elucidate the significance of individual timesteps within their respective segments, providing binary171

indications (0 or 1) of the human’s perceived importance at each step. Figure 1 shows an overview of172

our approach.173

4.1 Reward Learning with annotated preferences174

Incorporating preference-based learning alongside annotations necessitates introducing two additional175

steps within the learning process. First, we must predict an explanation ê and then compare this176

generated explanation with the human explanation e.177

Initially, an explanation of the existing prediction (of the reward model) concerning the current178

trajectory pair is formulated. The generation of this explanation leverages established saliency-based179

methods, and we employ the SmoothGrad technique (see Equation 3) in our implementation. Here,180

a set of nsmooth perturbations is generated for a given input trajectory by sampling from a normal181

distribution with mean and standard deviation parameters derived from the input trajectory. On these182

perturbations, we then calculate the saliency-based explanations.183

4



Figure 1: Overview of our approach. Left: The agent optimizes his policy with respect to the
trained proxy reward model. Right: The proxy reward model is trained from human preferences over
trajectories and the importance of each timestep in the trajectory. Humans provide both.

ξ(σ) =

"X
�����

1

Nsmooth

NsmoothX

i

∇s,ar̂ψ(s+ ϵi, a+ ϵi)

�����

#
∀s, a ∈ σ (4)

ϵ represents the perturbation of the input. We then predict the outcome (reward) with the reward184

model r̂ψ and calculate the gradient with respect to the input, i.e., the state and action. This done for185

all timesteps t in the segment σ.186

Since the human explanations (e1 and e2) are binary vectors with the length of the segments (σ0,σ1),187

but the saliency-based explanations ê are of shape (s, a)t (a concatenation of state and actions space188

for each timestep in the segment). Therefore, the generated explanations must be transformed from189

the state & action frame space to a step-level explanation. To achieve this, we sum the absolute190

values over each timestep to transform the frame-based values into a step-level explanation. These191

unnormalized values then serve as logits for the binary-cross entropy loss, aligning the calculated192

explanation with the provided annotation, the latter specified by the user’s annotations.193

The annotation loss Lannotation is the standard binary multi-class cross-entropy between our explanation-194

logits and the true explanation:195

Lannotation =
1

2N

X

e,σ∈{(e0,σ0)(e1,σ1)}∈D
[−(e · log(f(ξ(σ))) + (1− e · log(1− f(ξ(σ)))] (5)

where e is the explanation of the user (for the human preference y) and ξ(σ) generates the explanation196

on a trajectory step level. N is the total number of preferences (i.e., a pair of segments) in the database197

D. The user’s preferences are e, and our generated preferences are transformed with ξ(σ). Since ξ198

produces normalized logits, we apply the sigmoid function for f . To relax the learning constraints,199

we employ label smoothing for the human explanations e to relax the constraints of having the correct200

explanations.201

Theoretically, we could allow the user to give specific annotations, i.e., highlighting single entries202

in the state. Still, there are reasons to limit the annotations’ granularity to the trajectory’s timestep203

level. First, the timestep level of the trajectory is quite application-independent and does not require204

the human to fully understand lower levels (like the state and action space). For example, in many205

robots, the state space includes a mix of different sensors (LIDAR, Camera, etc.), which can be hard206

to understand fully for humans. Lower levels also drastically increase the mental load on humans due207

to the massive number of options. Therefore, we want to show in this work that even explanations on208

the timestep level contain enough information to increase learning speed.209
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4.2 Structural Loss210

Like ExpectedGradients, we want to constrain the structure of our generated explanation and impose211

a structural loss on the derived explanation. Since most human explanations are sparse, we apply212

this prior to our generated explanation and force the generated explanations to reflect this sparse213

characteristic. This structural loss is realized by applying an L1 norm to the calculated explanation.214

Mathematically, the structural loss Lstructural is formulated as:215

Lstructural =
1

2N

X

σ∈{σ0,σ1}∈D
∥ξ(σ)∥1 (6)

where N denotes the total number of trajectories in D, and ξ generates a step level explanation for216

the segment σ. Incorporating this structural loss contributes to the regularization of the explanation,217

fostering a more coherent and interpretable representation.218

To derive our reward model r̂ϕ, we integrate all three distinctive loss terms: the primary preference219

loss (Equation 2), the annotation loss (Equation 5), and the structural loss (Equation 6), merging them220

into a unified loss term. The incorporation of the additional losses is accompanied by weightings (α1221

and α2):222

Ltotal = Lpreference + α1 · Lannotation + α2 · Lstructural (7)

This loss formulation ensures the simultaneous consideration of preference-based learning, explana-223

tion fidelity, and structural regularization in the training of the final reward model r̂ϕ.224

4.3 Policy Learning225

To learn an actual policy from the learned reward function, we use the same setup as PEBBLE Lee226

et al. [2021a], in which the offline learning algorithm SAC is leveraged. Like in PEBBLE, we update227

the replay buffer every time the reward function is updated. This allows the agent to always learn228

from the latest experience. Since we extend from PEBBLE, it’s also the choice of our baseline for the229

evaluation.230

5 Evaluation231

We evaluate our changes in three common robotics environments, Walker, HalfCheetah, and Hopper232

of the mujoco suite. Most of the hyperparameters are taken from our baseline PEBBLE (Lee et al.233

[2021a]), which we then briefly tuned only on the baseline (since we argue that our work should be234

viewed as an extension to the existing method, we believe it should not deserve a full hyperparameter235

search). The ballpark for the hyperparameter of our extension (i.e., the weight of additional loss236

terms) was also taken from similar methods (Ross et al. [2017]) and briefly sanity-checked. The237

agent trains for 2 million steps in each environment, with a total feedback budget of 700 comparisons.238

A full overview of all hyperparameters can be found in Appendix A239

While we are learning in an HRL setting, where we don’t have access to the true reward function,240

we still use the true reward function for the evaluation. To provide a solid measurement of the241

learning progress, we perform every 10k environment steps performance measurement of the agent.242

This measurement consists of 5 episodes in a newly seeded (with a different random seed than the243

current iteration) environment. At each measurement, we collect total true environmental rewards244

and calculate the mean between the 5 measurement episodes. With this setting, we collect 200245

measurements throughout the whole training process (of a single evaluation run). This extensive246

collection of measurements gives us a more stable estimation of the true performance (of the agent)247

throughout training than the normally used rollout mean rewards. These collected measurements248

are then aggregated and normalized between zero and one. We use the same procedure proposed by249

Agarwal et al. [2021] to calculate mean scores and confidence intervals via bootstrapping over 10250

runs in each condition.251

We opted to create a synthetic oracle instead of actual humans to allow for an evaluation with enough252

statistical significance. For the comparison, we used the environmental ground truth rewards (since in253
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Figure 2: The mean throughout the training process in each environment. Shaded areas represent the
confidence interval. Higher is better.

Figure 3: Optimality Gap (how fast a run converges to the ideal score, lower is better) under different
human irrationality. The vertical line visualizes the mean optimality gap, and the bars represent the
confidence interval.

DM-control, it exists here); for the trajectory step-level explanation, we resorted to an XAI technique254

called IntegratedGradients (Sundararajan et al. [2017]) to extract the explanations from a pre-trained255

policy.256

The random seed is separated between the environment dynamics and the network/agent dynamics.257

We select the same starting seeds for the comparisons between our work and the baseline (to reduce258

the impact of "favorable" seeds).259

Since the training with a perfect oracle is not a realistic setting, we test the stability of our extension260

properly and use the five irrationalities of human teachers as defined by the standard B-Pref benchmark261

(see Lee et al. [2021b]). These different common failure patterns each represent different "sub-262

optimality" that can occur in human feedback. We also train with the perfect case (the oracle case).263

264

5.1 Results265

As visible in Figure 2, we can achieve better mean rewards (the mean of 10 runs, each point266

is measured in 5 evaluation episodes, as described in section 5) results than the baseline with267

our extension in all environments with the perfect oracle. While in the Walker and HalfCheetah268

environments, the mean (bold line) is higher, the confidence interval (shaded areas) still overlaps;269

therefore, we can’t extensively say that our methods are conclusively better. Only in the Hopper case270

can we conclusively answer that the human explanation helps the reward model learn faster. While271

not pictured, both methods converge to the same reward in the long run. However, our method’s272

major motivation and driving force was increasing learning speed, especially in the earlier phases273

when the human is still in the loop.274

Since we want to highlight the increase in learning speed, we use the optimality gap as our primary275

metric for further evaluation since it condenses the learning speed into a single, more understandable276

metric. In Figure 3, we use the optimality gap to compare our modifications in the different irrational-277

ities defined by BPref. Notable is the significance (indicated by no overlapping bars, as defined in278

Agarwal et al. [2021]) between our work and the baseline in quite a few cases. These results confirm279

that our extension leads to better learning performance, even in settings where the human feedback280

follows a more realistic pattern.281
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6 Discussion282

Additional mental load Labelling trajectories not only with the binary preference but also with the283

annotation of which parts are better/worse does, of course, require more mental effort than pure284

preference-based (or other evaluative approaches). In contrast, we showed that these annotations285

speed up the learning process, and therefore, less total human interaction is needed. We believe this286

trade-off has to be evaluative on a case-by-case basis since it’s dependent on multiple factors like the287

environment, the learning algorithm, the feedback interface, and the expertise and type of trainers.288

Additionally, we want to highlight that our annotations might relieve some of the frustrations human289

trainers often have when using a very restricted feedback interface (binary in the case of preference-290

based learning). Our methods give the human trainer more avenues to express his feedback, which291

should increase user experience.292

Granularity of the annotations While it’s technically feasible to annotate whole states/actions in293

a trajectory and annotate specific parts of the state space directly, we refrain from evaluating this294

scenario. We believe preference-based learning shines in settings where the human can’t highlight295

single points in the state-space because of the complexity of the state space. We believe in areas296

where its possible for human to understand single points in the state-space, methods like TAMER297

Knox and Stone [2008] are probably a better alternative.298

Evaluation with a simulated oracle Throughout this work, we evaluated our modification with299

a synthetic oracle instead of an actual human. While this is a weakness of the evaluation, it also300

allowed us to collect more runs (with different random seeds) and perform different ablations. This301

increase makes the statistical analysis more sound. We believe this benefits the research community302

more than a human study with a few participants, which would not allow us to show our gains with303

(statistical) confidence.304

Conclusion305

With this work, we showed how preference-based reinforcement learning could be extended so306

humans can give not only preferences but also explanations for their decisions. In experiments, we307

showed that with these explanations, we can increase the performance of current state-of-the-art PBRL308

even further. Not only in the ideal case but also under a variety of different human irrationalities, our309

extension either increases the performance or does not reduce it.310

Our method, as presented here, is meant as a first demonstration, favoring simplicity over sophis-311

tication. A significant positive attribute of PBRL is that its RL part is mainly decoupled from the312

human-in-the-loop, which means that future advantages in RL, which bring new algorithms, can be313

easily included. Our extensions continue that attribute since we only require changes to the reward314

model, not the agent.315

Overall, we showed potential in opening up the interface in human-in-the-loop/preference-based316

RL to include more natural and human-like feedback mechanisms instead of relying only on binary317

feedback.318
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A Hyperparameters387

We use the following hyperparameters for our experiments. Most of the common hyperparameters388

are from Lee et al. [2021a] or Christiano et al. [2017].389

A.1 Compute Power390

Most of the experiments were performed on a single NVIDIA A100 with a single seed run in391

environments that took roughly 4 hours. Many runs were calculated in parallel on the same machine392

to increase speed.393
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Hyperparameter Value

SAC

Learning rate 0.0003
Batch size 512
Buffer size 1000000
τ 0.005
γ 0.99

Reward Model

Ensemble size 3
Number of hidden units 300
Number of hidden layers 3
Learning rate 5e-4
Batch size 32
Adam β′s (0.9, 0.9)
AdamW weight decay 0.05

Our

α1 0.25
α2 0.1
Smoothgrad number of pertubations 16
Smoothgrad noise 0.01

Feedback

Maximum number of feedback 700
Feedback per interval 70
Feedback is given every X steps 20000
Maximum segment size 50
Segment sampling scheme Disagrement

Table 1: Hyperparameters
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