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Abstract

Leveraging large-scale internet data to bootstrap representations for RL presents
a reasonable path forward to learning general-purpose agents. Unlike computer
vision and NLP, the sequential nature of the RL problem makes it unclear what the
learning rule should be. Goal-Conditioned RL (GCRL) presents a self-supervised
objective for RL that can allow agents to learn representation suitable for planning
to arbitrary states. Traditional GCRL objectives require action labels which are
usually missing from sequential data on internet (eg. videos). A recent approach,
Value Implicit Pretraining (VIP), presents a new objective to learn optimal value
functions without requiring action labels. However, our findings in this paper
suggest that VIP fails to learn the correct representations in simple domains. This
finding motivates us to conduct a detailed investigation, and through formal argu-
ments we establish why VIP shows this anomaly. We propose a simple yet effect
alternative, DERAIL, that indeed learns optimal value functions and subsequently
representations suitable for RL.

1 Introduction

Fields like Computer Vision and Natural Language Processing have immensely benefited from
utilizing large-scale vision and language data. Unfortunately, such developments in reinforcement
learning and robotics have been limited. Recent works like Walke et al.| (2023)); Padalkar et al.
(2023) have made significant strides in creating large-scale datasets that can be used for robotics. To
learn representations from such large-scale data that can be transferred easily to different domains
and downstream tasks requires the representations to be independent of underlying action space i.e.
learning representations only from observations. R3M (Nair et al., [2022), VIP (Ma et al.| [2022),
LIV (Ma et al.| 2023)), ICVF (Ghosh et al., [2023)) are a few successful works that use observations
from large-scale egocentric video data to learn value functions parameterized using encoders. These
encoders can then be transferred to other domains and can be used either to define reward functions
or as a backbone encoder for behavior cloning.
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Learning representations for RL requires navigating a number of challenges: (1) What is the right
representation learning objective? (2) What are we going to use the representation for? (3) How do we
evaluate those representations. Unfortunately, these things are murkier in the field of reinforcement
learning when compared to supervised learning. A promising approach to this problem is to use
Goal-Conditioned RL [Kaelbling| (1993)) as an self-supervised objective for representation learning.
The idea is to learn compact representations that can allow for planning from any state in the
environment to any other state — effectively compressing the observations into representations
suitable for planning. Learning representations through GCRL using offline datasets that lack actions
is challenging as most objectives require actions to be known (Eysenbach et al.l 2021} |Sikchi et al.|
2023a). A recently developed line of work, Value Implicit Pretraining (VIP) (Ma et al., 2022)
leverages Fenchel-Rockefeller duality by treating RL as a convex program and derives an action-free
objective for GCRL that is later adapted to representation learning.

In our work, we demonstrate that representations learnt through Value Implicit Pretraining are lacking
and unsuitable for planning. VIP’s anomaly arises as a result of imposing an information bottleneck
in the primal objective requiring assumptions that don’t hold in practice, to convert to a dual objective
suitable for representation learning. We hypothesize that the perceived success of VIP is due to
using expert-like trajectories in its offline dataset of transitions and learning representation using a
time-contrastive objective between neighbouring observations. Our empirical experiments confirm
our findings that the representation learned through VIP indeed fail on simple low-dimensional tasks.
Next, gathering the insights from our argument, we develop a simple, principled, and action-free
objective for representation learning that we then use to overcome the limitations of VIP. Our proposed
objective is motivated by the recently proposed dual perspective of reinforcement learning. We show
that improves representation learning from a series of qualitative and quantitative experiments.

2 Related Works

Representation Learning in RL can be broadly classified into two categories: (a) offline pretraining
(Ma et al.;|2022; Nair et al., 2022) and (b) using an auxilliary loss (Schwarzer et al., 2021} |Agarwal
et al.| 2021} |Agarwal et al.) over the RL loss. The goal of both these paradigms is to induce an
inductive bias on the representation space by using reward-free interaction data. There are a variety
of auxilliary objectives that can be added to produce desired properties in the representations majority
of them being contrastive objectives (Schwarzer et al., [2021} |Agarwal et al.; Srinivas et al., [2020)
aiming for sample efficiency (Schwarzer et al.| 2021} |Srinivas et al.l 2020), generalization (Agarwal
et al.| 2021} |Agarwal et al.) and temporal consistency (Zhao et al.| [2023). While these methods
do introduce some interesting properties in the representation space and observes gains in sample
efficieny and generalization, these do not look into pre-training task-agnostic generalizable encoders
from offline data.

With the availability of large scale datasets like Ego4D (Grauman et al.,|2022) and Epic Kitchens
(Damen et al., 2018)), several methods have been developed that look learn representations from
large-scale pretraining trying to bridge the gap between RL and fields like computer vision and NLP.
RRL (Shah & Kumar, 2021 and VC1 (Majumdar et al., 2024) are some methods that have attempted
using classical computer vision techniques for representation learning. However, these works do not
take into account the sequential nature and temporal data. R3M (Nair et al., [2022)) used Ego4D to
learn representations using Time Constrastive Loss on the trajectories of Ego4D while VIP (Ma et al.,
2022)) and the follow up work LIV (Ma et al.l 2023) introduced this temporaral consistency implicitly
by learning a goal-conditioned value function for the trajectories in the large-scale dataset.

3 Preliminaries

We consider a learning agent in a Markov Decision Process (MDP) (Puterman) 2014 [Sutton & Barto,
2018) which is defined as a tuple: M = (O, §,, P, R,,d) where § and denote the state and action
spaces respectively, P denotes the transition function with P(s’|s, a) indicating the probability of
transitioning from s to s’ taking action a; R denotes the reward function and y € (0, 1) specifies the
discount factor. We use o € O to denote the space of observations, where an observation is generated
as a stochastic function of underlying state. The reinforcement learning objective is to obtain a policy
7 : O — A() that maximizes expected return: wy .- v'r(o¢, at), where we use E to denote the



expectation under the distribution induced by a; ~ 7(+|ot), 0141 ~ p(-|ot, a;) and A() denotes a
probability simplex supported over . W

Dual formulation of R Dual RL (Sikchi et al.l [2023b), also called Distribution Correction
Estimation (DICE) (Nachum & Dail [2020) present a family of principled off-policy algorithms that
can leverage data from arbitrary sources to learn optimal policy. Dual RL works by first considering
the following two convex program formulations of regularized reinforcement learning in the form of
primal-Q and primal-V:

max J(7) = max [ml?x Ed(o,0)[r(0,a)] — ad(0,a)d° (0, a)
s.td(o,a) = (1 —)do(0).7(alo) + 7>y . d(o',a")p(o]0’,a")m(alo), Yo € O,a € ].

and,

_ o
max Eg(o,a)[r(0,a)] — ad(0, a)d" (0, a) o
.t D pead(o,a) = (1 =7)do(0) + 72 (o aneox A0, a)plo]d’,a’), Yo € O.

The constraints above represent the Bellman flow conditions that any valid visitation distribution
should satisfy. That is, the visitation distribution should be induced by some policy under the
dynamics of the environment. Applying Lagrangian duality and using convex conjugates result in
respective unconstrained optimization problems for solving regularized RL:

max, ming(1 — y)o ~ do,a ~ 7(0)Q(0,a) + a(o,a) ~ d° f* ([Q(0,a) — Q(o,a)] /), 3
and,

min (1 =)o ~ oV (0) + a0, a) ~ d°f; ([TV (0,a) = V(0))] /o), )

where denotes Bellman operator with policy 7 and reward function r such that Q(o,a) = (0, a) +
70" ~p(:lo,a),a’” ~w(-]o)Q(0',a’) and TV (0,a) = r(0,a) + 75" ~ p(-[s,a)V(0").

4 Relating Value Implicit Pretraining to Optimal Value Function Learning

In this section, elucidate why a classical implementation of VIP objective does not quite learn optimal
value functions. Our analysis below identifies why VIP value functions perform worse and later
propose guidance on how to train representations with a dual objective.

4.1 What objective is VIP trying to learn?

VIP learns goal-conditioned value functions by leveraging the GCRL as a convex optimization
problem. Following the DICE framework, it constructs a convex objective by regularizing the distri-
bution matching problem with linear constraints on visitation distribution to generate a corresponding
dual objective which is action-free. Additionally, VIP introduces an information bottleneck on
observations, thus maximizing the expected return of reaching various goals in the environment.

max  Eq[r(0;9)] — Drcr(d(6(0), a; 6(9))l|d” (¢(0), a; 6(9)))

d,¢

sty d(¢(0),a;6(g)) = (1=7)mo(o,9) +7 Y _ T(olo,a)d(¢(0'), a|6(g))

o’,a’

(&)

The idea is that ¢ encodes sufficient statistics about observations and goals in such a way that still
allows it to solve the GCRL problem as well as possible. We ask the question if VIP indeed succeeds
in maximizing this objective below.

4.2 Issues with VIP under the representation learning objective

To identify the issues with the representation learning framework presented by VIP, we shall go
through the broad derivation of the representation learning objective from the dual objective. The
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Figure 1: (left) A simple 2-state 2-action MDP with a reward, and the dataset containing all 2 state
trajectories obtained from the MDP. (right) A comparison of the goal conditioned value functions
V(s1, $2) learnt by VIP and DERAIL for the goal conditioned reward, r(s,g) = 0if s = g and —1
otherwise. VIP produces suboptimal value functions while DERAIL learns the optimal value function.

Lagrangian dual of the above primal representation learning objective with some algebraic rearrange-
ment is shown below. Although VIP uses KL divergence, we will be presenting the derivation for any
general f-Divergence.

H%/i.n ;{}13‘2)%(1 - V)Euo(o;g) [V((b(O)v (b(g))] + Ed(¢(o),a;¢(g)) [’I“(O; g) + 'YV((b(O/)’ (b(g/))
=V (¢(0), (9))] = Dy (d($(0), a; $(9)[|d” (¢(0), a; &(g))  (6)

The inner maximization w.r.t d assumes a closed-form solution, denoted by fy,; » which reduces the
representation learning objective to a two-player game between V" and ¢.

mgxm‘;n(l —NE o (0:0) [V (6(0), 9(9))] + Eao0),a:6(0)) 1 1(1(03 9) + 1V (0(0"), 0(g"))
=V(g(0),0(9)))] (D

To ease learning, it is assumed that the optimal value function for any ¢ has the following structure
V*(o,9) = —ll¢(s) — o(9)ll.
max(1 = 7)Eug (o) [V (8(0), 29D + Eao0),asoon [V p(r(039) +7V7(9(0), #())

—V=(¢(0),6(9))] (8

We use a simple symmetric MDP example below with two states where one state transitions to another
with a particular action or remains at the same location with the other action. The use of symmetric
MDP is to ensure that the optimal value functions are representable by the structural assumption
of VIP. We will use this MDP as a proof by counterexample to demonstrate VIP’s failure to learn
optimal value functions.

Issue 1: VIP ignores the positivity constraint d > 0 changes the fixed point of optimization

The inner maximization with respect to the visitation distribution d admits a closed-form solution.
This closed-form solution can differ significantly if the positivity constraint of d > 0 is ignored. We
compare the functional forms of the conjugate function used in VIP vs the true conjugate function
under positivity constraints in Table|[T]

Divergence Name ‘ Generator f(x) ‘ Conjugate in VIP f3 ;5 (y) ‘ True Conjugate f;(y)

Reverse KL zlog x log ze¥ ™1 e=1)

Squared Hellinger (Vz —1)? - frr

Pearson x? (x —1)? % max(¥ 4 1,0)y — (max(4 +1,0) — 1)?

s

Table 1: VIP’s use of conjugate functions vs the true conjugate under positivity constraints. '’
denotes divergences not discussed in VIP.

Issue 2: Assumes a structure on the optimal value function that will be true regardless of the
representations ¢ to simplify optimization



In two-player game or bilevel optimization where one variable depends on the value of another
variable (in our case V (¢(0), ¢(g)) is a function of phi), assuming an analytical relation on the
fixed point (eq. V*(¢(0),9(g)) = —l|¢(0) — ¢(g)|]) can lead to substantially different fixed
point solution. Figure [I] shows the value function learned by VIP and value function learned
by the method we propose later in this work. VIP converges to an incorrect value function.

In general, without imposing structural assumption
on the value function, VIP objective remains a two- Algorithm 1 DERAIL
player game (Eq|[/]) bringing optimization challenges.

Init V4 (s, g), conservatism A

Furthermore, the sampling distribution required in
VIP is in the space of encoded representations and
contributes to gradient updates. The traditional im-
plementation ignores this by assuming no conflicting
encoded observations (no embedding collisions i.e
¢(0) # ¢(0')Vo,0' € O). This is additionally also

Let D = p = {(s,a,s’)} be an offline
dataset.
for t = 1..T iterations do

Train V,, via Orthogonal gradient update

on Eq.[[3|

end for

a requirement when the dynamics are stochastic as
the constraints in Eq[5]use transitions defined in the
space of unencoded observations. This effectively
means that if there were a simple two state MDP as
in Figurewith D observations of each state, VIP would necessitate compression to log(2D) bits
instead of the sufficient 1-bit representation of the MDP, thus losing the compression capability
afforded by the structure of MDP. Our work aims to get away with these assumptions and propose a
representation learning objective that retains the benefits of a single-player learning objective.

return ¢

5 DERAIL: Learning optimal value functions with Dual-V Learning

Understanding the limitations of VIP, motivated by the dual framework, we turn to presenting a
simple action-free objective for representation learning. Our key insight that the issues of learning
optimal value function can be mitigated by first deriving a mathematically sound dual objective and
then imposing a information bottleneck as opposed to imposing an information bottleneck on the
primal and using approximation to derive the dual objective.

We consider the dual-RL objective |Sikchi et al.| (2023b)) reformulated for goal-conditioned RL:

max Eq[r(0; )] — Dy(d(0, a; 9)lld" (0,a;9)) ©

where d represents the visitation distribution and is subject to the traditional bellman flow constraints
that ensure d is induced by some policy respecting dynamics of the environment. Here the constraints
become:

> _d(o,a;g) = (1 =7)po(0.9) +7 Y T(olo',a')d(o',a’lg) (10)
a o’,a’
Computing the dual of the problem is easy, and can be done following the same steps as in Dual-

RL (Sikchi et al., 2023b)). Using straightforward algebraic manipulations we can rewrite the above
equation as:

\4

min %138((1 - V)Euo(o;g) [V(O, g)] + ]Ed(o,a;g) [T(O; g) + Z T(0,|07 a, g)v(ola g) - V(O7 g)]

o

— Dy(d(o,a; g||d” (0,a;9) (11)

The distributions in the above equation are all conditioned on a particular goal. The inner maximiza-
tion problem w.r.t. d has a analytical solution and leads us to the final optimization objective:

min(1 = 7)Eyq 0:0) [V (0. 9)] + Eao.aig) [f; (r(0:.9) +7 Y ST (0o, a, 9)V (o', 9) = V(0.9))] (12)

e}



With the action-free GCRL objective in hand, we now directly impose an information bottleneck
on the observations by enforcing value function predictions to only use the encoded representations
(¢(0)) of observations.

Lemma 5.1. Value function learning with the DERAIL objective converges to optimal value function
under sufficient representation capacity of the information bottleneck.

Proof. The derivation follows from leveraging the strong duality argument from Section B.1.4
in|Sikchi et al.| (2023b) along with the assumption of lemma that sufficient representation capability
allows representing all value functions.

The objective for representation learning using observational data, DERAIL, can be written as:

Hgn(l N (010 [V (0, )]+ Eatgo,asq) [f5 (r(05.9) +7 Y T(0lo,a, 9) V(o 9) = Vi (0, 9))] (13)

e}

Interestingly, the objective we obtain indicates an almost opposite behavior than the VIP objective
which maximizes a monotonic function of bellman error, whereas DERAIL objective minimizes it.

5.1 Practical Algorithm

Learning representations from offline datasets require tuning conservatism akin to offline RL algo-
rithms. Following [Sikchi et al.|(2023b)), we incorporate conservatism by a linear weighting between
the two terms in the objective:

m(;n(l_/\)(l_fY)Euo(o;g) [V¢(O, g)]+/\Ed(o,a;g) [f; (T(S; g)"'fy Z T(0/|07 a, g)V¢ (0/’ g)—V¢(0, g))]
) (14)

We instantiate our algorithm (Algorithm using the Pearson x? divergence for which the [, takes
the following closed form:

£2(y) = max (ngl,O)x— (max (g +1,0) - 1)2 (15)

Substituting the above form of f;7 in Eq.|13|gets us the practical objective we use in this work. To
optimize Eq [I3] we use orthogonal gradient updates that have been shown to be more effective in
practice in finding the fixed point of the objective [Mao et al.|(2024) compared to semi-gradient
updates Sikchi et al.| (2023b). Prior works have found feature co-adaptation between features of the
current state and the next state, leading to gradients of V' (o', g) and V (o, ¢g) canceling out. Orthogonal
gradient updates fix this by considering the projection of the gradient of the next observation in the
orthogonal direction to the gradient of the current observation.

We parameterize value functions by considering two representation bottlenecks in this work: (a)
L2/Eucleadian (V4(0,g9) = —||¢(0) — ¢(g)||) used in Ma et al|(2022), and (b) Multilinear used
in [Ghosh et al| (2023) (Vy(s,g) = é1(s)¢2(9)¢s(g)) where ¢1(s) € Rga(g) € R and
#3(g9) € RY. For multilinear representations we use ¢; as the resulting representation encoder.
The Eucleadian bottleneck linearizes the value function in representation of observation but has the
downside of enforcing symmetric value functions V (o, g) = V (g, 0), a condition often violated in
practice. For this reason, we consider Multilinear representation that allow for assymetric value
function learning while still imposing an information bottleneck.

6 Experiments

Our experiments aim to validate the arguments made in the paper about the failure of VIP in learning
correct representations for reinforcement learning and demonstrate the effectiveness of the proposed
method DERAIL. To this end, we consider a number of MuJoCo tasks with freely accessible datasets|Fu
et al.| (2020). We do not use the Ego4D dataset used in as the version of the dataset used in the
paper is not available to public. Our results are not limited by the consideration of simulated tasks,
as any representation learning method should learn meaningful representation invariant of domain



being used. Indeed, recent work () shows that representations learned on states (already a compact
representation) can speed up RL. Simulated tasks gives us the ability to do a more detailed analysis
of OOD generalization capabilities of the learned representation. Our experiments below evaluate the
learned representations from VIP and DERAIL both qualitatively and quantitatively.

Datasets: We use the D4RL datasets and consider the problem of learning representations that allow
the agent to plan from any state in the dataset to any other state. Our preliminary results investigate
representations learned on the following datasets — halfcheetah-medium-expert, hopper-medium-
expert, walker-medium-expert, ant-medium-expert.

6.1 Nature of Learned Representations

In this section, we investigate whether the representations learned by are meaningful. To do so, we
train each method to convergence for 100k gradient updates on all the datasets and use the encoder
(the information bottleneck of the value function) to generate 16 and 32 dimensional representation
of states in the environment. For the multilinear representation we discard 1) which encodes the task
information of which goal to reach and only use ¢. Figure2]and Figure [3| plot an MDS projection of
the representations in 2D for L2 and Multilinear representations respectively. Our choice of MDS
projection is motivated by its distance preserving nature even after projection.

hopper-m-e halfcheetah-m-e walker2d-m-e ant-m-e

Gt expert, R goal Tojectory visualzation, B: random, G: expert, R goal Tojectory visualization, B: random, G: expert, R goal Tajectory visuslization, 8: random, G: expert, : goal

Figure 2: MDS plot of in-distribution representations with L2 bottleneck: We sample an expert
trajectory that is not a part of the medium-expert data

hopper-m-e halfcheetah-m-e walker2d-m-e ant-m-e

Figure 3: MDS plot of in-distribution representations with Multilinear bottleneck: We sample an
expert trajectory that is not a part of the medium-expert data



In Figures 2] we observe VIP to collapse representations for most L2 tasks likely due to failing to
implement a necessary embedding collision objective in its practical algorithm. Our representations
for Hopper and Walker2d environments are most interpretable - The representation of expert trajectory
forms a complete loop indicating the periodic pattern of states these environments encounter in an
expert trajectory.

6.2 Optimal Value Functions with Representation Bottleneck

We evaluate the ability of VIP and to learn optimal value functions which is a direct indicator of the
quality of representations learned. In this section, we sample an in-distribution expert trajectory - one
expert trajectory that is in-distribution but does not exist in the medium-expert datasets and a random
trajectory. We then fix the end state of the expert trajectory as the goal and plot the learned value
function at every state of the trajectory.

In Figure @ and Figure [5] we observe that ’s value reflect the correct patterns we expect in the expert
trajectory. For Hopper and Walker2d environments where the agent follows a periodic trajectory
and observes similar state multiple times, the learned value function captures this behavior. For
HalfCheetah and Ant, which are not periodic in nature as a result of choice of their observation space,
the value function increases until the goal is reached. In contrast, VIP’s value function is noisy and
does not reflect the expected trends.

hopper-m-e halfcheetah-m-e walker2d-m-e ant-m-e

Value function for trajectory. Value function for rajectory. Value function for rajectory. Value function for rajectory.
100
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Value function for trajectory Value function for trajectory Value function for trajectory Value function for trajectory
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Figure 4: Optimal value function prediction on in-distribution trajectories under a bottlenecked
L2 representation. VIP representations collapses causing the value function to collapse. learns
meaningful value functions.
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Figure 5: Optimal value function prediction on in-distribution trajectories under a bottlenecked
Multilinear representation. VIP representations do not collapse but learn incorrect value functions for
HalfCheetah and Ant environments. learns meaningful value functions.



7 Conclusion

Learning a general-purpose representation of the world for reinforcement learning has the potential
to pave way to a foundational model for robotics. This work discusses the limitations of prior work,
Value Implicit Pretraining (VIP), that learns such representations by training optimal goal-reaching
value functions. Our core insight is assumptions made in VIP does not allow it to learn optimal
value functions and hence the right representations. Our work proposes a clean, simple and effective
alternative that overcomes these limitations and proposes an action-free objective for GCRL. To this
end, we support our claims by studying the learned representations on simulated tasks from the D4RL
benchmark.
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Algorithm 2 DERAIL

Init V4 (s, g), conservatism A

Let D = p = {(s,a,s’)} be an offline

dataset.

for t = 1..T iterations do
Train V, via Orthogonal gradient update
on Eq.[[3]

end for

return ¢
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