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Abstract

Using learned reward functions (LRFs) as a means to solve sparse-reward rein-
forcement learning (RL) tasks has yielded some steady progress in task-complexity
through the years. In this work, we question whether today’s LRFs are best-suited as
a direct replacement for task rewards. Instead, we propose leveraging the capabilities
of LRFs as a pretraining signal for RL. Concretely, we propose LAnguage Reward
Modulated Pretraining (LAMP) which leverages the zero-shot capabilities of Vision-
Language Models (VLMs) as a pretraining utility for RL as opposed to a downstream
task reward. LAMP uses a frozen, pretrained VLM to scalably generate noisy, albeit
shaped exploration rewards by computing the contrastive alignment between a highly
diverse collection of language instructions and the image observations of an agent in
its pretraining environment. LAMP optimizes these rewards in conjunction with
standard novelty-seeking exploration rewards with reinforcement learning to acquire
a language-conditioned, pretrained policy. Our VLM pretraining approach, which
is a departure from previous attempts to use LRFs, can warmstart sample-efficient
learning on robot manipulation tasks in RLBench.

1 Introduction

A longstanding challenge in reinforcement learning is specifying reward functions. Extensive domain
knowledge and ad-hoc tuning are often required in order to manually design rewards that “just
work.” However, such rewards can be highly uninterpretable and riddled with cryptic mathematical
expressions and constants. Furthermore, hand-crafted reward functions are often over-engineered to
the domain in which they were designed, failing to generalize to new agents and new environments
(Shah et al., 2022; Langosco et al., 2022). As a result, a long history of foundational work in Inverse
Reinforcement Learning (IRL) (Abbeel & Ng, 2004; Ng & Russell, 2000; Kim et al., 2003; Peng
et al., 2021; Escontrela et al., 2022) has produced an abundance of methods for learning rewards
from demonstration data assumed to optimal under the desired reward function. However, learned
reward functions are also notorious for noise and reward misspecification errors (Amodei et al., 2016;
Amodei & Clark, 2016) which can render them highly unreliable for learning robust policies with
reinforcement learning. This is especially problematic in more complex task domains such as robotic
manipulation, particularly when in-domain data for learning the reward function is limited.

While acknowledging that learned reward functions are subject to potential errors, we hypothesize
that they may be effectively employed to facilitate exploration during the lower-stakes pretraining
stage of training. During pretraining, we generally desire a scalable means of generating diverse
behaviors to warmstart a broad range of possible downstream tasks. LRFs are an appealing means
for supervising these behaviors since they do not rely on human-design and carry the potential to
scale with dataset diversity. Despite this potential, obtaining LRFs that generalize to new domains is
non-trivial (Shah et al., 2022). Notably, however, large-pretrained models have shown impressive
zero-shot generalization capabilities that enable them to be readily applied in unseen domains.
Indeed, large pretrained VLMs have shown recent successes in reward specification for task learning
by computing alignment scores between the image observations of an agent and a language input
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Figure 1: LAMP Framework. Given a diverse set of tasks generated by hand or by a LLM, we
extract VLM rewards for language-conditioned RL pretraining. At finetuning time, we condition the
agent on the new task language embedding and finetune on the task reward.

describing the desired task (Cui et al., 2022; Mahmoudieh et al., 2022). While these methods
adopt similar reward mispecification shortcomings to other LRFs, they come with the novel and
relatively under-explored property of being a scalable means of generating many different rewards
by simply prompting with different language instructions. This property is particularly compatible
with the assumptions of RL pretraining where we desire to learn general-purpose behaviors with
high coverage of environment affordances, require minimal human supervision, and do not require
pretrained behaviors to transfer zero-shot to fully solve downstream tasks. Instead of relying on
noisy VLM LRFs to train task-specific experts, can we instead use them as a tool for pretraining a
general-purpose agent?

In this work, we investigate how to use the flexibility of VLMs as a means of scalable reward
generation to pretrain an RL agent for accelerated downstream learning. We propose LAnguage
Reward Modulated Pretraning (LAMP), a method for pretraining diverse policies by optimizing
VLM parameterized rewards. Our core insight is that instead of scripting rewards or relying solely on
general unsupervised objectives to produce them, we can instead query a VLM with highly diverse
language prompts and the visual observations of the agent to generate diverse, shaped pretraining
rewards. We augment these rewards with intrinsic rewards from Plan2Explore (Sekar et al., 2020), a
novelty-seeking unsupervised RL algorithm, resulting in an objective that biases exploration towards
semantically meaningful visual affordances. A simple language-conditioned, multitask reinforcement
learning algorithm optimizes these rewards resulting in a language-conditioned policy that can be
finetuned for accelerated downstream task learning. We demonstrate that by pretraining with VLM
rewards in a visually complex environment with diverse objects, we can learn a general-purpose
policy that more effectively reduces the sample-complexity of downstream RL. We train LAMP in a
pretraining environment with realistic visual textures and challenging randomization and evaluate
downstream performance on unseen RLBench tasks. We also analyze the influence of various
prompting techniques and frozen VLMs on the performance of the pretrained policy.

2 Related Work

Pretraining for RL Following on the successes of pretraining in vision and language, a number of
approaches have grown in interest for pretraining generalist RL agents in order to reduce sample-
complexity on unseen tasks. Classical works in option learning (Sutton et al., 1999; Stolle & Precup,
2002) and more recent approaches in skill discovery such as (Sharma et al., 2019; Gregor et al.,
2016; Park et al., 2023; Eysenbach et al., 2018) look to pretrain skill policies that can be finetuned
to downstream tasks. Exploration RL algorithms such as (Burda et al., 2018; Sekar et al., 2020;
Pathak et al., 2017; Liu & Abbeel, 2021) use unsupervised objectives to encourage policies to learn
exploratory behaviors. Works such as (Xiao et al., 2022; Nair et al., 2022; Radosavovic et al., 2023)
leverage pretrained vision encoders to accelerate RL from pixels. LAMP combines a large-pretrained
VLM with exploration-based RL to guide exploration towards meaningful behaviors.
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Inverse RL from human video Inverse reinforcement learning (IRL) (Arora & Doshi, 2021;
Ziebart et al., 2008; Abbeel & Ng, 2004; Ng & Russell, 2000) proposes a number of approaches to
address the challenges associated with learning reward functions from demonstrations. A number
of more recent works focus on inverse RL from video datasets of human interaction, (Chen et al.,
2021; Zakka et al., 2021; Sermanet et al., 2016; 2017) which are often more readily available than
in-domain demonstrations. These methods rely on perceptual metrics such as goal-image similarity
and trajectory similarity to formulate rewards but require task-specific paired data. Other methods
such as (Ma et al., 2023b;a) make weaker assumptions on the task-specificity of the human video
dataset and thus can leverage "in-the-wild" data and exhibit stronger domain generalization. LAMP
similarly exploits "in-the-wild" video data via a frozen, pretrained VLM but focuses on leveraging
language to flexibly modulate the VLM and generate diverse rewards.

3 Background

Reinforcement learning with vision-language reward We consider the reinforcement learning
(RL) framework where an agent receives an observation ot from an environment and chooses an
action at with a policy π to interact with the environment. Then the agent receives an extrinsic
reward re

t and a next observation ot+1 from the environment. The goal of RL is to train the policy to
maximize the expected return defined as a cumulative sum of the reward with a discount factor γ, i.e.,
Rt = E[

∑∞
k=0 γkre(ot+k, at+k)]. In sparse reward tasks, the extrinsic reward re becomes non-zero

only when the task successfully terminates, making it difficult to learn policies that complete the
target tasks. To address this, recent approaches have proposed to use the vision-language alignment
score from either a bespoke and in-domain or large-scale vision-language model (VLM) as a reward
(Fan et al., 2022; Cui et al., 2022; Du et al., 2023b; Mahmoudieh et al., 2022; Sontakke et al., 2023;
Du et al., 2023a; Fan et al., 2022; Shao et al., 2020). Formally, let x := {x1, ..., xM} be a text that
describes the task consisting of M tokens, Fϕ be a visual feature encoder, and Lα be a language
encoder. Given a sequence of transitions {oi, ai, re

i , oi+1}N
i=1, the key idea is to use the distance

between visual representations Fϕ(oi) and text representations Lα(x) as an intrinsic reward, which
is defined as rint

i = D (Fϕ(oi), Lα(x)), where D can be an arbitrary distance metric such as cosine
similarity or L2 distance. This intuitively can be seen as representing the extent to which the current
observation is close to achieving the task specified by the text.

Video-language models The vision encoders of video-language models have been successfully
employed as semantic feature extractors that enable downstream learning on a variety of domains
including standard prediction and classification tasks as well as, more recently, decision making
and control (Xu et al., 2021; Wang et al., 2022). Notably, R3M, has lead to improvements in the
data-efficiency of imitation learning in real-world robotics domains (Nair et al., 2022). R3M extracts
semantic representations from the large-scale Ego4D dataset of language annotated egocentric human
videos (Grauman et al., 2022). The language input is processed by Lα, a pretrained DistilBERT
transformer architecture (Sanh et al., 2019) that aggregates the embeddings of each word in the
instruction and the images are encoded with a pretrained ResNet-18 Fϕ. A video-language alignment
loss encourages the image representations Fϕ(·) to capture visual semantics by extracting image
features that aid in predicting the associated language annotations, which are embedded by Lα(x).
In particular, R3M trains Gθ(Fϕ(o1), Fϕ(oi), Lα(x)) to score whether the language x explains the
behavior from image o1 to image oi. The score function is trained simultaneously to the representations
described above with a contrastive loss that encourages scores to increase over the course of the video
and scores to be higher for correct pairings of video and language than incorrect ones.

4 Method

We present LAnguage Reward Modulated Pretraining (LAMP), a simple yet effective frame-
work for pretraining reinforcement learning with intrinsic rewards modulated with language in-
structions. LAMP consists of two stages: (i) a task-agnostic RL pretraining phase that trains
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policies to maximize the VLM-based rewards and (ii) a downstream task finetuning phase that
adapts pre-trained policies to solve the target tasks by maximizing the task reward. In this
section, we first describe how we define our intrinsic reward (see Section 4.1), how we pretrain
policies (see Section 4.2), and how we adapt the policies to downstream tasks (see Section 4.3).
We provide an overview of LAMP in Figure 2 and pseudocode in Algorithm 1 of the appendix.

Figure 2: LAMP Method. We use
R3M for our VLM-based rewards. We
query the VLM score predictor for pixel
and language alignment, which is pre-
trained on the Ego4D dataset. The re-
ward model is frozen.

4.1 Language Reward Modulation

VLM score as a reward To extract pretraining reward
signals for RL, we elect to use the R3M score as a source of
rewards for most of the experiments presented. Specifically,
we expect R3M to be well-suited for providing shaped
rewards because its representations are trained on videos.
However, we also find that CLIP (Radford et al., 2021),
which is trained on static image data, can also work well
with the appropriate reward parameterization as shown
in Section 5. We define our VLM reward using the R3M
score as below:

rVLM
i = Gθ(Fϕ(o1), Fϕ(oi), Lα(x))

where Gθ denotes the score predictor in R3M. Intuitively,
this reward measures how oi is making a progress from o1
towards achieving the tasks specified by natural language
instruction x.

Rewards with diverse language prompts To fully exploit the language understanding of VLMs,
we propose to query them with a diversity of texts describing a diversity of objectives, as opposed
to computing the reward by repeatedly using a single instruction. Specifically, we obtain diverse,
semantic rewards modulated by language, generating diverse sets of language instructions for each
task and use them for prompting the model. Given an instruction template, we query ChatGPT1

for a diverse set of language instructions with a focus on two categories: imperative instructions
and statements of completion (e.g. move the mug vs. the mug is moved). Given that large-scale
video datasets are predominantly human-centric, we obtain prompts that are human-centric, robot
centric, as well as ambiguous (e.g. the robot arm moved the mug vs. use your hand to move the
mug vs. reach toward the mug and move it). Moreover, we augment the instructions by querying for
synonym nouns. By inputting diverse language instructions from the dataset along with the agent’s
image observations, we effectively modulate the frozen, pretrained R3M reward and produce diverse
semantic rewards that are grounded in the visual environment of the agent.

4.2 Language-Conditioned Pretraining

While several recent works have shown that rewards from VLMs can be used for training RL
agents (Fan et al., 2022; Cui et al., 2022), it is still questionable whether these rewards can serve
as a sufficiently reliable signal for inducing the intended behavior. As we validate in Figure 3, for
three different VLM-paramterized reward models, the optimization signal is highly noisy and in some
instances does not correspond well to the task semantics. As a result, using these rewards directly as
a downstream reward with a single language instruction for a given task is unlikely to reliably result
in robust policy learning with RL as found in (Ma et al., 2023b;a). In this work, we instead propose
to leverage such rewards from VLMs as a pretraining signal for RL policies, utilizing the knowledge
captured within large VLMs for scripting diverse and useful exploration rewards.

1https://chat.openai.com
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Video-Language Alignment Rewards

Figure 3: Video-Language alignment scores from R3M, InternVideo (Wang et al., 2022), and ZeST
on RLBench downstream tasks plotted over an expert episode. Rewards are highly noisy and do
not increase smoothly throughout the episode. Optimizing this signal with RL is unlikely to lead to
stable solutions, and thus we instead use rewards as an exploration signal during pretraining.

Pretraining environment To learn diverse behaviors that can be transferred to various down-
stream tasks, we design a set of tasks with realistic visuals and diverse objects. Specifically, we build
a custom environment based on the RLBench simulation toolkit (James et al., 2020). In order to
simulate a realistic visual scene, we download images from the Ego4D dataset (Grauman et al., 2022)
and overlay them as textures on the tabletop and background of the environment (see Figure 2). To
produce diverse objects and affordances, we import ShapeNet (Chang et al., 2015) object meshes
into the environment. Both the visual textures and the objects are randomized every episode of
training. The pretraining environments do include the original RLBench textures, however, they do
not include the finetuning RLBench tasks as shown in Figure 8.

Objective Because the VLM reward can be seen as measuring the extent to which the agent
is closer to solving the task (see Section 4.1), it can be readily be combined with novelty-seeking
unsupervised RL methods that optimize both extrinsic and intrinsic rewards. Therefore, to incentivize
exploration, we combine the VLM reward with the novelty score from a separate exploration technique.
Specifically, we consider Plan2Explore (Sekar et al., 2020) that utilizes the disagreement between
future latent state predictions as a novelty score. Let this novelty-based score be rP2E

i . We then train
our pretraining agent to maximize the following weighted sum of rewards:

rLAMP
i = α · rP2E

i + (1− α) · rVLM
i (1)

where α is a hyperparameter that balances the two rewards. By combining this novelty-based reward
with the VLM reward, we encourage the agent to efficiently explore its environment but with an
additional bias towards interacting with the semantically meaningful affordances. We found that an
α value of 0.9 works quite well across all the tasks evaluated.

Pretraining pipeline During task-agnostic pretraining, the agent is deployed in a language-
conditioned MDP where there are no environment task rewards re

i . For the underlying RL algorithm,
we use Masked World Models (MWM) (Seo et al., 2022), an off-policy, model-based method with
architectural inductive biases suitable for fine-grained robot manipulation, because we found that
more standard alternatives such as PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018), and
Dreamer (Hafner et al., 2023) were unable to reliably solve all of the evaluation RLBench tasks
from ground truth scripted rewards. Every episode, our method randomly samples some language
prompt x from the generated dataset as specified in Section 4.1. Then we condition the MDP and
agent on the respective embedding Lα(x) such that each rolled out transition in the episode can be
expressed as (oi, ai, oi+1, Lα(x)). After each episode is collected, we compute the rewards for each
transition by embedding the observations with the R3M visual encoder Fϕ and then applying the
R3M score predictor Gθ - afterwards adding the data to the replay buffer. We then sample batches
of transitions from the buffer, augment the reward with the Plan2Explore intrinsic reward, and make
reinforcement learning updates to a language-conditioned policy, critic, and world model. By the
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Figure 4: Finetuning performance on visual robotic manipulation tasks in RLBench. We include
results with additional unsupervised RL baselines in the supplementary material.

conclusion of pretraining, we obtain a language-conditioned policy capable of bootstrapping diverse
behaviors specified by the language x.

4.3 Downstream Task Adaptation

In order to evaluate the quality of the pretrained skills, we evaluate on downstream reinforcement
learning tasks from the original RLBench task suite, including the ones pictured in Figure 3, with
scripted task rewards re

i . Since we have learned a language-conditioned policy, we simply select
a language instruction xft roughly corresponding to the downstream task semantics in order to
condition the pretrained agent. We remark that an additional advantage of LAMP is its use of
language as a task-specifier, which enables this simplicity of zero-shot selection of a policy to finetune
(Adeniji et al., 2022). We fix this language instruction selection for the entirety of task learning and
finetune all RL agent model components except the critic, which we linear probe for training stability.

5 Experiments

Environment details As previously mentioned in Section 4.2, we consider domain-randomized
environments for pre-training (see Figure 8 for examples). Specifically, our pretraining environments
consist of 96 domain-randomized environments with different Ego4D textures overlayed on the table,
walls, and floor. We also sample the environments with default RLBench environment textures with
probability of 0.2. We do not include any of the downstream evaluation tasks that the agent finetunes
on in the pretraining setup. The pretraining tasks are exclusively comprised of ShapeNet objects.

For finetuning, we implement a shaped reward function based on the ground truth simulator state
and train the agent to optimize this signal instead of the pretraining reward. We use the exact scenes
and tasks released in RLBench in order to encourage reproducibility, notably keeping the default
background and table textures fixed throughout the course of training. The downstream RLBench
tasks include those pictured in Figure 3 and are unseen during pretraining. We use a 4-dimensional
continuous action space where the first three dimensions denote end-effector positional displacements
and the last controls the gripper action. We fix the end-effector rotation and thus select tasks that
can be solved without changing the orientation of the end-effector.

Baselines As a baseline, we first consider a randomly initialized MWM agent trained from scratch
to evaluate the benefit of pretraining. In order to evaluate the benefit of pretraining with LAMP
that modulates the reward with language, we also consider Plan2Explore (Sekar et al., 2020) as a
baseline, which is a novelty-seeking method that explores based on model-uncertainty. Our method,
LAMP, is the combination of the VLM reward and the Plan2Explore reward with a fixed α value of
0.9 across tasks as described in Equation (1)

Downstream Finetuning Results Across tasks in Figure 4, we find that training a randomly
initialized agent from scratch on a new task exhibits high-sample complexity in order to learn a
performant policy. The solid line and shaded region represent mean and standard deviation across
3 seeds for all experiments. Across most RLBench tasks, Plan2Explore, which employs purely
unsupervised exploration, exceeds the performance of training from scratch. LAMP outperforms or is
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competitive with Plan2Explore and consistently outperforms training from scratch. We hypothesize
that this is because by pretraining with a VLM reward, LAMP biases the agent to explore efficiently in
ways that are semantic meaningful and avoids spending time investigating spurious novelty. It is also
possible that by optimizing more diverse rewards during pretraining, the agent learns representations
that allow it to quickly adapt to the unseen task reward during finetuning. We further note that the
VLM rewards in isolation can lead to effective pretraining as we demonstrate in Figure 7. Solely
optimizing the VLM rewards (LAMP w/o Plan2Explore) is able to achieve strong performance,
however, we find that the combination of VLM and Plan2Explore rewards yields the best overall
performance.

What is the best Language Prompting style? A convenience of using VLMs trained on internet-
scale data is the diversity of language we can query for plausibly infinite reward functions. We evaluate
how important it is that the prompts be aligned with possible tasks in the pretraining environment.
We also investigate whether providing a variety of prompt semantics mitigates the pathology where
imperfections in the VLM reward for a single prompt are exploited. The 6 language prompting styles
ablated are: Prompt Style 1: Pick up the [NOUN]., Prompt Style 2: [RELEVANT VERB] and
[SYNONYM NOUN]., Prompt Style 3: [RELEVANT VERB] and [RANDOM NOUN]., Prompt Style 4:
[IRRELEVANT VERB] and [SYNONYM NOUN]., Prompt Style 5: [IRRELEVANT VERB] and [RANDOM
NOUN]., Prompt Style 6: [Snippets from Shakespeare]. For Prompt Styles 1-5, we compare
the effect of using relevant and irrelevant nouns and verbs, though all remain action-based and task-
relevant. For Prompt Style 6, we select snippets of Shakespeare text to see the effect of pretraining
on rewards generated from completely out of distribution and implausible tasks.

In Figure 5 (Left), we compare the finetuning results of Prompt Styles 1-5, which are action-based
prompts on the task “Pick Up Cup”. We find that for this task, Prompt Style 2, which pretrains
on semantically similar but diverse wordings of prompts, is most successful. In addition, Prompt
Style 1, which pretrains on very simple instructions that are similar to the pretraining task, finetunes
efficiently, as well. For our main experiments, we choose Prompt 2 based on both its strong finetuning
performance as well as increased diversity compared to Style 1.

Figure 5: Finetuning performance on RL-
Bench task. (Left) Effect of pretraining with
rewards from different language prompting
styles. Language prompts focus on action-
based tasks. (Right) Effect of pretraining on
action-based prompts (Lang 2) and random
prompts (Lang 6).

In Figure 5 (Right), we also compare the perfor-
mance of our best action-based prompt, Prompt 2,
with a non-action-based prompt, Prompt 6. In this
figure, we also investigate the effect of the auxil-
iary exploration objectives. While LAMP Prompt
6 (w/o Plan2Explore) and LAMP Prompt 2 (w/o
Plan2Explore) perform similarly, we notice that
adding in the exploration objectives dramatically de-
creases the finetuning effectiveness of LAMP Prompt
6. We hypothesize that both exploration coverage
and exploration efficiency during pretraining play
an important role. By separately increasing explo-
ration coverage through Plan2Explore, the quality
of the VLM rewards becomes more important for fo-
cusing the auxiliary exploration objective on useful
exploratory behaviors. Thus, LAMP Prompt 2, which incorporates Plan2Explore, is trained on
higher-quality, more relevant rewards, and can explore more efficiently during pretraining, and
therefore enables more effective finetuning. Overall, the differences in pretraining with different
action-based prompting styles is not extreme, suggesting that LAMP is robust to different prompting
strategies, and providing diverse instructions can be an effective way of pretraining an agent.

How much does the Reward Weighting or VLM matter? We provide an ablation of the α
reward weighting term for the joint pretraining reward introduced in Equation 1. We isolate the
relative contributions of the Plan2Explore and LAMP rewards by setting the alpha value to 0 and
1. We find that, while either option performs somewhat similarly, the synergy of the two rewards
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Figure 6: We find that LAMP is robust to the reward weighting hyperparameter alpha. Notably,
with purely VLM rewards (alpha = 0), LAMP obtains competitive performance across all tasks
evaluated. However, the synergy of the two rewards achieves the strongest performs.

achieves the highest performance, particularly on the “Take Lid Off Saucepan Task.” We conduct
this ablation on additional tasks as well as perform a sweep of the reward weighting hyperparameter
in Appendix 13.

We evaluate LAMP using another popular off-the-shelf VLM. CLIP Radford et al. (2021), which is
trained on static image-caption pairs, can serve as a reward model by extracting the cosine similarity
between text feature and image feature changes as presented as ZeST in (Cui et al., 2022). Following
ZeST, in order to express feature displacements, we assign context features in image and language
space as s0, the initial image in an episode, and x0, a language prompt that inverts the action (open
microwave inverts close microwave) described in the desired instruction x. In particular, we use the
following reward parameterization,

ri = (Fϕ(si)− Fϕ(s0)) · (Lα(x)− Lα(x0)).

where Fϕ is the CLIP pretrained image encoder, Lα is the CLIP pretrained language encoder, and
the task reward ri is defined as the dot product of the visual and language delta embeddings.

We show finetuning results on the RLBench downstream tasks in Figure 7. While R3M seems to lead
to consistently strong performance, we observe that LAMP pretraining with CLIP rewards performs
similarly well, confirming the robustness of our pipeline with respect to the choice of the specific
VLM. Additional tasks are in Figure 14 in the Appendix.

Figure 7: Finetuning performance on visual robotic manipulation tasks in RLBench. We observe
that CLIP rewards can also work well with LAMP components.

6 Discussion

In this work, we present LAMP, an algorithm for leveraging frozen VLMs to pretrain reinforcement
learning agents. We observe a number of limitations of using LRFs for task reward specifcation in
RL, and propose a new setting and methodology that is more accommodating of these limitations.
We demonstrate that by leveraging the flexibility and zero-shot generalization capabilities of VLMs,
we can easily produce diverse rewards during pretraining that encourage the learning of exploratory
behaviors useful for many downstream tasks. Furthermore, we show that VLM parameterized
rewards exhibit synergies with novelty-seeking RL pretraning methods. Overall, we see LAMP as an
indication of the promise of leveraging large pretrained VLMs for pretraining behaviors in challenging
environments.
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A Masked World Models

For our experiments, we use Masked World Models (MWM) (Seo et al., 2022) as our underlying
RL algorithm. MWM is a model-based RL framework that aims to decouple visual representation
learning and dynamics learning. In contrast to prior algorithms that learn world models in an
end-to-end manner, MWM separately learns a visual encoder via masked autoencoding (He et al.,
2021) and a world model that reconstructs frozen autoencoder representations. We build LAMP
upon the official implementation provided by authors (https://github.com/younggyoseo/MV-MWM)
which supports experimentation on RLBench (James et al., 2020). In Table 7, 8, and 9 we provide
all relevant hyperparameters.

B Video-Language Models

R3M For the R3M (Nair et al., 2022) VLM in LAMP, we use the official implementation (https:
//github.com/facebookresearch/r3m). We use the ResNet-18 visual backbone and preserve all
default hyperparameters. To encode the language prompts, we use the DistilBERT ‘base-uncased’
model (https://huggingface.co/distilbert-base-uncased) from the transformers (https://
pypi.org/project/transformers/) package as used in the R3M implementation.

InternVideo For the InternVideo (Wang et al., 2022) VLM in LAMP we use the official implemen-
tation (https://github.com/OpenGVLab/InternVideo). We use the "B/16" model and pretrained
weights provided by the authors for embedding the images and text.

For InternVideo (Wang et al., 2022) we match the style of alignment score computation used in
training and inference. We use the following reward parameterization:

ri = Fϕ([si//8, s2∗i//8, ..., s8∗i//8]) · Lα(l).

where 8 frames evenly spaced from the agent’s entire history are featurized by the visual encoder Fϕ.

ZeST For the CLIP (Radford et al., 2021) VLM used in ZeST (Cui et al., 2022) for LAMP, we
use the official OpenAI CLIP model (https://github.com/openai/CLIP). We use the "ViT-B/32"
release of the CLIP visual encoder for embedding images and the CLIP text encoder for embedding
langauge prompts.

C Experimental Details

C.1 Language Prompting Types

We ablate on 6 different prompt styles, with the structures defined in Section 5. To construct
Prompt Style 1, we replace the [NOUN] in the Pick up the [NOUN]. prompt with the ShapeNet
name. To construct Prompt Style 6, we sample from random Shakespeare phrases listed below. For
the remaining Prompt Styles, we sample a verb structure, either IRRELEVANT or RELEVANT; and a
noun, either RANDOM or SYNONYM. Both verb structures are included in Table 2. We include examples
of random nouns and synonym nouns for a sample object; nouns and synonyms for all objects are
ommitted for space, but they can be found in the code.

Verb structures and synonyms were curated from ChatGPT, with filtering afterward to select most
relevant verbs. Random nouns were taken from the synonyms. We provide the automatically
generated language prompt datasets for each language prompting scheme used during LAMP
pretraining. Prompts to ChatGPT are included in Table 1.
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Algorithm 1 Language Reward Modulated Pretraining (LAMP)
1: Initialize Masked World Models (MWM) parameters, Load pretrained DistilBERT Lα, Load

pretrained R3M visual encoder Fϕ, Load pretrained R3M score predictor Gθ, Initialize replay
buffer B ← 0, Prefill language prompt buffer Bl, Prefill synonym buffer Bs

2: for each episode do
3: Randomize scene textures by sampling among Ego4D and original RLBench textures
4: Sample ShapeNet Objects to place in scene
5: Sample language prompt x from Bl (e.g., Pick up the [NOUN])
6: Replace [NOUN] in x by sampling a synonym from Bs for a random object in the scene
7: Process the prompt via DistilBERT to obtain language embeddings Lα(x)
8: Collect episode transitions with π(a|(s, Lα(x))
9: Assign LAMP rewards to all time steps (in parallel) by embedding frames with Fϕ and querying

the R3M score predictor Gθ

10: Add all episode transitions to B
11: Update MWM and Plan2Explore parameters as in (Seo et al., 2022; Sekar et al., 2020) by

sampling transitions from B and augmenting LAMP rewards with novelty bonus to train agent
12: end for

Table 1: Using an LLM to generate verb structures and nouns. We query ChatGPT with
prompts to create a set of diverse tasks.

Generating Verb Structures Generating Synonyms
Give me a list of 40 task variations that present
an interesting task for a person to do in a home or
kitchen scenario.
Examples should not be complicated, and should
be possible to do very quickly, within a minute or so.
These should be simple tasks that are interesting
and diverse, but EASY. Tasks should be atomic
and very general.
For example:
1. Reach for the mug
2. Open the microwave
3. Wipe the table clean
4. Water the flowers

Please give me 40 synonyms for bowl
Example:
1. bowl
2. soup bowl
3. dish

C.2 ShapeNet Objects

In Figure 9 we provide images of some of the ShapeNet object assets used in the pretraining
environments. We provide some examples of generated pretraining environments in Figure 8.

C.3 Ego4D Textures

In Figure 10 we provide the textures extracted from Ego4D we overlayed on the pretraining environ-
ments.

C.4 LAMP Algorithm

We describe the LAMP algorithm in detail in Algorithm 1.
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Table 2: Verb Structures. We include the different verb structures used during pretraining.

Relevant Verb Irrelevant Verb
Pick up the [NOUN] The [NOUN] is seized
Lift the [NOUN] with your hands The [NOUN] is clutched
Hold the [NOUN] in your grasp The [NOUN] is gripped
Take hold of the [NOUN] and raise it The [NOUN] is firmly grasped
Grasp the [NOUN] firmly and lift it up The [NOUN] is tightly held
Raise the [NOUN] by picking it up The [NOUN] is firmly caught
Retrieve the [NOUN] and hold it up The [NOUN] is securely clasped
Lift the [NOUN] by gripping it The [NOUN] is rotated
Seize the [NOUN] and raise it off the surface The [NOUN] has been flipped
Hold onto the [NOUN] and lift it up The [NOUN] has been knotted
The [NOUN] is lifted up The [NOUN] has been folded
The [NOUN] is picked up off the ground The [NOUN] has been rinsed
The [NOUN] is raised up by hand The [NOUN] has been filled
The [NOUN] is grasped and lifted up The [NOUN] is shaken
The [NOUN] is taken up by hand The [NOUN] has been scooped
The [NOUN] is retrieved and lifted up The [NOUN] is poured
The [NOUN] is lifted off its surface The [NOUN] has been scrubbed
The [NOUN] is elevated by being picked up The [NOUN] is tilted
The [NOUN] is hoisted up by hand The [NOUN] has been heated
The [NOUN] is scooped up and lifted Reach for the [NOUN]
The [NOUN] is lifted by the hand Grasp at the [NOUN]
The [NOUN] is grasped and picked up Stretch out to touch the [NOUN]
The [NOUN] is raised by the palm Move your arm towards the [NOUN]
The [NOUN] is taken up by the fingers Use the gripper to rinse the [NOUN]
The [NOUN] is held and lifted up Position the end effector to fold the [NOUN]
The [NOUN] is lifted off the surface by the arm Reach out the robotic arm to wipe the [NOUN]
The [NOUN] is picked up and held by the wrist Utilize the gripper to seize the [NOUN]
The [NOUN] is scooped up by the palm and lifted Guide the robotic arm to obtain the [NOUN]
The [NOUN] is elevated by the hand Maneuver the end effector to lift up the [NOUN]
The [NOUN] is taken up by the fingers of the hand Extend your hand towards the [NOUN]
The [NOUN] is grasped and raised Reach out your hand to acquire the [NOUN]
The [NOUN] is lifted by the gripper Guide your arm to rotate the [NOUN]
The end effector picks up the [NOUN] Maneuver your hand to shake up the [NOUN]
The arm lifts the [NOUN] Flip the [NOUN]
The [NOUN] is held aloft by the robotic hand Tap the [NOUN]
The robotic gripper secures the [NOUN] Fold the [NOUN]
The [NOUN] is lifted off the surface by the robotic arm Rotate the [NOUN]
The robotic manipulator seizes and elevates the [NOUN] Brush the [NOUN]
The robotic end effector clasps and hoists the [NOUN] Twist the [NOUN]
The [NOUN] is taken up by the robotic gripper Wipe the [NOUN]
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Table 3: Prompt Style 6. Snippets from Shakespeare.

Holla, Barnardo.
BARNARDO Say, what, is Horatio there?
HORATIO A piece of him.
Welcome, Horatio.—Welcome, good Marcellus.
HORATIO
What, has this thing appeared again tonight?
BARNARDO I have seen nothing.
MARCELLUS
Horatio says ’tis but our fantasy
And will not let belief take hold of him
Touching this dreaded sight twice seen of us.
Therefore I have entreated him along
With us to watch the minutes of this night,
That, if again this apparition come,
He may approve our eyes and speak to it.
Tush, tush, ’twill not appear.
Sit down awhile,
How now, Horatio, you tremble and look pale.
Is not this something more than fantasy?
What think you on ’t?
At least the whisper goes so: our last king,
Whose image even but now appeared to us,
Was, as you know, by Fortinbras of Norway,
Thereto pricked on by a most emulate pride,
Dared to the combat; in which our valiant Hamlet
(For so this side of our known world esteemed him)
Did slay this Fortinbras, who by a sealed compact,
Well ratified by law and heraldry,
Did forfeit, with his life, all those his lands
Which he stood seized of, to the conqueror.
Against the which a moiety competent
Was gagèd by our king, which had returned
To the inheritance of Fortinbras
Had he been vanquisher, as, by the same comart
And carriage of the article designed,
His fell to Hamlet. Now, sir, young Fortinbras,
Of unimprovèd mettle hot and full,
Hath in the skirts of Norway here and there
Sharked up a list of lawless resolutes
BARNARDO
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Table 4: Nouns. Synonym and random nouns for "bag."

Synonym Noun Random Noun
bag cap
handbag hat
purse snapback
clutch faucet
tote tap
backpack vase
knapsack flask
satchel earphone
shoulder bag earpiece
duffel bag knife
messenger bag blade
grip laptop
briefcase notebook
pouch vase
fanny pack flowerpot
drawstring telephone
beach bag flip phone
grocery shop handle
shopping bag lever
gift bag gift bag
lunch bag lunch bag
laptop bag laptop bag
travel bag travel bag

Figure 8: We pretrain on domain-randomized environments with Ego4D textures, occasionally
sampling the default, non-randomized RLBench texture. The RLBench tasks are not included in the
pretraining environments.

C.5 Compute

We used a NVIDIA DGX A100 GPUs for all experimentation. Pretraining time for 300k steps takes
60-72 hours; finetuning for 100k takes 16-19 hours.

D Limitations

A limitation of LAMP is its reliance on performing inference of the VLM model many times throughout
the course of pretraining in order to generate rewards. Inference speed for larger, more powerful VLMs
may be slow, bottlenecking the speed of the pretraning process. Another limitation is that LAMP
does not address the long-horizon sequencing setting where we might be interested in finetuning
agents conditioned on many language prompts. We leave these as intriguing directions for future
work.
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Figure 9: Examples of ShapeNet object assets used during the pretraining phase.

E Additional Experiments and Ablations

E.1 Finetuning Results with Instruction Tuning

We include additional finetuning results for the "Phone On Base" RLBench task in Figure 11. We find
that by tuning the language instruction used to condition the model, we further increase performance.
We provide results involving selecting a frozen language instruction from a set of many semantically
similar generated instructions for finetuning. We consider 9 of these new generated prompts in
addition to the original task name based prompt. We then select the language prompt corresponding
to the policy that achieves the highest zero-shot evaluation return when rolled out. This simple
tuning step provides us with increases in performance on the new “Phone on Base” task. The optimal
instructions tuned for each of the three seeds include:

1. The arm is picking up the phone and placing it on the base

2. The robot arm grasps the phone and sets it down

3. The robot gripper picks up the phone and places it on the base

E.2 Random Network Distillation

We experiment with Random Network Distillation (Burda et al., 2018), an additional unsupervised
reinforcement learning algorithm, as an additional baseline and report results in 12. We find that
for the "Pick Up Cup" and "Push Button" tasks Plan2Explore is a stronger baseline. While in the
case for the "Take Lid Off Saucepan" task, RND does manage to outperform Plan2Explore, LAMP
exhibits stronger performance than either baseline. We report all relevant hyperparameters in Table
10.

E.3 Alpha Reward Weighting Ablation

We provide ablation of the reward weighting on additional tasks as well as provide a sweep of the
reward weighting parameter on the Take Lid Off Saucepan task in Figure 13. We find that the
method is somewhat robust to the choice of α, however, larger values in general work better.

E.4 VLM Model Ablation Additional Tasks

We include the Close Microwave and Turn Tap tasks for the CLIP (ZeST) VLM version of LAMP in
Figure 14.
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Figure 10: Textures cropped out of Ego4D videos and overlayed to the RLBench scene. The textures
on the first two rows were overlayed to the walls, those on the third row to the table, and those on
the fourth row to the floor.
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Figure 11: Finetuning Result on Phone On Base

Figure 12: Finetuning performance on visual robotic manipulation tasks in RLBench. The solid line
and shaded region represent mean and standard deviation across 3 seeds.

Figure 13: We find that LAMP is robust to the reward weighting hyperparameter alpha. Notably,
with purely VLM rewards (alpha = 0), LAMP obtains competitive performance across all tasks
evaluated. However, the synergy of the two rewards achieves the strongest performs.

Figure 14: Finetuning performance on additional visual robotic manipulation tasks in RLBench. The
solid line and shaded region represent mean and standard deviation across 3 seeds. We observe that
CLIP rewards can also work well with LAMP components.

F Hyperparameters
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Table 5: Plan2Explore Hyperparameters

Parameter Value
Plan2Explore False
Exploration Intrinsic Scale 0.9
Exploration Extrinsic Scale 0.1
Exploration Optimization Optimization: Adam

Learning Rate: 3e-4
Epsilon: 1e-5
Clip: 100
Weight Decay: 1e-6

Exploration Head Layers: [512, 512, 512, 512]
Activation: ELU
Normalization: None
Distribution: MSE

Exploration Reward Normalization Momentum: 1.0
Scale: 1.0
Epsilon: 1e-8

Disaggregation Target Stochastic
Disaggregation Log False
Disaggregation Models 10
Disaggregation Offset 1
Disaggregation Action Condition True
Exploration Model Loss KL

Table 6: PTMae Hyperparameters

Parameter Value
MAE Image Width Size 224
MAE Image Height Size 224
WM Flat VIT Image Height Size 7
WM Flat VIT Image Width Size 7
MAE State Prediction False
WM Flat VIT Input Channels 768
WM Flat VIT Embedding Dimension 128
MAE Average True
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Table 7: MAE Hyperparameters

Parameter Value
Camera Keys ‘image front|image wrist’
Mask Ratio 0.95
MAE Image Height Size: 128

Image Width Size: 128
Patch Size: 16
Embedding Dimension: 256
Depth: 8
Number of Heads: 4
Decoder Embedding Dimension: 256
Decoder Depth: 6
Decoder Number of Heads: 4
Reward Prediction: True
Early Convolution: True
State Prediction: True
Input Channels: 3
Number of Cameras: 0
State Dimension: 10
View Masking: True
Control Input: ‘front wrist’

WM Flat VIT Image Height Size: 8
Image Width Size: 8
Patch Size: 1
Embedding Dimension: 128
Depth: 2
Number of Heads: 4
Decoder Embedding Dimension: 128
Decoder Depth: 2
Decoder Number of Heads: 4
Input Channels: 256
State Prediction: False

Image Time Size 4
Use ImageNet MAE False
MAE Chunk 1
MAE Average False
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Table 8: World Model Hyperparameters

Parameter Value
Grad Heads [Reward, Discount]
Predictive Discount True
RSSM Action Free: False

Hidden: 1024
Deterministic: 1024
Stochastic: 32
Discrete: 32
Activation: ELU
Normalization: None
Stochastic Activation: Sigmoid2
Minimum Standard Deviation: 0.1

Reward Head Layers: [512, 512, 512, 512]
Activation: ELU
Normalization: None
Distribution: Symlog

Discount Head Layers: [512, 512, 512, 512]
Activation: ELU
Normalization: None
Distribution: Binary

Loss Scales Feature: 1.0
KL: 1.0
Reward: 1.0
Discount: 1.0
Proprio: 1.0
MAE Reward: 1.0

KL Scale: 1.0
KL Minloss 0.1
KL Balance 0.8
Model Optimization Optimization: Adam

Learning Rate: 3e-4
Epsilon: 1e-5
Clip: 100.0
Weight Decay: 1e-6
Weight Decay Pattern: ‘kernel’
Warmup: 0

MAE Optimization Optimization: Adam
Learning Rate: 3e-4
Epsilon: 1e-5
Clip: 100.0
Weight Decay: 1e-6
Warmup: 2500
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Table 9: Actor Critic Hyperparameters

Parameter Value
Actor Layers: [512, 512, 512, 512]

Activation: ELU
Normalization: None
Distribution: Trunc_Normal
Minimum Standard Deviation: 0.1

Critic Layers: [512, 512, 512, 512]
Activation: ELU
Normalization: None
Distribution: MSE

Actor Optimization Optimization: Adam
Learning Rate: 1e-4
Epsilon: 1e-5
Clip: 100.0
Weight Decay: 1e-6
Weight Decay Pattern: ‘kernel’
Warmup: 0

Critic Optimization Optimization: Adam
Learning Rate: 1e-4
Epsilon: 1e-5
Clip: 100.0
Weight Decay: 1e-6
Weight Decay Pattern: ‘kernel’
Warmup: 0

Discount 0.99
Discount Lambda 0.95
Image Horizon 15
Actor Grad Dynamics
Actor Grad Mix 0.1
Actor Entropy Scale: 1e-4
Slow Target True
Slow Target Update 100
Slow Target Fraction 1
Slow Baseline True
Reward Normalization Momentum: 0.99

Scale: 1.0
Epsilon: 1e-8

Table 10: Random Network Distillation Hyperparameters

Parameter Value
Embedding Dimension 512
Hidden Dimension 256
Optimizer Adam

Learning Rate: 3e-4
Epsilon: 1e-5
Clip: 100.0
Weight Decay: 1e-6
Warmup: 2500
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