
SkiLD: Unsupervised Skill Discovery
Guided by Local Dependencies

Anonymous Author(s)
Affiliation
Address
email

Abstract

Unsupervised skill discovery carries the promise that an intelligent agent can learn1

reusable skills through autonomous, reward-free environment interaction. Existing2

unsupervised skill discovery methods learn skills by encouraging distinguishable3

behaviors that cover diverse states. However, in complex environments with4

many state factors (e.g., household environments with many objects), learning5

skills that cover all possible states is impossible, and naively encouraging state6

diversity often leads to simple skills that are not ideal for solving downstream7

tasks. This work introduces Skill Discovery from Local Dependencies (SkiLD),8

which leverages state factorization as a natural inductive bias to guide the skill9

learning process. The key intuition guiding SkiLD is that skills that induce diverse10

interactions between state factors are often more valuable for solving downstream11

tasks. To this end, SkiLD develops a novel skill learning objective that explicitly12

encourages the mastering of skills that effectively induce different interactions13

within an environment. We evaluate SkiLD in several domains with challenging,14

long-horizon sparse reward tasks including a realistic simulated household robot15

domain, where SkiLD successfully learns skills with clear semantic meaning and16

shows superior performance compared to existing unsupervised reinforcement17

learning methods that only maximize state coverage.18

1 Introduction19

Reinforcement learning (RL) achieves impressive successes when solving decision-making problems20

with well-defined reward functions [62, 19, 31]. However, designing this reward function is often21

not trivial [6]. In contrast, humans and other intelligent creatures can learn, without external reward22

supervision, behaviors that produce repeatable and predictable changes in the environment [17].23

These behaviors, which we call skills, can be later repurposed to solve downstream tasks efficiently.24

One of the promises of this form of unsupervised RL is to endow artificial agents with similar25

capabilities to discover reusable skills without explicit rewards.26

One predominant strategy of prior skill discovery methods focuses on training skills to reach diverse27

states while being distinguishable [18, 57, 48]. However, in complex environments that contain many28

state factors—distinct elements such as individual objects in a household (a formal description in29

Sec. 2.1), the exponential number of distinct states makes it impossible to learn skills that cover every30

state. Consequently, these methods result in simple skills that only change the easy-to-control factors31

(e.g., in a manipulation task moving the agent itself to diverse positions or manipulating each factor32

independently), and fail to cover other desirable but challenging behaviors. Unsurprisingly, these33

simple skills often struggle to solve meaningful tasks, resulting in poor downstream performance.34

Our key insight is that, given a factored state space, the interactions between state factors can often35

act as a powerful inductive bias in guiding the learning of useful skills. For example, in a household36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

Figure 1: Skill Discovery from Local Dependencies (SkiLD) describes skills that encode interactions
(i.e., local dependencies) between state factors. In contrast to prior diversity-based methods that
can easily get stuck by moving the robot to diverse, but non-interactive states, and factor-based
methods that are trained to manipulate the hammer and nail, but not their interactions, SkiLD not only
manipulate each object (left, middle) but also induce interactions between them (right), by specifying
different local dependencies. These skills are often more useful than the “easy” skill learned by
previous methods for downstream task-solving.

environment, a skill that induces interactions between a knife and a fruit is more likely to encode37

fruit-cutting behaviors that can be crucial for a wide range of downstream kitchen tasks. Furthermore,38

exploring state coverage within the space of interaction states can uncover desirable interactions like39

cutting the peach.40

The guiding principle behind this inductive bias is that many domains, including robotic manipulation,41

exhibit dynamic bottlenecks through interactions. Interactions act as dynamic bottlenecks by serving42

as particular sets of states that must be reached to control another factor. For example, contact between43

the knife and fruit is required to control the fruit through cutting. Instead of simply searching for44

diversity alone, which in a large state space could focus only on manipulating single factors, forcing45

diversity through interactions prevents these dynamic bottlenecks from blocking a wide coverage of46

skills.47

To this end, we introduce Skill Discovery from Local Dependencies (SkiLD), a novel skill discovery48

method that explicitly learns skills that induce diverse interactions. Specifically, SkiLD models the49

interactions between state factors using the framework of local dependencies (where local refers to50

state-specific, see details in Sec. 2.2) and proposes a novel intrinsic reward that 1) encourages the agent51

to induce specified interactions, and 2) encourages the agent to discover diverse ways of inducing52

specified interaction, as visualized in Figure 2. During skill learning, SkiLD gradually discovers53

new interactions and learns to induce them, based on the skills that it already mastered, resulting54

in a diverse set of interaction-inducing behaviors that can be readily repurposed for downstream55

tasks. During task learning, the skill policy is reused, and a task-specific policy is learned to select (a56

sequence of) skills to maximize task rewards efficiently.57

We evaluate the performance of SkiLD on factor-rich environments with 10 downstream tasks against58

existing unsupervised reinforcement learning methods. Our experiments indicate that SkiLD learns59

to induce diverse interactions and outperforms other methods on most of the examined tasks.60

2 Background61

In this paper, our unsupervised skill discovery method is set up in a factored Markov decision process62

and builds off previous diversity-based methods, as described in Sec. 2.1. To enhance the expressivity63

of skills, our method further augments the skill representation with interactions between state factors,64

which we formalize as local dependencies as described in Sec. 2.2.65

2.1 Factored Markov Decision Process (Factored MDP)66

We consider unsupervised skill discovery in a reward-free Factored Markov Decision Process [7]67

defined by the tuple M = (S , A, p). S = S1 × · · · × SN is a factored state space with N subspaces,68

where each subspace Si is a multi-dimensional continuous or discrete random variable. Then,69

correspondingly, each state s ∈ S consists of N state factors, i.e., s = (s1, . . . , sN), si ∈ Si. In this70

paper, we use uppercase letters to denote random variables and lowercase for their specific values (e.g.,71

S denotes the random variable for states s). A is the action space, and p is an unknown Markovian72

transition model that captures the probability distribution over the next state S′ ∼ p(·|S,A).73

2

The factorization in S inherently exists in many environments, and is a common assumption in prior74

unsupervised skill discovery works [21, 27]. For example, in robotics, an environment typically75

consists of a robot and several objects to manipulate, and, for each object, Si would represent its76

attributes of interest, like pose. In this work, we explore how we can utilize a given state factorization77

to improve unsupervised skill discovery. In practice, the factorization can either be directly provided78

by the environment or obtained from image observations with existing disentangled representation79

learning methods [45, 29].80

Following prior work, our method consists of two stages—skill learning and task learning. During the81

skill learning phase, we seek to learn a skill policy πω(·|s, z), which defines a conditional distribution82

over actions given the current state s and some skill representation z, where skills indicate the desired83

behaviors of the agent. Once the skills are learned, they can be chained together to solve downstream84

tasks during the task learning phase through an extrinsic reward-optimizing policy. During task85

learning, a downstream task reward function r : S × A → R is provided by the environment. A86

high-level policy π(z|s) is then trained to optimize the expected return through outputting correct87

skills z given state s.88

2.2 Identifying Local Dependencies between State Factors89

A key insight of SkiLD is to utilize interactions (or, formally, local dependencies) between state90

factors as part of the skill representation. In later sections, these local dependencies are compiled91

into a binary matrix G(s, a, s′) = {0, 1}N×(N+1) representing the local dependencies between all92

factors. In this section, we first formally define local dependencies, introduce their identification, and93

finally discuss their application to factored MDPs.94

SkiLD takes a causality-inspired approach for defining and detecting local dependencies [5, 56],95

where we use local to refer to a particular assignment of values for a random variable, as opposed96

to global which applies to all values. Formally, for an event of interest Y and its potential causes97

X = (X1, . . . , XN), given the value of X = x, local dependencies focus on which Xis are the98

state-specific cause of the outcome event Y = y (for simplicity of presentation, in this section we99

overload N as the number of potential causes rather than number of variables and p as the transition100

function according to a subset of the variables). Formally, we denote the general data generation101

process of Y as p : X → Y and the data generation process when Y is only influenced by a subset of102

X as pX̄ : X̄ → Y , where X̄ ⊆ X . Then, given the value of all variables, X1 = x1, · · · , XN = xN103

and Y = y, we say Y locally depends on X̄ , if X̄ is the minimal subset of X such that knowing their104

values is necessary and sufficient to generate the result of Y = y, i.e.,105

argmin
X̄⊆X

|X̄| s.t. pX̄(Y = y|X̄ = x̄) = p(Y = y|X = x), (1)

where |X̄| is the number of variables in X̄ . For example, suppose that a robot opens a refrigerator106

door in a particular transition. The event of interest Y is the refrigerator door becoming open, and it107

locally depends on two factors: the robot and the refrigerator door, while other state factors such as108

objects inside the refrigerator do not locally influence Y .109

To identify local dependencies, one can conduct a conditional independence test y ⊥⊥ xi|{x/xi} to110

examine whether a variable Xi is necessary for predicting Y = y. In prior works, one form of this111

test is to examine whether the pointwise conditional mutual information (pCMI) is greater than 0,112

pCMI(y;xi|{x/xi}) = log
p(y|x)

p{X/Xi}(y|{x/xi})
> 0. (2)

If so, then it suggests that knowing Xi = x provides additional information about Y that is not113

present in {X/Xi}, and Y locally depends on Xi. As the data generation processes are generally114

unknown, one has to approximate them with learned models. Recent work in RL has utilized various115

approximations such as attention weights [51], Granger causality [13], and input gradients [60].116

In this work, for a transition (S = s,A = a,S ′ = s′), the event of interest is each next state factor117

being (Si)′ = (si)′, and we infer whether it locally depends on each state factor Sj and the action A118

(i.e., whether there is an interaction between state factors i and j, where factor j influences i). Then119

we aggregate all local dependencies into a state-specific dependency graph (abbreviated in this work to120

dependency graph). This overall dependency graph is represented with G(s, a, s′) = {0, 1}N×(N+1),121

3

graph-selection policy

skill policy

Env

desired local
dependencies

diversity
variable

dynamics
modelEq. (4)

Eq. (3)

task policy

frozen skill policy

Env

Skill Learning Phase Task Learning Phase

Figure 2: During skill learning of SkiLD, the graph-selection policy specifies desired local depen-
dencies for the skill policy to induce, and the induced dependency graph is identified by the dynamics
model and used to update both policies. During task learning (right), the skill policy is kept frozen
and a task policy is trained to select skills to maximize task reward.

and an edge Gij(s, a, s′) denotes, during the transition (s, a, s′), that state factor (si)′ (the “Y = y”)122

locally depends on sj (one of the Xj):123

Gij := pCMI((xi)′;xj |{x/xj}) (3)

This graph is used to enhance skill representation, as explained in detail in Section 3.124

3 Skill Discovery from Local Dependencies (SkiLD)125

In this section, we describe SkiLD, which enhances the expressivity of skills using local dependencies.126

SkiLD represents local dependencies as state-specific dependency graphs, defined in Sec. 2.2. Unlike127

previous unsupervised skill discovery methods that randomly sample the skill vector z from fixed128

distributions during skill learning, SkiLD requires a procedure to intelligently generate target depen-129

dency graphs during training. As such, SkiLD frames unsupervised skill discovery as a hierarchical130

RL problem, where a graph-conditioned skill policy learns to induce different local dependencies131

using primitive actions, and a high-level graph selection policy chooses which local dependencies the132

skill policy should induce next to guide exploration and skill-policy learning.133

This requires formalizing two components: (1) the skill representation Z for the skill policy134

πskill(a|s, z) and its corresponding reward function Rskill, presented in Sec. 3.1, and (2) the graph135

selection policy πG(z|s) and its reward function RG, presented in Sec. 3.2.136

3.1 Skill Policy137

Prior unsupervised skill discovery methods usually focus skill learning on changing the state or each138

factor diversely. Consequently, they are can be limited to learning simple skills, for example, only139

changing the easiest-to-control factor in the state (i.e., the agent itself). To address this problem,140

SkiLD not only focuses on changing the state but also considers the interactions between state factors.141

Skill Representation. SkiLD represents the skill space as the combination of two components:142

Z = G × B, where g ∈ G is a state-specific dependency graph that specifies the desired local143

dependencies between state factors, and b ∈ B is a diversity variable the same as that used in144

Eysenbach et al. [18]. Together z ∈ Z guides the agent to change the state distinguishably while145

inducing particular local dependencies. Specifically, the dependency graph is represented as a146

binary matrix G = {0, 1}N×(N+1), where each edge Gij denotes, during the transition (s, a, s′),147

whether the state factor (si)′ locally depends on sj . The diversity variable B can be either discrete or148

continuous. In this work, without loss of generality, we use a discrete space of {1, . . . ,K} where K149

is a predefined number. During skill training, we sample the diversity variable b from a fixed uniform150

distribution p(b), following the procedure of Eysenbach et al. [18].151

Given this skill space, SkiLD learns skills as a skill-conditioned policy πskill : S ×Z → A, where152

πskill is trained to reach diverse states while ensuring that the local dependencies specified by the153

graph are induced. During skill learning, we select actions by iteratively calling the skill policy154

πskill, and we denote ginduced as the graph that describes the local dependencies induced in a transition155

4

(s, a, s′) when executing a selected action a. We design the reward function of SkiLD as:156

Rskill = 1[ginduced = g] · (1 + λRdiversity), (4)

where 1[ginduced = g] measures whether the induced dependency graph matches the desired graph,157

Rdiversity is the weighted diversity reward that further encourages visiting diverse states when the158

desired graph is induced, and λ is the coefficient of diversity reward. In the following paragraphs, we159

describe how we infer ginduced and estimate Rdiversity for each transition.160

Inferring Induced Graphs. To infer the induced graph for a transition (S = s,A = a, S′ = s′),161

we need to determine, for each (S ′)i, whether it locally depends on each factor Sj and the action162

A. Specifically, following Sec. 2.2, we evaluate the conditional dependency (si)′ ⊥̸⊥ sj |{s/sj , a}163

by examining whether their pointwise conditional mutual information (pCMI) is greater than a164

predefined threshold pCMIij = p((si)′|s,a)
p((si)′|{s/sj ,a}) ≥ ϵ. If so, it suggests that sj is necessary to predict165

(si)′ and thus the local dependency exists. Meanwhile, as the transition probability p is unknown, we166

approximate it with a learned dynamics model that is trained to minimize prediction error.167

Finally, after obtaining the induced dependency graph, we evaluate 1[ginduced = g] by examining168

whether each edge gijinduced matches the corresponding edge in the desired graph gij . As Rskill only169

provides sparse rewards to the skill policy when the desired graph is induced, we use hindsight170

experience replay [1] to enrich learning signals, by relabelling induced graphs as desired graphs in171

some episodes.172

Diversity Rewards. When the skill policy induces the desired graph, Rdiversity further encourages173

it to visit different distinguishable states under different diversity indicators b, e.g., driving the nail174

to different locations. This diversity enhances the applicability of learned skills. To this end, we175

design the diversity reward Rdiversity as the forward mutual information between visited states and the176

diversity indicator I(s; b), following DIAYN. To estimate the mutual information, we approximate177

it with a variational lower bound I(s; b) ≥ q(b|s), where q(b|s) is a neural network discriminator178

trained to predict the diversity indicator b from the visited state. In practice, rather than learning a179

single low-level skill to handle all graphs and diversity parameters, we utilize a factorized lower-level180

policy, where there is a separate policy for each factor. More details about this subdivision can be181

found in Appendix A.182

3.2 Graph-Selection Policy183

To acquire skills that are useful for downstream tasks, πskill needs to learn to induce a wide range184

of local dependencies sample-efficiently. To this end, we propose to learn a graph-selection policy185

πG : S → G to guide the training of πskill. Specifically, training πskill requires a wise selection of186

graphs — as graph space G increases super-exponentially in the number of state factors N , many187

graphs are not inducible. To this end, we only select target graphs for skill policy from a history of188

all seen graphs. As the agent learns to induce existing graphs in diverse ways, new graphs may be189

encountered, gradually expanding the set of seen graphs.190

However, though this history guarantees graph inducibility, two challenges still remain: (1) How to191

efficiently explore novel local dependencies, especially hard-to-visit ones? (2) For all seen graphs,192

which one should πskill learn next to maximize training efficiency? We address these challenges193

based on the following heuristic — compared to well-learned skills, πskill should focus its training on194

underdeveloped skills. Meanwhile, learning new skills opens up the possibility of visiting novel local195

dependencies, e.g., learning to grasp the hammer makes it possible for the robot to hammer the nail.196

According to this heuristic, we learn a graph-selection policy πG that guides the exploration and197

training of the skill policy πskill. Specifically, πG : S → G selects a new dependency graph the skill198

policy should induce for the next L time steps. To increase the likelihood of visiting hard graphs, πG199

is trained to maximize the following graph novelty reward200

RG =
1√

C(gvisited)
, (5)

where C(gvisited) is the number of times that we have seen the graph in the collected transition. While201

Eq. 5 is similar to state-count-based exploration reward, here, it is based on the count of dependency202

graphs, and thus applicable to both discrete and continuous state space.203

5

(a) Thawing (b) Cleaning Car (c) Interactive Gibson

Figure 3: Evaluation domains: Mini-behavior: Installing Printer, Thawing and Cleaning Car, and
iGibson.

3.3 Downstream Task Learning204

In SkiLD, we utilize hierarchical RL to solve reward-supervised downstream tasks with the discovered205

skills. The skill policy, πskill acts as the low-level policy while a task policy, πtask : S → Z , is learned206

to select which skill z = (g, b) to execute for L steps. Compared to diversity-based skills that are207

limited to simple behaviors, our local-dependency-based skills enable a wide range of interactions208

between state factors, leading to more efficient exploration and superior performance of downstream209

tasks learning.210

4 Experiments211

In this section we aim to provide empirical evidence towards the following questions: Q1) Do212

the skills learned by SkiLD induce a diverse set of interactions among state factors? Q2) Do213

the skills learned by SkiLD enable more efficient downstream task learning compared to other214

unsupervised reinforcement learning methods? Our learned skills can be visualized at https:215

//sites.google.com/view/skild/.216

4.1 Domains217

In this work, we focus on addressing the challenge of vast state space brought by a large number218

of state factors. Hence, we evaluate our method on two challenging object-rich embodied AI219

benchmarks: Mini-behavior [30] and Interactive Gibson [40].220

The Mini-behavior (Mini-BH) domain [30] (Figure 3a) contains a set of gridworld environments221

where an agent can move around and interact with a variety of objects to accomplish certain household222

tasks. While conceptually simple, this domain has been shown to be extremely challenging for Vanilla223

RL with sparse reward [30]. Each Mini-BH environment contains different objects and different224

success criteria. We tested on three particular environments in Mini-behavior, including:225

• Installing Printer: A relatively simple environment with three state factors: the agent, a table, and226

a printer that can be installed.227

• Cleaning Car: An environment where the objects have rich and complex interactions. The state228

factors include the agent, a toggleable sink, a piece of rag that can be soaked in the sink, a car that229

the rag can clean, a soap and a bucket which can together be used to clean the rag.230

• Thawing: An environment with lots of movable objects. The state factors include the agent, a sink,231

a fridge that can be opened, and three objects that can be thawed in the sink: fish, olive, and a date.232

The Interactive Gibson (iGibson) domain [41] (Figure 3b) contains a realistic simulated Fetch233

Robot that operates in a kitchen environment with a refrigerator, sink, knife, and peach. The peach234

can be washed or cut. This domain is very difficult especially when using low-level motor commands235

because much of the domain is free space, meaning that only a minute fraction of action sequences236

will manipulate the objects meaningfully.237

Both Mini-BH and iGibson require learning long-horizon policies spanning many low-level actions238

from sparse reward, making these challenging domains (see details in Appendix).239

6

https://sites.google.com/view/skild/
https://sites.google.com/view/skild/
https://sites.google.com/view/skild/

4.2 Baselines240

Before evaluating the empirical questions, we provide a brief description of the baselines. These241

baselines include unsupervised skill learning, and causal and hierarchical methods.242

Diversity is all you need (DIAYN [18]): This method learns unsupervised state-covering skills using243

a mutual information objective. SkiLD utilizes a version of this for state-diversity skills modulated by244

a desired dependency graph. This baseline determines how incorporating graph information affects245

the algorithm.246

Controllability-Aware Skill Discovery (CSD [48]): Extends DIAYN with a factorization based on247

controllability. This baseline is a comparable skill learning method that leverages state factorization248

but does not encode local dependencies.249

Exploration via Local Dependencies (ELDEN [60]): This method utilizes gradient-based techniques250

to infer local dependencies for exploration. However, without a skill learning component, it can251

struggle to chain together complex behavior.252

Chain of Interaction Skills (COInS [13]): This is a hierarchical algorithm that constructs a chain253

of skills using Granger-causality to identify local dependencies. Because it is restricted to pairwise254

interactions, it struggles to represent the rich policies necessary for these tasks.255

Vanilla RL: This baseline uses PPO [55] to directly train an agent with the extrinsic reward. Unlike256

other baselines, this method does not have a pertaining phase. Since all the task rewards are sparse257

and the tasks are often long horizon, vanilla RL often struggles.258

4.3 Interaction Graph Diversity259

visiting likelihood (%)

bucket, rag -> rag

car, rag -> rag

bucket, soap -> bucket

car, rag -> car

sink, rag -> rag

agent, sink, rag, action -> rag

agent, sink, action -> sink

agent, soap, action -> soap

agent, rag, action -> rag

agent, action -> agent

0.5

13.7

16.6

19.0

25.5

33.9

64.8

76.1

92.5

100.0

0.0

0.0

0.1

0.0

0.4

0.1

47.9

13.7

32.4

100.0

0.0

0.0

0.0

0.0

0.0

0.0

2.5

0.9

9.0

100.0

CaSk (ours)
CSD
DIAYN

Figure 4: The percentage of episodes where a de-
pendency graph is induced through random skill sam-
pling. Standard deviation is calculated across five ran-
dom seeds.

We first evaluate whether SkiLD is indeed ca-260

pable of achieving complex interaction graphs261

(Q1), comparing against two strong skill discov-262

ery baselines introduced earlier: DIAYN and263

CSD.264

Each of these methods is trained for 10 Million265

steps without having access to any reward. Then266

to evaluate their learned skills, we unroll each267

of them for 500 episodes with randomly sam-268

pled skills z and examine the diversity of the269

interaction graphs they can induce. Figure 4270

illustrates the percentages of episodes where271

particular local dependencies have been induced272

at least once, in Mini-BH Cleaning Car. We273

find that DIAYN and CSD are limited to skills274

that only manipulate one object individually, i.e.275

(agent, rag, action → rag) or (agent, soap, action276

→ soap). By contrast, SkiLD learns to induce277

more complicated causal interactions, such as278

soaking the rag in the sink (sink, rag → rag) and279

cleaning the car with the soaked mug (car, rag280

→ car).281

4.4 Performance282

Next, we evaluate whether the local dependency coverage provided by SkiLD leads to a performance283

boost in downstream task learning (Q2). We follow the evaluation setup in the unsupervised rein-284

forcement learning benchmark [36], where for a given environment, an agent is first pre-trained285

without access to task reward for Kpt steps, and then finetuned for Kft steps. Importantly, the same286

pre-trained skills are reused on multiple distinct downstream tasks within the same environment, so287

that only the upper-level skill-selection policy is task-specific. We have Kpt = 2M , Kft = 1M for288

installing printer, Kpt = 10M , Kft = 5M for thawing and cleaning car, and Kpt = 4M , Kft = 2M289

7

0 0.5M 1.0M0.0

0.5

1.0

Su
cc

es
s R

at
e

(a) Install Printer
0 2.5M 5.0M0.0

0.2

0.4

(b) Thaw Olive
0 2.5M 5.0M0.0

0.5

1.0

(c) Thaw Fish
0 2.5M 5.0M0.0

0.5

1.0

(d) Thaw Date
0 2.5M 5.0M0.0

0.5

1.0

(e) Soak Rag

0 2.5M 5.0M0.0

0.1

0.2

Su
cc

es
s R

at
e

(f) Clean Car
0 2.5M 5.0M0.00

0.03

0.06

(g) Clean Rag
0 1.0M 2.0M0.0

0.5

1.0

(h) Grasp Peach
0 1.0M 2.0M0.0

0.5

1.0

(i) Wash Peach
0 1.0M 2.0M0.0

0.1

0.2

(j) Cut Peach

Figure 5: Training curves of SkiLD and baselines on multiple downstream tasks (reward supervised
second phase). Each curve depicts the mean and standard deviation of the success rate over 5 random
seeds. SkiLD outperforms all baselines for most tasks, converging faster and to higher returns.

for iGibson, and evaluate each method for each task across 5 random seeds. Hyperparameter details290

can be found in Appendix D. Specifically, we evaluate on the following downstream tasks:291

• Installing Printer: We have a single downstream task in this environment, where the agent needs292

to pick up the printer, put it on the table, and turn it on.293

• Thawing: We have three downstream tasks: thawing the fish or the olive or the date.294

• Cleaning Car: We consider three downstream tasks, where each task is a pre-requisite of the295

following one. The tasks are: soak the rag in the sink; clean the car with the rag; and clean the dirty296

rag using the soap in the bucket.297

• IGibson: The tasks for this domain are: grasping the peach, washing the peach in the sink, and298

cutting the peach with a knife.299

After skill learning, we train a new upper-level policy that uses z as actions and is trained with extrinsic300

reward, as described in Section 3.3. Figure 5 illustrates the improvement of SkiLD as compared to301

other methods. Without combining dependency graphs with skill learning, other methods struggle302

with any but the simpler tasks. COInS performs poorly because of its chain structure, which restricts303

the agent controlling policy from picking up objects. ELDEN’s exploration reaches graphs, but304

without skills struggles to utilize that information in downstream tasks. DIAYN learns skills, but few305

manipulate the objects, so a downstream model struggles to utilize those skills to achieve meaningful306

rewards. By comparison, SkiLD achieves superior performance on 9 of the 10 downstream tasks307

evaluated. In the two hardest tasks which require a very long sequence of precise controls, Clean Rag308

and Cut Peach, SkiLD is the only method that can achieve a non-zero success rate (although still far309

from fully mastering the tasks), showcasing the potential of local dependencies for skill learning.310

4.5 Graph and Diversity Ablations311

We also explore the functionality of the graph and diversity components of the skill parameter z312

by assessing the downstream performance of SkiLD without these components. This produces two313

ablative versions of SkiLD: SkiLD without diversity and SkiLD without dependency graphs. To314

isolate learning from the effect of learned local dependencies, we use ground truth dependency315

graphs for ablative evaluations where relevant. In Figure 6, learning without graphs results in zero316

performance, consistent with DIAYN results. In addition, removing diversity produces a notable317

decline in performance, especially on more challenging tasks like clearning the rag. These evaluations318

demonstrate that SkiLD benefits from both the incorporation of dependency graphs and diversity.319

8

0 2.5M 5.0M0.0

0.5

1.0

(a) Soak Rag

0 2.5M 5.0M0.0

0.5

1.0

(b) Clean Car

0 2.5M 5.0M0.00

0.05

0.10

(c) Clean Rag

Figure 6: A figure illustrating the ablative performance of SkiLD without diversity or without graphs.
Without graphs, the method collapses completely, while removing diversity results in a noticeable
reduction in downstream performance.

5 Related Work320

This work lies in the unsupervised skill learning framework [35], where the agent must discover a321

set of useful skills which are reward independent. It then extends these skills to construct a 2-layer322

hierarchical structure [58], where the upper policy receives reward both for achieving novel skills,323

and can then be tuned to utilize the learned skills to accomplish an end task. Finally, the skills are324

identified using token causality, a specific problem identified in causal literature.325

5.1 Unsupervised Skill Learning326

This work describes a framework for utilizing local dependency graphs and diversity to discover327

unsupervised skills. Diversity-based state coverage skills have been explored in literature [18]328

utilizing forward and backward mutual information techniques to learn a goal space Z , and a skill329

encoder q(z|·) [10]. This unsupervised paradigm has been extended with Lipschitz constraints [47],330

contrastive objectives [37], information bottleneck [33], population based methods such as particle331

estimation [43], quality diversity [42] and mixture of experts [11]. These skills can then be used for332

hierarchical policies or planners [54, 64, 22], which mirrors the same structure as SkiLD. Unlike333

these methods, SkiLD adds additional subdivision through dependency graphs, which mitigates the334

combinatorial explosion of skills that can result from trying to cover a large factored space.335

5.2 Hierarchical Reinforcement Learning336

The hierarchical policy structure in SkiLD where a higher level policy passes a parameter to be inter-337

preted by low-level planners has been formalized in [58], and learned using deep networks utilizing338

extrinsic reward [2, 59], attention mechanisms [15], initiation critera [32, 3] and deliberation cost [25].339

Hierarchies of goal-based policies [38] has been extended with object-centric representations [63],340

offline data [46], empowerment [39] and goal counts [49]. In practice, SkiLD uses graph and diversity341

parameters similar to goal-based methods. However, the space of goals can often be intractable342

large, and methods to address this use graph laplacians [34] causal chains [12, 13] or general causal343

relationships [27]. SkiLD is similar to these causal methods but utilizes local dependence along with344

general two-layer architectures, thus showing increased generalizability.345

5.3 Causality in Reinforcement Learning346

This work investigates the application of local dependency to hierarchical reinforcement learning.347

This kind of reasoning has been described as “local causality” or “interactions” in prior RL work348

for data augmentation [51, 52], learning skill chains [12, 13] and exploration [60]. This work is349

the first synthesis of unsupervised skill learning and local dependencies applied to general 2-layer350

hierarchical reinforcement learning. Other general causality work investigates action-influence351

detection [56, 26], affordance learning [9], model learning [28, 20], critical state identification [44],352

and disentanglement [16]. In the context of relating local dependency and causal inference, we353

provide a discussion in Appendix C. SkiLD incorporates causality-inspired local dependence to skill354

learning, resulting in a robust set of transferable skills.355

9

6 Conclusion356

Unsupervised skill discovery is a powerful tool for learning useful skills in long-horizon sparse357

reward tasks. However, many unsupervised skill-learning methods do not take advantage of factored358

environments, resulting in poor performance in complex environments with several objects. Skill359

Discovery from Local Dependencies utilizes state-specific dependency graphs, identified using360

learned pointwise conditional mutual information models, to guide skill discovery. The framework361

of defining skills according to a dependency graph and diversity goal, combined with a learned362

sampling scheme, achieves difficult downstream tasks. In domains where hand-coded primitive363

skills are typically given to the agent, like Mini-behavior and Interactive Gibson, SkiLD can achieve364

high performance without requiring explicit domain knowledge. These impressive results arise365

intuitively from incorporating local dependencies as skill targets, illuminating a meaningful direction366

for unsupervised skill learning to be applied to a wider array of environments.367

Limitations and Future Work An important assumption of SkiLD is its access to factored state368

space. While factored state space can often be naturally obtained from existing RL benchmarks369

and many real-world environments, developments in disentangled representation learning [45, 29]370

will help with extending SkiLD to unfactored image domains. Secondly, SkiLD requires accurate371

detection of local dependencies. While off-the-shelf methods [60, 56] work well for detecting local372

dependencies in our experiments, future works that can more accurately detect local dependencies373

will be beneficial to the performance of SkiLD.374

References375

[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,376

Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience377

replay. Advances in neural information processing systems, 30, 2017.378

[2] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings379

of the AAAI conference on artificial intelligence, volume 31, 2017.380

[3] Akhil Bagaria, Ben Abbatematteo, Omer Gottesman, Matt Corsaro, Sreehari Rammohan, and381

George Konidaris. Effectively learning initiation sets in hierarchical reinforcement learning.382

Advances in Neural Information Processing Systems, 36, 2024.383

[4] Sander Beckers, Hana Chockler, and Joseph Halpern. A causal analysis of harm. Advances in384

Neural Information Processing Systems, 35:2365–2376, 2022.385

[5] Gianluca Bontempi and Maxime Flauder. From dependency to causality: a machine learning386

approach. J. Mach. Learn. Res., 16(1):2437–2457, 2015.387

[6] Serena Booth, W Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi.388

The perils of trial-and-error reward design: misdesign through overfitting and invalid task389

specifications. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,390

pages 5920–5929, 2023.391

[7] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Structural392

assumptions and computational leverage. Journal of Artificial Intelligence Research, 11:1–94,393

1999.394

[8] Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. Context-specific395

independence in bayesian networks. arXiv preprint arXiv:1302.3562, 2013.396

[9] Jake Brawer, Meiying Qin, and Brian Scassellati. A causal approach to tool affordance learning.397

In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages398

8394–8399. IEEE, 2020.399

[10] Vı́ctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giró-i Nieto, and400

Jordi Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. In401

International Conference on Machine Learning, pages 1317–1327. PMLR, 2020.402

10

[11] Onur Celik, Dongzhuoran Zhou, Ge Li, Philipp Becker, and Gerhard Neumann. Specializing403

versatile skill libraries using local mixture of experts. In Conference on Robot Learning, pages404

1423–1433. PMLR, 2022.405

[12] Caleb Chuck, Supawit Chockchowwat, and Scott Niekum. Hypothesis-driven skill discovery406

for hierarchical deep reinforcement learning. In 2020 IEEE/RSJ International Conference on407

Intelligent Robots and Systems (IROS), pages 5572–5579. IEEE, 2020.408

[13] Caleb Chuck, Kevin Black, Aditya Arjun, Yuke Zhu, and Scott Niekum. Granger-causal409

hierarchical skill discovery. arXiv preprint arXiv:2306.09509, 2023.410

[14] Caleb Chuck, Sankaran Vaidyanathan, Stephen Giguere, Amy Zhang, David Jensen, and Scott411

Niekum. Automated discovery of functional actual causes in complex environments. arXiv412

preprint arXiv:2404.10883, 2024.413

[15] Raviteja Chunduru and Doina Precup. Attention option-critic. arXiv preprint arXiv:2201.02628,414

2022.415

[16] Oriol Corcoll and Raul Vicente. Disentangling controlled effects for hierarchical reinforcement416

learning. In Bernhard Schölkopf, Caroline Uhler, and Kun Zhang, editors, Proceedings of the417

First Conference on Causal Learning and Reasoning, volume 177 of Proceedings of Machine418

Learning Research, pages 178–200. PMLR, 11–13 Apr 2022. URL https://proceedings.419

mlr.press/v177/corcoll22a.html.420

[17] Yuqing Du, Eliza Kosoy, Alyssa Dayan, Maria Rufova, Pieter Abbeel, and Alison Gopnik. What421

can ai learn from human exploration? intrinsically-motivated humans and agents in open-world422

exploration. In NeurIPS 2023 workshop: Information-Theoretic Principles in Cognitive Systems,423

2023.424

[18] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you425

need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.426

[19] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes,427

Mohammadamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser,428

Grzegorz Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement429

learning. Nature, 610(7930):47–53, 2022.430

[20] Fan Feng and Sara Magliacane. Learning dynamic attribute-factored world models for efficient431

multi-object reinforcement learning. Advances in Neural Information Processing Systems, 36,432

2024.433

[21] Pierre Fournier, Cédric Colas, Mohamed Chetouani, and Olivier Sigaud. Clic: Curriculum434

learning and imitation for object control in nonrewarding environments. IEEE Transactions on435

Cognitive and Developmental Systems, 13(2):239–248, 2019.436

[22] Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space policies437

for hierarchical reinforcement learning. In International Conference on Machine Learning,438

pages 1851–1860. PMLR, 2018.439

[23] Joseph Y Halpern. Actual causality. MIT Press, 2016.440

[24] Joseph Y Halpern and Judea Pearl. Causes and explanations: A structural-model approach. part441

i: Causes. The British journal for the philosophy of science, 2005.442

[25] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an443

option: Learning options with a deliberation cost. In Proceedings of the AAAI Conference on444

Artificial Intelligence, volume 32, 2018.445

[26] Jiaheng Hu, Peter Stone, and Roberto Martı́n-Martı́n. Causal policy gradient for whole-body446

mobile manipulation. arXiv preprint arXiv:2305.04866, 2023.447

[27] Xing Hu, Rui Zhang, Ke Tang, Jiaming Guo, Qi Yi, Ruizhi Chen, Zidong Du, Ling Li, Qi Guo,448

Yunji Chen, et al. Causality-driven hierarchical structure discovery for reinforcement learning.449

Advances in Neural Information Processing Systems, 35:20064–20076, 2022.450

11

https://proceedings.mlr.press/v177/corcoll22a.html
https://proceedings.mlr.press/v177/corcoll22a.html
https://proceedings.mlr.press/v177/corcoll22a.html

[28] Yixuan Huang, Adam Conkey, and Tucker Hermans. Planning for multi-object manipulation451

with graph neural network relational classifiers. In 2023 IEEE International Conference on452

Robotics and Automation (ICRA), pages 1822–1829. IEEE, 2023.453

[29] Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-centric slot diffusion. arXiv454

preprint arXiv:2303.10834, 2023.455

[30] Emily Jin, Jiaheng Hu, Zhuoyi Huang, Ruohan Zhang, Jiajun Wu, Li Fei-Fei, and Roberto456

Martı́n-Martı́n. Mini-behavior: A procedurally generated benchmark for long-horizon decision-457

making in embodied ai. arXiv preprint arXiv:2310.01824, 2023.458

[31] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and459

Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,460

620(7976):982–987, 2023.461

[32] Khimya Khetarpal, Martin Klissarov, Maxime Chevalier-Boisvert, Pierre-Luc Bacon, and Doina462

Precup. Options of interest: Temporal abstraction with interest functions. In Proceedings of the463

AAAI Conference on Artificial Intelligence, volume 34, pages 4444–4451, 2020.464

[33] Jaekyeom Kim, Seohong Park, and Gunhee Kim. Unsupervised skill discovery with bottleneck465

option learning. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International466

Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,467

pages 5572–5582. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/468

kim21j.html.469

[34] Martin Klissarov and Marlos C. Machado. Deep Laplacian-based options for temporally-470

extended exploration. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara En-471

gelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International472

Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,473

pages 17198–17217. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/474

v202/klissarov23a.html.475

[35] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep re-476

inforcement learning: A survey. Information Fusion, 85:1–22, 2022. ISSN 1566-2535.477

doi: https://doi.org/10.1016/j.inffus.2022.03.003. URL https://www.sciencedirect.com/478

science/article/pii/S1566253522000288.479

[36] Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang,480

Lerrel Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark, 2021.481

[37] Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter482

Abbeel. Cic: Contrastive intrinsic control for unsupervised skill discovery. arXiv preprint483

arXiv:2202.00161, 2022.484

[38] Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical reinforcement learning with hindsight.485

In International Conference on Learning Representations, 2019. URL https://openreview.486

net/forum?id=ryzECoAcY7.487

[39] Andrew Levy, Sreehari Rammohan, Alessandro Allievi, Scott Niekum, and George Konidaris.488

Hierarchical empowerment: Towards tractable empowerment-based skill-learning. arXiv489

preprint arXiv:2307.02728, 2023.490

[40] Chengshu Li, Fei Xia, Roberto Martı́n-Martı́n, Michael Lingelbach, Sanjana Srivastava, Bokui491

Shen, Kent Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, Andrey Kurenkov, C. Karen492

Liu, Hyowon Gweon, Jiajun Wu, Li Fei-Fei, and Silvio Savarese. igibson 2.0: Object-centric493

simulation for robot learning of everyday household tasks, 2021.494

[41] Chengshu Li, Fei Xia, Roberto Martı́n-Martı́n, Michael Lingelbach, Sanjana Srivastava, Bokui495

Shen, Kent Elliott Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, Andrey Kurenkov, Karen496

Liu, Hyowon Gweon, Jiajun Wu, Li Fei-Fei, and Silvio Savarese. igibson 2.0: Object-centric497

simulation for robot learning of everyday household tasks. In Aleksandra Faust, David Hsu,498

and Gerhard Neumann, editors, Proceedings of the 5th Conference on Robot Learning, volume499

164 of Proceedings of Machine Learning Research, pages 455–465. PMLR, 08–11 Nov 2022.500

URL https://proceedings.mlr.press/v164/li22b.html.501

12

https://proceedings.mlr.press/v139/kim21j.html
https://proceedings.mlr.press/v139/kim21j.html
https://proceedings.mlr.press/v139/kim21j.html
https://proceedings.mlr.press/v202/klissarov23a.html
https://proceedings.mlr.press/v202/klissarov23a.html
https://proceedings.mlr.press/v202/klissarov23a.html
https://www.sciencedirect.com/science/article/pii/S1566253522000288
https://www.sciencedirect.com/science/article/pii/S1566253522000288
https://www.sciencedirect.com/science/article/pii/S1566253522000288
https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=ryzECoAcY7
https://proceedings.mlr.press/v164/li22b.html

[42] Bryan Lim, Luca Grillotti, Lorenzo Bernasconi, and Antoine Cully. Dynamics-aware quality-502

diversity for efficient learning of skill repertoires. In 2022 International Conference on Robotics503

and Automation (ICRA), pages 5360–5366. IEEE, 2022.504

[43] Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. Advances505

in Neural Information Processing Systems, 34:18459–18473, 2021.506

[44] Haozhe Liu, Mingchen Zhuge, Bing Li, Yuhui Wang, Francesco Faccio, Bernard Ghanem,507

and Jürgen Schmidhuber. Learning to identify critical states for reinforcement learning from508

videos. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages509

1955–1965, 2023.510

[45] Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and511

Michael Tschannen. Weakly-supervised disentanglement without compromises. In International512

Conference on Machine Learning, pages 6348–6359. PMLR, 2020.513

[46] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical514

reinforcement learning. Advances in neural information processing systems, 31, 2018.515

[47] Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-516

constrained unsupervised skill discovery. In International Conference on Learning Representa-517

tions, 2021.518

[48] Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsuper-519

vised skill discovery. arXiv preprint arXiv:2302.05103, 2023.520

[49] Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek. End-to-end hierarchical521

reinforcement learning with integrated subgoal discovery. IEEE Transactions on Neural522

Networks and Learning Systems, 33(12):7778–7790, 2021.523

[50] Judea Pearl. Causality. Cambridge university press, 2009.524

[51] Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmentation using locally525

factored dynamics. Advances in Neural Information Processing Systems, 33:3976–3990, 2020.526

[52] Silviu Pitis, Elliot Creager, Ajay Mandlekar, and Animesh Garg. Mocoda: Model-based527

counterfactual data augmentation. Advances in Neural Information Processing Systems, 35:528

18143–18156, 2022.529

[53] David Poole and Nevin Lianwen Zhang. Exploiting contextual independence in probabilistic530

inference. Journal of Artificial Intelligence Research, 18:263–313, 2003.531

[54] Rafael Rodriguez-Sanchez and George Konidaris. Learning abstract world models for value-532

preserving planning with options. In NeurIPS 2023 Workshop on Generalization in Planning,533

2023.534

[55] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal535

policy optimization algorithms, 2017.536

[56] Maximilian Seitzer, Bernhard Schölkopf, and Georg Martius. Causal influence detection for537

improving efficiency in reinforcement learning. Advances in Neural Information Processing538

Systems, 34:22905–22918, 2021.539

[57] Wonil Song, Sangryul Jeon, Hyesong Choi, Kwanghoon Sohn, and Dongbo Min. Learning540

disentangled skills for hierarchical reinforcement learning through trajectory autoencoder with541

weak labels. Expert Systems with Applications, page 120625, 2023.542

[58] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A543

framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):544

181–211, 1999.545

[59] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg,546

David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning.547

In International Conference on Machine Learning, pages 3540–3549. PMLR, 2017.548

13

[60] Zizhao Wang, Jiaheng Hu, Peter Stone, and Roberto Martı́n-Martı́n. Elden: Exploration via549

local dependencies. Advances in Neural Information Processing Systems, 36, 2024.550

[61] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su,551

Hang Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library.552

Journal of Machine Learning Research, 23(267):1–6, 2022. URL http://jmlr.org/papers/553

v23/21-1127.html.554

[62] Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,555

Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al.556

Outracing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):557

223–228, 2022.558

[63] Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Self-supervised visual reinforce-559

ment learning with object-centric representations. In International Conference on Learning560

Representations, 2021. URL https://openreview.net/forum?id=xppLmXCbOw1.561

[64] Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning by discovering562

intrinsic options. arXiv preprint arXiv:2101.06521, 2021.563

14

http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
https://openreview.net/forum?id=xppLmXCbOw1

A Factored Skills564

Learning to reach both a desired graph g and a diversity parameter b through primitive actions is565

challenging. First, different graphs often have substantially different characteristics, with some566

graphs that are easy to achieve (eg. action→agent), and others that are quite challenging and rare (eg.567

agent, knife, fruit→fruit). Not only would it be challenging for a single policy to encode all of these568

behaviors, the diversity parameter notwithstanding, but over-training the frequency at which certain569

graphs are called might vary significantly. Rather than trying to learn a single monolithic policy, then,570

we instead structure the skill parameterized policy πskill as a collection of factored skills: πskill,i, for571

each factor i ∈ {1, . . . , N}.572

This modification to the policy structure results in three changes: 1) The upper-level action space573

passes a single row of the graph G, denoted with gi, and the desired factor i. 2) Instead of achieving574

an entire graph use the achieved row 1[gachieved,i = gi]. 3) The history of seen graphs H is replaced575

with a history of factored graph rows Hf .576

Define the history of graph rows as Hf := {unique (i, gachieved,i ∀i ∈ 1, . . . , N ∀gachieved ∈ D)}.577

This takes the unique graph rows from all those seen in previous data. Then the upper policy uses the578

same historical sampling procedure as with unfactorized graphs: the policy samples discretely from579

the new history, which will by default return i, gi, a graph row, and the desired factor. This resolves580

points 1,3. Point 2 is addressed by replacing Equation 4 with 1[gachieved,i = gi].581

Empirically, we found that without this change, the lower policy rarely learns anything, even simple582

control of the agent.583

B Environment Details584

In this section, we provide a detailed description of the environment, including its semantic stages585

representing internal progress toward task completion, state space, and action space. We also highlight586

that while each task consists of multiple semantic stages, agents do not have access to this information.587

(a) Installing Printer (b) Thawing (c) Cleaning Car (d) iGibson

Figure 7: Environments.

Installing Printer As shown in Fig. 7(a), the Installing Printer environment is relatively simple,588

consisting of 3 factors: the agent, a printer, and a table. The task requires the agent to complete the589

following stages: (1) pick up the printer, (2) bring the printer to and place it on the table, and (3)590

turn on the printer. The discrete state space consists of (i) the agent’s position and direction, (ii) the591

positions of the printer and whether it is on or off, and (iii) the position of the table. The discrete592

action space consists of (i) moving forward, turning left or right, (ii) picking up / placing down the593

printer, and (iii) turning on / off the printer.594

Thawing As shown in Fig. 7(b) and Fig. 8(a), the Thawing environment consists of 6 factors: the595

agent, a sink, a refrigerator, and three frozen objects: fish, olive, and date. Thawing each object596

requires the agent to complete the following stages: (1) move to and open the refrigerator, (2) take597

the frozen fish out of the refrigerator, (3) put the fish into the sink, and (4) turn on the sink to thaw598

it. The discrete state space consists of (i) the agent’s position and direction, (ii) the positions of all599

environment entities, (iii) whether the sink door is turned on, (iv) whether the refrigerator door is600

opened, and (v) the thawing status of three objects. The discrete action space consists of (i) moving601

forward, turning left or right, (ii) opening / closing the refrigerator, (iii) turning on / off the sink, and602

(iv) picking up / placing down each object.603

15

Cleaning Car As shown in Fig. 7(c), the Cleaning Car environment consists of 7 factors: the agent,604

a car, a sink, a bucket, a shelf, a rag, and a piece of soap. Cleaning both the car and the rag requires605

the agent to complete the following stages: (1) take the rag off the shelf, (2) put it in the sink, (3)606

toggle the sink to soak the rag up, (4) clean the car with the soaked rag, (5) take the soap off the607

self, and (6) clean the rag with the soap inside the bucket. The discrete state space consists of (i) the608

agent’s position and direction, (ii) the positions of all environment entities, (iii) whether the sink is609

turned on, (iv) the soak status of the rag, (v) the cleanness of the rag, and (vi) the cleanness of the car.610

The discrete action space consists of (i) moving forward, turning left or right, (ii) turning on / off the611

sink, and (iii) picking up / placing down the rag / soap.612

iGibson As shown in Fig. 7(d), the iGibson environment consists of 4 factors: the robot, a knife, a613

peach, and a sink. The robot can do the following things: (1) grasp peach: move close to the peach614

and grasp it, (3) wash peach: grasp the peach and place it into the sink, (3) grasp knife: move close to615

the knife and grasp it, (4) cut peach: grasp the knife and use it to cut the peach. The continuous state616

space consists of (i) the robot’s proprioception, (ii) the poses of all environment entities, and (iii)617

whether the peach is cut. The continuous action space consists of (i) end-effector position change, (ii)618

base linear and angular velocity, and (iii) gripper torque (to open/close the gripper).619

C Local Dependencies and Causal Inference620

In this work, we define local dependencies according to the state factors X = (X1, . . . , XN)621

and event of interest Y , which in the context of an MDP is a subset of the next state factors622

X ′ = (X
′1, . . . , X

′N). In the factored MDP formulation [7], we assume that p, the transition623

dynamics, are represented by a dynamic Bayesian network (DBN) which is a time-directed bipartite624

graph, with edges only from factors in X to factors in X ′. In this work, we assume that the underlying625

ground truth DBN, that is the transition function p, can be decomposed according to subsets of state626

factors X̄ , such there exists a pX̄(Y = y|X̄ = x) for every state.627

The factored transition dynamics analogizes with causal inference in the following way: If the state628

factors and next state factors are each assigned a causal variable by adding the assumption that they629

can be independently intervened on, and each next state variable carries an associated unobserved630

noise variable U i, which we assume is independent of any Xk not connected to X
′j and any other631

next state variable X
′j , then we can represent the transition dynamics p with a structural causal model632

(SCM) [50], a graph connecting the causal variables in X to the causal variables in X ′.633

For a particular outcome variable Y that is one of the next state causal variables X ′, we can describe634

local dependence in the RL context according to assumptions about the structural causal model.635

Represent the non-noise parents of Y as pa(Y), and the noise parents as paU (Y). Under normal636

causal assumptions, the structural causal model for Y is a function fY (pa(Y), paU (Y)) = Y . Define637

X̄ as a subset of the endogenous parents of Y and Ū as an equivalent subset of the noise variables.638

Further define the values that pa(Y), paU (Y), X̄, Ū can take on as pa(y), paU (y), x̄, ū respectively,639

and (pa(Y)), X̄ , Ū as the set of states the parents of Y , the variables in X̄ and variables in Ū can take640

on respectively.641

To formalize local invariance, we add the assumption that fY can be decomposed into a series of func-642

tions (fY 1(X̄1 = x̄1, Ū1 = ū1), . . . , fY k(X̄k = x̄, Ūk = ūk)) and gY (pa(Y) = pa(y), paU (Y) =643

paU (y)), where each fY i : X̄ × Ū → Y and g : pa(Y) → {1, . . . , k}, a function mapping the parents644

of Y to one of the functions. Then if f is represented as:645

f(pa(x), paU (y)) :=
k∑

i=1

1(gY (pa(y), paU (y)) = i)fY i(x̄i, ūi) (6)

The local dependence of Y = y in a particular state (x, x′) is then the set of variables in X̄i for the646

particular i where 1(gY (pa(y), paU (y)) = i) = 1, and the pCMI test is a way of uncovering these647

local dependencies from observational data.648

Local dependence has been investigated in the field of context-specific independence [53, 8], which649

seeks to find particular assignments of a subset of the causal variables under which an outcome650

is independent of some subset of the inputs. In particular, context-set specific independence [8]651

determines if a variable is independent of other variables on a particular subset of states, described as652

16

Table 1: Parameters of Skill Learning and Task Learning. Parameters shared if not specified.
Name Environments

Printer Thawing Cleaning Car iGibson

Skill
Policy

algorithm Rainbow TD3
n step 3 5

skill horizon 30 100
exploration noise 0.4 0.2

optimizer Adam
learning rate 3× 10−4

batch size 64

Graph Selection
Policy

algorithm PPO
optimizer Adam

learning rate 1× 10−4

batch size 1024
clip ratio 0.1
MLP size [512, 512]
GAE λ 0.95

entropy coefficient 0.1

Learned
Dynamics Model

optimizer Adam
learning rate 3× 10−4

batch size 128
number of attention layers 1
attention embedding size 128

number of heads 4

Task Skill
Selection Policy

algorithm PPO
optimizer Adam

learning rate 1× 10−4

batch size 1024
clip ratio 0.1
MLP size [512, 512]
GAE λ 0.95

entropy coefficient 0.02

Training # of random seeds 5
diversity reward coefficient β 0.5

the partial context set. While our work uses the pCMI test described in Equation 3, context-specific653

independence focuses on complete independence using knowledge of the structural model.654

Alternatively, interactions can be viewed as the causes (X̄) of particular effects (Y), which have655

also been investigated under the description of token or actual cause [24] (as opposed to general656

cause). Actual cause utilizes a series of counterfactual tests to determine if a cause is necessary,657

sufficient, and minimal for an outcome. Actual cause has primarily been applied in simple, discrete658

examples [4, 23], making it difficult to directly apply to RL. However, recent work has incorporated659

the notion of context-specific independence and extended actual cause to more complex domains [14].660

D Implementation Details661

The hyperparameters of skill learning and task learning can be found in Table 1. As it is challenging662

to identify local dependencies using learned dynamics models in Thawing and iGibson environments,663

we use ground truth local dependencies from simulator. The codebase is built on tianshou [61] for664

backend RL, though with significant modifications.665

The 5 seeds selected are 0 - 4. The experiments were conducted on machines of the following666

configurations:667

• Nvidia A40 GPU; Intel(R) Xeon(R) Gold 6342 CPU @2.80GHz668

• Nvidia A100 GPU; Intel(R) Xeon(R) Gold 6342 CPU @2.80GHz669

17

E Skill Visualizations670

In Figure 8 we visualize three challenging long-horizon skills learned by SkiLD: thawing the olive,671

cleaning the car, and cutting the peach. All of these skills require a sequence of interactions that672

is difficult to recover without directed behavior. Thus, comparable baselines do not learn skills of673

similar complexity. More skill visualizations can be found at: https://sites.google.com/view/skild.674

18

https://sites.google.com/view/skild

(a) Thaw Olive Skill (b) Clean Car Skill (c) Cut Fruit Skill

Figure 8: Policy rollouts for learned policies that achieve long horizon tasks (a) Mini-BH thaw olive,
(b) Mini-BH clean car, (b) iGibson cut peach.

19

	Introduction
	Background
	Factored Markov Decision Process (Factored MDP)
	Identifying Local Dependencies between State Factors

	Skill Discovery from Local Dependencies (SkiLD)
	Skill Policy
	Graph-Selection Policy
	Downstream Task Learning

	Experiments
	Domains
	Baselines
	Interaction Graph Diversity
	Performance
	Graph and Diversity Ablations

	Related Work
	Unsupervised Skill Learning
	Hierarchical Reinforcement Learning
	Causality in Reinforcement Learning

	Conclusion
	Factored Skills
	Environment Details
	Local Dependencies and Causal Inference
	Implementation Details
	Skill Visualizations

