
RLJ | RLBRew Workshop @ RLC 2024

RLeXplore: Accelerating Research in Intrinsically-
Motivated Reinforcement Learning

1*Mingqi Yuan, 2*Roger Creus Castanyer, 1Bo Li, 3Xin Jin, 2Glen Berseth, 3Wenjun Zeng
1Department of Computing, The Hong Kong Polytechnic University, China
2Mila Québec AI Institute & Université de Montréal, Canada
3Eastern Institute of Technology, Ningbo, China

Abstract

Extrinsic rewards can effectively guide reinforcement learning (RL) agents in specific
tasks. However, extrinsic rewards frequently fall short in complex environments due
to the significant human effort needed for their design and annotation. This limita-
tion underscores the necessity for intrinsic rewards, which offer auxiliary and dense
signals and can enable agents to learn in an unsupervised manner. Although var-
ious intrinsic reward formulations have been proposed, their implementation and
optimization details are insufficiently explored and lack standardization, thereby
hindering research progress. To address this gap, we introduce RLeXplore, a uni-
fied, highly modularized, and plug-and-play framework offering reliable implementa-
tions of eight state-of-the-art intrinsic reward algorithms. Furthermore, we conduct
an in-depth study that identifies critical implementation details and establishes
well-justified standard practices in intrinsically-motivated RL. The source code for
RLeXplore is available at https://github.com/RLE-Foundation/RLeXplore.

1 Introduction

Reinforcement learning (RL) provides a framework for training agents to solve tasks by learn-
ing from interactions with an environment. At the core of RL is the optimization of a reward
function, where agents aim to maximize cumulative rewards over time (Sutton & Barto, 2018).

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps

5

0

5

10

15

20

25

30

Ep
iso

de
 R

et
ur

n

SuperMarioBros-1-1 (Reward-free)

Extrinsic
ICM
Disagreement

E3B
RND
PseudoCounts

RIDE
RE3
NGU

Figure 1: Episode Return achieved by the in-
trinsic rewards in RLeXplore in SuperMario-
Bros.

However, in complex environments, defining extrin-
sic rewards that effectively guide an agent’s learning
process can be impractical, often requiring domain-
specific expertise. In practice, poorly defined extrin-
sic rewards can lead to sparse-reward settings, where
RL agents struggle due to the lack of a meaningful
learning signal (Burda et al., 2019a).

As the RL community tackles increasingly complex
problems, such as training generally capable RL
agents, there is a need for more autonomous agents
capable of learning valuable behaviors without re-
lying on dense supervision (Jiang et al., 2023). To
address this challenge, the concept of intrinsic re-
wards has emerged as a promising approach in the
RL community (Burda et al., 2019b; Pathak et al.,
2017; Raileanu et al., 2020; Badia et al., 2020; Henaff
et al., 2022; Pathak et al., 2019). Intrinsic rewards
provide agents with additional learning signals, enabling them to explore and acquire skills across
diverse environments beyond what extrinsic rewards alone can offer.

∗Equal Contribution.

https://github.com/RLE-Foundation/RLeXplore

RLJ | RLBRew Workshop @ RLC 2024

However, computing intrinsic rewards often requires learning auxiliary models, heavy engineering
and performing expensive computations, making reproducibility challenging. While several formu-
lations of intrinsic rewards have been proposed Pathak et al. (2017); Badia et al. (2020); Laskin
et al. (2021), each with its potential benefits for improving agent learning, the field lacks a compre-
hensive understanding of the comparative advantages and challenges posed by these formulations.
Importantly, existing literature reports varying performance when using the same intrinsic rewards,
reinforcing the need for a standardized framework and a deeper understanding of the optimization
and implementation details.

In this paper, we introduce RLeXplore, an open-source library containing high-quality implementa-
tions of state-of-the-art intrinsic rewards. Our work presents a systematic study aimed at addressing
gaps in understanding the critical implementation and optimization details of intrinsic rewards. To
guide our investigation, we formulate numerous questions, aiming to uncover the intricacies of in-
trinsic rewards and their impact on RL agent performance. Our results highlight the importance of
thoughtful implementation design for intrinsic rewards, showing that naive implementations can lead
to suboptimal performance. Through carefully studied design decisions, we demonstrate significant
performance gains.

Our contributions are threefold. Firstly, we provide a high-quality open-source repository for training
RL agents, featuring the implementation of the most widely recognized intrinsic rewards. Secondly,
we present a systematic evaluation that identifies the key implementation and optimization details
critical to the success of intrinsic reward methods in RL. Lastly, we provide a comparative analysis
of the agents’ performance across challenging environments, establishing a foundation for future
research in intrinsically-motivated RL.

2 Background

We frame the RL problem considering a MDP Bellman (1957); Kaelbling et al. (1998) defined by a
tuple M = (S,A, E, P, d0, γ), where S is the state space, A is the action space, and E : S ×A → R is
the extrinsic reward function, P : S ×A → ∆(S) is the transition function that defines a probability
distribution over S, d0 ∈ ∆(S) is the distribution of the initial observation s0, and γ ∈ [0, 1) is a
discount factor. The goal of RL is to learn a policy πθ(a|s) to maximize the expected discounted
return:

Jπ(θ) = Eπ

[∞∑
t=0

γtEt

]
. (1)

Intrinsic rewards augment the learning objective to improve exploration. Letting I : S × A → R
denote the intrinsic reward function, the augmented optimization objective is:

Jπ(θ) = Eπ

[∞∑
t=0

γt(Et + βt · It)
]
, (2)

where βt = β0(1 − κ)t controls the degree of exploration, and κ is a decay rate.

3 RLeXplore

In this section, we present RLeXplore, a unified, highly-modularized and plug-and-play framework
that currently provides high-quality and reliable implementations of eight state-of-the-art intrinsic
reward algorithms∗. Comparing multiple intrinsic reward methods under fair conditions is chal-
lenging due to various confounding factors, such as using distinct backbone RL algorithms (e.g.
PPO Schulman et al. (2017), DQN Mnih et al. (2013), IMPALA Espeholt et al. (2018)), opti-
mization (e.g. reward and observation normalization, network architecture) and evaluation details
(e.g. environment configuration, algorithm hyperparameters). RLeXplore is designed to provide a

∗RLeXplore complies with the MIT License.

RLJ | RLBRew Workshop @ RLC 2024

unified framework with standardized procedures for implementing, computing, and optimizing in-
trinsic rewards. We provide the details of the architecture and algorithm baselines of RLeXplore in
Appendix B.

Reward
Normalization

.update()

.compute()

Observation
Normalization

Data Format
Check

Intrinsic
Rewards

No .watch()

Sampling
Rollouts

Update?

Start
Training

Samples

Yes

(a) (b)

Reward
Scaler

Figure 2: The workflow of RLeXplore. (a) RLeXplore monitors the agent-environment interactions and
obtains data samples via a .watch() function. (b) For the sampled transitions, RLeXplore calculates the
corresponding intrinsic rewards via a .compute() function and performs model updating via a .update()
function.

4 Experiments

We design our experiments with two objectives in mind: (i) evaluating the effectiveness of our
implementations and their adaptability to different reinforcement learning (RL) algorithms, and
(ii) investigating the tuning of intrinsic rewards to provide well-justified standard implementations.

(a) (b)

(c) (d)
Figure 3: Screenshots of four selected
exploration games. (a) Montezuma’s
Revenge (MR). (b) SuperMarioBros.
(c) Procgen-Maze. (d) Ant-UMaze.

For the first part, we use the Montezuma’s Revenge (MR) and
Ant-UMaze environments, shown in Figure 3. MR is a chal-
lenging exploration task from the Atari benchmark Bellemare
et al. (2013), while Ant-UMaze is an exploration and locomo-
tion task from the Gymnasium robotics benchmark de Lazcano
et al. (2023). We provide the experimental settings and re-
sults in Appendix F and Appendix G. In these experiments,
we seamlessly integrate RLeXplore with different frameworks
(CleanRL Huang et al. (2022), RLLTE Yuan et al. (2023)) and
RL algorithms (PPO Schulman et al. (2017), SAC Haarnoja
et al. (2018)).

For the second part, we use SuperMarioBros to investigate the
low-level implementation details in intrinsic reward methods
that lead to more robust performance. Additionally, we use
Procgen-Maze to study how to best combine intrnisic and ex-
trinsic rewards in sparse-reward tasks.

4.1 Low-level Implementation Details of Intrinsic Rewards

The performance of intrinsic rewards is affected by various factors, which tends to vary significantly
with the complexity of the task, the RL algorithm used, the architecture of the networks, algorithm-
specific hyperparameters, and the joint optimization of intrinsic and extrinsic rewards. As a result,
implementing and reproducing intrinsic reward algorithms is challenging. To tackle this problem,
we first formulate five research questions (RQs) to investigate how various low-level implementation

RLJ | RLBRew Workshop @ RLC 2024

Baseline
Obs. RMS

Rew. Min-Max
Rew. RMS

Rew. Vanilla
Update Prop. 0.1
Update Prop. 0.5
Update Prop. 1.0

Init. Default
Init. Orthogonal

LSTM

Disagreement E3B ICM NGU

0.00 0.25 0.50 0.75 1.00
Normalized Score

Baseline
Obs. RMS

Rew. Min-Max
Rew. RMS

Rew. Vanilla
Update Prop. 0.1
Update Prop. 0.5
Update Prop. 1.0

Init. Default
Init. Orthogonal

LSTM

PseudoCounts

0.00 0.25 0.50 0.75 1.00
Normalized Score

RE3

0.00 0.25 0.50 0.75 1.00
Normalized Score

RIDE

0.00 0.25 0.50 0.75 1.00
Normalized Score

RND

Figure 4: Results for RQ 1, RQ 2, RQ 3, RQ 4, and RQ 5 in SuperMarioBros-1-1. The x-axis represents
the episode return normalized by the performance of the extrinsic agent after training. A normalized return
of 1.0 indicates that the agent solves the 1-1 level. Each bar represents the mean and standard deviation of
the normalized episode returns. Results are aggregated over 5 seeds, and each run uses 10M environment
interactions.

details impact the training of intrinsically-motivated agents. We first define an initial baseline
configuration for optimizing the intrinsic rewards, shown in Table 1. These baseline settings are
selected based on the most common configurations reported in the literature. Next, we address
each RQ sequentially, modifying the baseline configuration for each intrinsic reward as we gather
new evidence regarding their critical implementation details. This iterative process leads to the
development of high-quality implementations of state-of-the-art intrinsic reward methods.

In this section, we conduct reward-free experiments (i.e., without access to extrinsic rewards) using
the SuperMarioBros environment Kauten (2018). SuperMarioBros is a widely used benchmark for
evaluating exploration in RL Pathak et al. (2017); Raileanu et al. (2020), as efficient exploration is
closely related to effectively navigating the game levels and ultimately solving the game. Additional
experimental settings can be found in Appendix C.

RQ 1: The impact of observation normalization.

Observation normalization is crucial in deep learning to avoid numerical instabilities during opti-
mization. Image observations, which typically range from 0 to 255, are commonly normalized to a
range of 0 to 1 using Min-Max normalization by dividing by 255. However, previous studies suggest
that Min-Max normalization may not be ideal for all representation learning algorithms (Burda
et al., 2019b).

In RQ 1, we compare Min-Max normalization with using an exponential moving average (EMA)
of the mean and standard deviation for observation normalization (RMS). Figure 4 indicates that
using RMS for observation normalization generally reduces the variance of the agent’s performance.
Importantly, some intrinsic rewards, such as RND, NGU, PseudoCounts, and RIDE, critically require
RMS normalization. This results indicate that RMS normalization is crucial for intrinsic reward

RLJ | RLBRew Workshop @ RLC 2024

methods that use random networks, since the lack of normalization can result in the embeddings
produced by the random networks carrying very little information about the inputs (Burda et al.,
2019b).

RQ 2: The impact of reward normalization.

Similarly to RQ 1, reward normalization is also critical when using deep neural networks to compute
the intrinsic rewards, since the scale of these rewards can be arbitrary and vary significantly over
time. To mitigate the non-stationarity of intrinsic rewards, in RQ 2, we compare three normalization
approaches: (1) Min-Max normalization, (2) using an RMS of the standard deviation, and (3) no
reward normalization.

Surprisingly, our findings reveal that not normalizing intrinsic rewards at all can improve the per-
formance of some intrinsic reward methods (e.g., RE3 and ICM). However, our results show that
Min-Max reward normalization is a considerable option, improving the performance of the majority
of the methods.

RQ 3: The co-learning dynamics of policies and representations for intrinsic
rewards.

Optimizing intrinsic rewards in deep RL often involves training representations in auxiliary networks
(e.g., predictor network in RND, inverse dynamics encoder in ICM, forward dynamics encoders in
Disagreement). However, managing the co-learning dynamics of representations and policies is
challenging. In RQ 3, we explore three update strategies for representations: (1) updating represen-
tations at the same frequency as the policy, (2) updating representations 50% of the time, and (3)
updating representations 10% of the time. This comparison sheds light on the trade-off between the
number of gradient updates in the representations and the performance of the policy.

Our findings suggest that, in general, the learned representations of the auxiliary networks need to be
caught up (i.e., equally trained) with the same data as the RL agents. Our results show that training
the representations slowly (e.g., using only 10% of the data at each iteration) can cause significant
performance decreases for global intrinsic rewards like ICM, Disagreement and RND. In contrast, for
intrinsic rewards that utilizes episodic memories (e.g., NGU and RIDE), training the representations
slowly may improve the performance to a certain extent. These observations indicate that training
intrinsic rewards and RL agents does not always have to be synchronized entirely. Moreover, we can
reduce the computational overhead by reducing the training time of intrinsic rewards.

RQ 4: The impact of weight initialization.

Weight initialization plays a crucial role in optimizing deep neural networks, enabling faster conver-
gence. In RQ 4, we compare two approaches for weight initialization in the auxiliary networks: (1)
orthogonal weight initialization and (2) uniform weight initialization (PyTorch’s default). Note that
the policy and value networks remain unchanged.

Our results show the importance of weight initialization in intrinsically-motivated RL. Specifically, we
observe that using orthogonal initialization of weights leads to notable performance improvements
for most intrinsic rewards, regardless of their specific optimization tasks (e.g., inverse dynamics,
forward dynamics), and even in random networks (e.g., RND and RE3).

RQ 5: Is memory required to optimize intrinsic rewards?

In RQ 5, we investigate whether the intrinsic rewards included in RLeXplore benefit from memory-
enabled architectures. We compare the optimization of intrinsic rewards using a vanilla network and

RLJ | RLBRew Workshop @ RLC 2024

one equipped with a long-short term memory (LSTM) Hochreiter & Schmidhuber (1997) module,
while keeping PPO as the RL backbone algorithm.

Some intrinsic reward methods exhibit lower performance when using LSTM policies. This obser-
vation aligns with the fact that LSTMs provide episodic context to policies, whereas most intrinsic
reward methods define exploration as a global problem. Interestingly, for RIDE, which computes the
state embedding changes as the intrinsic rewards, the episodic context provided by LSTMs enables
agents to better optimize the intrinsic reward.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score

Mean

Median

IQM

OG

PoI

ICM

Disa
gre

em
en

t
E3

B
RND

Pse
ud

oC
ou

nts RIDE
RE3 NGU

0

5

10

15

20

25

30

No
rm

al
ize

d
Re

tu
rn

Best Baselines PoI

Figure 5: Overall (left) and individual (right) performance comparisons between the baselines and best con-
figurations. For the left figure, interquartile mean (IQM), mean, median, and optimality gap (OG,
lower is better) are computed over all the algorithms and runs. PoI is the probability of improvement of
the best configurations compared to the baselines. Our results show that carefully-tuned implementations
for the intrinsic rewards achieve significantly better exploration and task performance.

Based on the results from RQ 1-5, we have identified the optimal configurations that surpass the
predefined baselines. Reward and observation normalization are notably influential on performance,
and by adjusting the update proportion and using an LSTM, it is possible to further boost the
performance of intrinsic rewards. Figure 5 demonstrates both the comprehensive and individual
performance comparisons before and after tuning. The average probability of improvement across
all intrinsic rewards is 82%, with performance increases of 86% and 66% for the aggregate IQM and
mean, respectively.

4.2 Combination of Intrinsic and Extrinsic Rewards

RQ 6: Joint Optimization of Intrinsic and Extrinsic Rewards

Training agents to maximize two learning signals concurrently can be challenging. In sparse-reward
environments, the objective is for agents to explore the state space by optimizing intrinsic rewards
until they discover the task rewards, at which point they should focus solely on optimizing the
task rewards. However, many intrinsically-motivated RL applications naively optimize the sum of
intrinsic and extrinsic rewards, potentially leading to learning fuzzy value functions and suboptimal
policies. In this section, we compare this approach with learning two separate value functions, one
for each stream of rewards. The advantages of the latter include the ability to disentangle the effects
of intrinsic and extrinsic rewards on the agent’s behavior, leading to clearer learning dynamics and
potentially more efficient exploration.

For this analysis, we used the Procgen-Maze task Cobbe et al. (2020) as a sparse-reward benchmark.
RL agents often struggle to learn meaningful behaviors from the extrinsic reward alone in this task.
We evaluate different variants of the task (e.g., 1 maze vs. 200 mazes) to examine singleton versus
contextual MDPs. Figure 6 demonstrates that learning two separate value functions, which we refer
as the TwoHead architecture, outperforms the naive approach of simply adding the two rewards in

RLJ | RLBRew Workshop @ RLC 2024

the complex sparse-reward environment of Procgen-Maze, both in singleton and contextual settings.
Importantly, all methods outperform the extrinsic agent, especially in the 1 Maze environment.

Figure 6: (Left) During training, the extrinsic agent struggles to find the goal in the selected Maze, resulting
in a reward of 0. While some intrinsic reward methods yield occasional non-zero rewards, the algorithms
perform significantly better when intrinsic and extrinsic value estimation are decoupled using two distinct
value heads in the agent’s network. (Right) In the Procgen variant where each maze represents a unique
level, the baseline extrinsic agent achieves the goal 50% of the time, and intrinsic rewards don’t outperform
the baseline significantly. We note that the presence of easier levels, where the goal may occasionally be
near the agent’s starting point results in generally less sparse rewards and an easier task to learn.

4.3 Unlocking the Potential of Intrinsic Rewards

RQ 1-6 extensively discuss the tuning of intrinsic rewards under both normal and reward-free scenar-
ios, revealing significant insights into the optimization processes. However, we aim to delve deeper
into the capabilities of intrinsic rewards to address the evolving challenges in the RL community.
Specifically, in RQ 7 and 8, we investigate recent developments in the exploration literature in RL,
such as combined intrinsic rewards and exploration in contextual MDPs. For our experiments, we
use the SuperMarioBrosRandomStages environment variant, where agents play a different level in
the game at each episode. Our results indicate that the recent developments in combined intrinsic
rewards merit further research, as we demonstrate that such methods can enable agents to learn
exploratory behaviors of exceptional quality in both singleton and contextual MDPs.

RQ 7: Which intrinsic rewards generalize better in contextual MDPs?

In contextual MDPs, there is little shared structure across episodes, since the episodic context can
vary the environment significantly. In this settings, global intrinsic rewards, which re-use experi-
ence from past episodes to compute novelty in the current episode can provide wrong estimations.
Conversely, episodic intrinsic rewards, such as E3B and PseudoCounts, are specifically designed
to estimate novelty within each new episode, aligning better with the dynamic nature of contex-
tual MDPs. As shown in Figure 15, E3B achieves the highest performance among all the intrinsic
rewards, while other intrinsic rewards struggle to adapt and nearly fail to learn. This distinct ad-
vantage underscores the importance of designing intrinsic rewards that are context-sensitive and
capable of updating their novelty detection mechanisms based on the specific characteristics of each
episode.

RQ 8: The performance of mixed intrinsic rewards.

Finally, we study the potential of combined intrinsic rewards (Henaff et al., 2023). We run exper-
iments using all the levels in the game of SuperMarioBros, and we sample them uniformly during
training. As in RQ 1-5, we do not use the extrinsic reward for training the agents but use it as an
evaluation metric to show how much agents actively explore the environment.

Our results show that combined objectives enable emergent behaviors of much better quality than
single objectives. Interestingly, E3B and RIDE are the best performing single objectives, and

RLJ | RLBRew Workshop @ RLC 2024

E3B+RIDE also achieves the highest performance among all the combinations. Similarly, RND
and ICM, combined with other intrinsic rewards, outperform their original performance. This indi-
cates that different intrinsic rewards can provide orthogonal gains that can be leveraged together.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Return

E3
B+RIDE

E3
B+ICM

E3
B

RIDE

ICM+RIDE

E3
B+RND

NGU

RE3
+ICM

Pse
ud

oC
ou

nts

RE3
+RND

RE3
+RIDE

RND+RIDE

RE3

ICM+RND

Disa
gre

em
en

t

RND

ICM
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Return

Mean (G.E.)

IQM (G.E.)

Mean (G.G.)

IQM (G.G.)

Mixed Intrinsic Rewards Single Extrinsic Rewards

Figure 7: (Left) The performance ranking of single and mixed intrinsic rewards on the SuperMarioBros-
RandomLevels. As expected, episodic bonuses (such as E3B and RIDE) demonstrate superior performance,
attributed to the environment’s non-singleton MDP nature. (Right) Overall performance comparisons be-
tween the single and mixed intrinsic rewards. Here, G.E. denotes the six "global+episodic" combinations,
and G.G. denotes the three "global+global" combinations, as illustrated in Table 3.

5 Conclusion

Our work introduces RLeXplore, a comprehensive open-source repository that not only implements
state-of-the-art intrinsic rewards but also provides a systematic evaluation framework for under-
standing their impact on agent performance. Our results show that with RLeXplore, RL agents can
learn emergent behaviours autonomously, solving multiple levels of SuperMarioBros without task
rewards. Additionally, we show that intrinsic rewards enable RL agents to solve complex sparse-
reward tasks like Procgen-Maze. Finally, RLeXplore facilitates further research in combined intrinsic
rewards, uncovering the potential of such methods.

Through our study, we emphasize the importance of thoughtful implementation design, demonstrat-
ing that well-considered approaches lead to significant performance gains over naive implementations.
Our contributions extend to establishing standardized practices for implementing and optimizing in-
trinsic rewards, laying the groundwork for future advancements in intrinsically motivated RL.

RLJ | RLBRew Workshop @ RLC 2024

References
Arthur Aubret, Laetitia Matignon, and Salima Hassas. An information-theoretic perspective on

intrinsic motivation in reinforcement learning: A survey. Entropy, 25(2):327, 2023.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles
Blundell. Never give up: Learning directed exploration strategies. In Proceedings of the Interna-
tional Conference on Learning Representations, 2020.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Proceedings of Advances in Neural
Information Processing Systems, 29:1471–1479, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp. 679–
684, 1957.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. Proceedings of the International Conference on
Learning Representations, pp. 1–17, 2019a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. Proceedings of the 7th International Conference on Learning Representations, pp.
1–17, 2019b.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pp. 2048–
2056. PMLR, 2020.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan Terry. Gym-
nasium robotics, 2023. URL http://github.com/Farama-Foundation/Gymnasium-Robotics.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International conference on machine learning, pp. 1407–
1416. PMLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical
episodic bonuses. Advances in Neural Information Processing Systems, 35:37631–37646, 2022.

Mikael Henaff, Minqi Jiang, and Roberta Raileanu. A study of global and episodic bonuses for
exploration in contextual mdps. arXiv preprint arXiv:2306.03236, 2023.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

http://github.com/Farama-Foundation/Gymnasium-Robotics
http://jmlr.org/papers/v23/21-1342.html

RLJ | RLBRew Workshop @ RLC 2024

Minqi Jiang, Tim Rocktäschel, and Edward Grefenstette. General intelligence requires rethinking
exploration. Royal Society Open Science, 10(6):230539, 2023.

Daejin Jo, Sungwoong Kim, Daniel Nam, Taehwan Kwon, Seungeun Rho, Jongmin Kim, and
Donghoon Lee. Leco: Learnable episodic count for task-specific intrinsic reward. Advances in
Neural Information Processing Systems, 35:30432–30445, 2022.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Christian Kauten. Super Mario Bros for OpenAI Gym. GitHub, 2018. URL https://github.com/
Kautenja/gym-super-mario-bros.

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel
Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round
2), 2021.

Sam Lobel, Akhil Bagaria, and George Konidaris. Flipping coins to estimate pseudocounts for
exploration in reinforcement learning. arXiv preprint arXiv:2306.03186, 2023.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with the suc-
cessor representation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 5125–5133, 2020.

Jarryd Martin, Suraj Narayanan Sasikumar, Tom Everitt, and Marcus Hutter. Count-based explo-
ration in feature space for reinforcement learning. In IJCAI, 2017.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended re-
inforcement learning. arXiv preprint arXiv:2402.16801, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In Proceedings of the International Conference on Machine Learning, pp.
2721–2730, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning, pp. 5062–5071. PMLR, 2019.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

Roberta Raileanu, Tim Rocktäschel, and Roberta Raileanu. Ride: Rewarding impact-driven explo-
ration for procedurally-generated environments. In Proceedings of the International Conference
on Learning Representations, 2020. URL https://openreview.net/forum?id=rkg-TJBFPB.

Nikolay Savinov, Anton Raichuk, Damien Vincent, Raphael Marinier, Marc Pollefeys, Timothy Lilli-
crap, and Sylvain Gelly. Episodic curiosity through reachability. In Proceedings of the International
Conference on Learning Representations, 2019.

https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/gym-super-mario-bros
http://jmlr.org/papers/v22/20-1364.html
https://openreview.net/forum?id=rkg-TJBFPB

RLJ | RLBRew Workshop @ RLC 2024

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State en-
tropy maximization with random encoders for efficient exploration. In Proceedings of the 38th
International Conference on Machine Learning, pp. 9443–9454, 2021.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Adrien Ali Taiga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Belle-
mare. On bonus-based exploration methods in the arcade learning environment. arXiv preprint
arXiv:2109.11052, 2021.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. Advances in neural information processing systems, 30, 2017.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023. URL https://zenodo.org/record/8127025.

Kaixin Wang, Kuangqi Zhou, Bingyi Kang, Jiashi Feng, and YAN Shuicheng. Revisiting intrinsic
reward for exploration in procedurally generated environments. In The Eleventh International
Conference on Learning Representations, 2022.

Xingrui Yu, Yueming Lyu, and Ivor Tsang. Intrinsic reward driven imitation learning via generative
model. In Proceedings of the International Conference on Machine Learning, pp. 10925–10935,
2020.

Mingqi Yuan, Zequn Zhang, Yang Xu, Shihao Luo, Bo Li, Xin Jin, and Wenjun Zeng. Rllte: Long-
term evolution project of reinforcement learning. arXiv preprint arXiv:2309.16382, 2023.

https://zenodo.org/record/8127025

RLJ | RLBRew Workshop @ RLC 2024

A Related Work

Intrinsic rewards often rely on heavily engineered implementations to stabilize their optimization.
The latter difficulties reproducibility and causes different works in the literature to report varying
performance in popular environments. Some works have benchmarked intrinsic rewards in specific
environments Taiga et al. (2021); Wang et al. (2022); Laskin et al. (2021), yet they do not pro-
vide details on the importance of the design decisions in the implementation and optimization of
the intrinsic rewards. In this work, we introduce RLeXplore, a more comprehensive framework
that contains the most widely-used intrinsic rewards and provides the RL community with a uni-
fied framework to accelerate research and compare baselines in intrinsically-motivated RL. In the
following, we overview existing formulations for intrinsic rewards of different natures and introduce
the methods included in RLeXplore.

A.1 Count-Based Exploration

Count-based exploration methods provide intrinsic rewards by measuring the novelty of states, de-
fined to be inversely proportional to the state visitation counts (Strehl & Littman, 2008; Tang et al.,
2017; Machado et al., 2020; Jo et al., 2022). In finite state spaces, count-based methods perform
near optimally (Strehl & Littman, 2008). For this reason, these methods have been established
as appealing techniques for driving structured exploration in RL. However, they do not scale well
to high-dimensional state spaces (Bellemare et al., 2016; Lobel et al., 2023). Pseudo-counts pro-
vide a framework to generalize count-based methods to high-dimensional and partially observed
environments (Bellemare et al., 2016; Ostrovski et al., 2017; Martin et al., 2017). Burda et al.
(2019b) proposed random network distillation (RND), which uses the prediction error against a
fixed network as a learning signal that is correlated to counts. Recently, Henaff et al. (2022) used an
elliptical bonus (E3B) and showed that such an objective provides a generalization of counts to high-
dimensional spaces. In RLeXplore, we include Pseudo-counts, RND, and E3B as representatives of
the state-of-the-art count-based methods.

A.2 Curiosity-Driven Exploration

Curiosity-based objectives train agents to interact with the environment seeking to experience out-
comes that are not aligned with the agents’ predictions (Aubret et al., 2023). Hence, curiosity-driven
exploration usually involves training an agent to increase its knowledge about the environment (e.g.,
environment dynamics) (Stadie et al., 2015; Pathak et al., 2017; Yu et al., 2020). The intrinsic cu-
riosity module (ICM) Pathak et al. (2017); Burda et al. (2019a) learns a joint embedding space with
inverse and forward dynamics losses and was the first curiosity-based method successfully applied
to deep RL settings. Disagreement Pathak et al. (2019) further extended ICM by using the variance
over an ensemble of forward-dynamics models to compute curiosity. However, curiosity-driven meth-
ods are consistently found to be unsuccessful when the environment has irreducible noise (Savinov
et al., 2019). To address the problem, Raileanu et al. (2020) proposed RIDE, which uses the differ-
ence between two consecutive state embeddings as the intrinsic reward and encourages the agent to
choose actions that result in significant state changes. In general, curiosity-based objectives remain
amongst the most popular intrinsic rewards in deep RL applications to this day. In RLeXplore,
we include ICM, Disagreement, and RIDE as representatives of the state-of-the-art curiosity-driven
methods.

A.3 Global and Episodic Exploration

Towards more general and adaptive agents, recent works have studied decision-making problems in
contextual Markov decision processes (MDPs) (e.g., procedurally-generated environments) (Raileanu
et al., 2020; Henaff et al., 2022; Matthews et al., 2024). Contextual MDPs require episodic-level
exploration, where novelty estimates are reset at the beginning of each episode. Henaff et al. (2023)
showed that both global and episodic exploration modalities have unique benefits and proposed

RLJ | RLBRew Workshop @ RLC 2024

combined objectives that achieve remarkable performance across many MDPs of different structures.
NGU Badia et al. (2020) and RIDE Raileanu et al. (2020) also instantiate both global and episodic
bonuses. Inspired by this recent line of works, in this paper, we study novel combinations of objectives
for exploration that achieve impressive results in contextual MDPs.

RLJ | RLBRew Workshop @ RLC 2024

B Details of RLeXplore

B.1 Architecture

The core design decision of RLeXplore involves decoupling the intrinsic reward modules from the
RL optimization algorithms, which enables our intrinsic reward implementations to be integrated
with any desired RL algorithm (or existing library, see Appendix D). Figure 2 illustrates the basic
workflow of RLeXplore, which consists of two parts: data collection (i.e., policy rollout) and reward
computation.

At each time step, the agent receives observations from the environment and predicts actions. The
environment then executes the actions and returns feedback to the agent, which consists of a next
observation, a reward, and a terminal signal. During the data collection process, the .watch()
function is used to monitor the agent-environment interactions. For instance, E3B Henaff et al.
(2022) updates an estimate of an ellipsoid in an embedding space after observing every state. At the
end of the data collection rollouts, .compute() computes the corresponding intrinsic rewards. Note
that .compute() is only called once per rollout using batched operations, which makes RLeXplore
a highly efficient framework. Additionally, RLeXplore provides several utilities for reward and
observation normalization. Finally, the .update() function is called immediately after .compute()
to update the reward module if necessary (e.g., train the forward dynamics models in Disagreement
Pathak et al. (2019) or the predictor network in RND Burda et al. (2019b)). Section D illustrates
the usage of the aforementioned functions. All operations are subject to the standard workflow of
the Gymnasium API (Towers et al., 2023).

We provide various examples of using RLeXplore with popular RL frameworks (e.g., stable-baselines3
Raffin et al. (2021) and CleanRL Huang et al. (2022)) in Appendix D.

B.2 Algorithmic Baselines

In RLeXplore, we implement eight widely-recognized intrinsic reward algorithms spanning the dif-
ferent categories described in Appendix A, namely ICM Pathak et al. (2017), RND Burda et al.
(2019b), Disagreement Pathak et al. (2019), NGU Badia et al. (2020), PseudoCounts Badia et al.
(2020), RIDE Raileanu et al. (2020), RE3 Seo et al. (2021), and E3B Henaff et al. (2022), respectively.
We selected them based on the following tenet:

• The algorithm represents a unique design philosophy;

• The algorithm achieved superior performance on well-recognized benchmarks;

• The algorithm can adapt to arbitrary tasks and can be combined with arbitrary RL algo-
rithms.

Detailed descriptions of each method are as follows: ICM (Pathak et al., 2017). ICM leverages a
inverse-forward model to learn the dynamics of the environment and uses the prediction error as
the curiosity reward. Specifically, the inverse model inferences the current action at based on the
encoded states et and et+1, where e = ψ(s) and ψ(·) is an embedding network. Meanwhile, the
forward model f predicts the encoded next-state et based on (et,at). Finally, the intrinsic reward
is defined as

It = ∥f(et,at) − et+1∥2
2. (3)

RND (Burda et al., 2019b). RND produces intrinsic rewards via a self-supervised manner, in which
a predictor network f̂ is trained to approximate a fixed and randomly-initialized target network f̂ .
As a result, the agent is motivated to explore unseen parts of the state space. The intrinsic reward
is defined as

It = ∥f̂(st+1) − f(st+1)∥2
2. (4)

RLJ | RLBRew Workshop @ RLC 2024

Disagreement (Pathak et al., 2019). Disagreement is variant of ICM that leverages an ensemble of
forward models and calculates the intrinsic reward as the variance among these models. Accordingly,
the intrinsic reward is defined as

It = Var{fi(et,at)}, i = 0, ..., N (5)

NGU (Badia et al., 2020). NGU is a mixed intrinsic reward approach that combines global and
episodic exploration and the first algorithm to achieve non-zero rewards in the game of Pitfall!
without using demonstrations or hand-crafted features. The intrinsic reward is defined as

It = min{max{αt}, C}/
√
Nep(st), (6)

where αt is a life-long curiosity factor computed following the RND method, C is a chosen maximum
reward scaling, and Nep is the episodic state visitation frequency computed by pseudo-counts.

PseudoCounts (Badia et al., 2020). Pseudo-counts has been widely used in count-based exploration
approaches Bellemare et al. (2016); Ostrovski et al. (2017) with diverse implementations like neural
density models. In this paper, we follow NGU Badia et al. (2020) that computes pseudo-counts via
k-nearest neighbor estimation, which is highly efficient and can be applied to arbitrary task. Given
the encoded observations {e0, . . . , eT −1} visited in the an episode, we have√

Nep(st) ≈
√∑

ẽi

K(ẽi, et) + c, (7)

where ẽi is the first k nearest neighbors of e, K is a Dirac delta function, and c guarantees a
minimum amount of pseudo-counts. Finally, the intrinsic reward is defined as

It = 1/
√
Nep(st) (8)

RIDE (Raileanu et al., 2020). RIDE is designed based on ICM that learns the dynamics of the
environment and rewards significant state changes. Accordingly, the intrinsic reward is defined as

It = ∥et+1 − et∥2/
√
Nep(st+1), (9)

where Nep(st+1) is used to discount the intrinsic reward and prevent the agent from lingering in a
sequence of states with a large difference in their embeddings.

RE3 (Seo et al., 2021). RE3 is an information theory-based and computation-efficient exploration
approach, which aims to maximize the Shannon entropy of the state visiting distribution. In par-
ticular, RE3 leverages a random and fixed neural network to encode the state space and employs
a k-nearest neighbor estimator to estimate the entropy efficiently. Then the estimated entropy is
transformed into particle-base intrinsic rewards. Specifically, the intrinsic reward is defined as

It = 1
k

k∑
i=1

log(∥et − ẽi
t∥2 + 1). (10)

E3B (Henaff et al., 2022). E3B provides a generalization of count-based rewards to continuous spaces
using an elliptical bonus. E3B learns a representation mapping from observations to a latent space
(e.g. using inverse dynamics). At each episode, the sequence of latent observations parameterize an
ellipsoid which is used to measure the novelty of the subsequent observations. In tabular settings,
the E3B ellipsoid reduces to the table of inverse state-visitation frequencies (Henaff et al., 2022).
The reward of a new observation is computed as:

It = f(et)TCt−1f(et) (11)

where f is the learned representation mapping and Ct−1 is the episodic ellipsoid.

RLJ | RLBRew Workshop @ RLC 2024

C Experimental Settings

C.1 Baselines

We designed the following settings for the baseline experiments, and all the subsequent RQs were
progressively adjusted based on the baselines. Moreover, all the experiments are performed using
the proximal policy optimization (PPO) Schulman et al. (2017) implementation from RLLTE (Yuan
et al., 2023).

Hyperparameter Value
Observation normalization image = image / 255.0
Reward normalization RMS
Weight initialization Orthogonal
Update proportion 1.0
with LSTM False

Table 1: Details of baseline settings.

Hyperparameter SuperMarioBros Procgen
Observation downsampling (84, 84) (64, 64)
Stacked frames No No
Environment steps 10000000 25000000
Episode steps 128 256
Number of workers 1 1
Environments per worker 8 64
Optimizer Adam Adam
Learning rate 2.5e-4 5e-4
GAE coefficient 0.95 0.95
Action entropy coefficient 0.01 0.01
Value loss coefficient 0.5 0.5
Value clip range 0.1 0.2
Max gradient norm 0.5 0.5
Epochs per rollout 4 3
Batch size 256 2048
Discount factor 0.99 0.999

Table 2: PPO hyperparameters for SuperMarioBros and Procgen games.

C.2 Details of RQs

Table 3 illustrates the details of the candidates for all RQs. For RQ1-5, we designed the experiments
sequentially and modified the configuration for each intrinsic reward based on the best results of
previous RQs. For instance, experiments of RQ1 only change the technique of observation nor-
malization, and RQ2 will use the best observation normalization method for each reward module
obtained in RQ1. Likewise, RQ3 will follow the best results obtained in RQ1-2 and only change the
proportion of samples used for model update. However, we kept using the baselines settings for each
reward in RQ8 to explore the most original performance of the mixed intrinsic rewards.

RLJ | RLBRew Workshop @ RLC 2024

Candidate Detail
RQ1 Min-Max image = image / 255.0

RMS image = Clip
(

image−running mean
running std. ,−5.0, 5.0

)
RQ2 Vanilla I = I

RMS I = I
running std

Min-Max I = I−min(I)
max(I)−min(I)

RQ3 0.1 Use 10% of the samples to update the intrinsic reward module.
0.5 Use 50% of the samples to update the intrinsic reward module.
1.0 Use 100% of the samples to update the intrinsic reward module.

RQ4 Vanilla Fill the input tensor with values drawn from the uniform distribution.
Orthogonal Fill the input tensor with a (semi) orthogonal matrix.

RQ5 Vanilla Policy network with only convolutional and linear layers.
LSTM Policy network that includes an LSTM layer.

RQ6 Vanilla R = E + I
Two-head Value network uses two separate branches for E and I.

RQ7 N/A N/A

RQ8 Global+Episodic E3B+RND, E3B+ICM, E3B+RIDE,
RE3+RND, RE3+ICM, RE3+RIDE

Global+Global RND+ICM, RND+RIDE, ICM+RIDE
Table 3: Details of candidates for all RQs, where I is a batch of intrinsic rewards.

C.3 Best Configurations

Reward Obs. Norm. Reward Norm. Update Prop. Weight Init. Memory Required

PseudoCounts ✓ Min-Max 0.5 Orthogonal ✗

ICM ✗ RMS 1.0 Orthogonal ✗

RND ✓ Vanilla 0.1 Orthogonal ✗

E3B ✓ Min-Max 0.1 Orthogonal ✗

RIDE ✓ Min-Max 0.1 Default ✓

RE3 ✗ Vanilla N/A Orthogonal ✗

NGU ✓ Min-Max 0.1 Orthogonal ✗

Disagreement ✓ Min-Max 1.0 Orthogonal ✗

Table 4: The best configurations for each intrinsic reward on SuperMarioBros games.

RLJ | RLBRew Workshop @ RLC 2024

D Usage Examples

D.1 Workflow of RLeXplore

The following code provides an example when using RLeXplore with on-policy algorithms. At
each time step, the agent first observes the vectorized environments before making actions. Then
the environments execute the actions and return the step information, which is processed by the
.watch() function to extract necessary data for the current intrinsic reward. Finally, the intrinsic
rewards will be computed and the module will updated concurrently at the end of the episode.

load the library
from rllte . xplore . reward import RE3
create the reward module
irs = RE3 (...)
reset the environment
obs , infos = envs. reset ()
a rollout storage
rs = RolloutStorage (...)
training loop
for episode in range (...) :

for step in range (...) :
sample actions
actions = agent (obs)
step the environment
next_obs , rwds , terms , truncs , infos = envs.step(actions)
get data from the transitions
irs. watch (obs , actions , rwds , next_obs , terms , truncs , infos)
...

prepare the samples
samples = dict(observations =rs.obs , actions =rs.actions ,

rewards =rs.rewards , terminateds =rs. terminateds ,
truncateds =rs. truncateds , next_observations =rs. next_obs

)
compute the intrinsic rewards
sync (bool): Whether to update the reward module after the
`compute ` function , default is `True `.
intrinsic_rewards = irs. compute (samples , sync=True)

In contrast, the workflow is a bit different when using RLeXplore with off-policy algorithms. As
shown in the following example, the intrinsic reward will computed at each time step rather than the
end of each episode. Moreover, the intrinsic reward module will be updated using the same samples
for policy update.

load the library
from rllte . xplore . reward import RE3
create the reward module
irs = RE3 (...)
reset the environment
obs , infos = envs. reset ()
training loop
while True:

sample actions
actions = agent (obs)
step the environment
next_obs , rwds , terms , truncs , infos = envs.step(actions)
get data from the transitions
irs. watch (obs , actions , rwds , next_obs , terms , truncs , infos)
compute the intrinsic rewards at each step
sync (bool): Whether to update the reward module after the
`compute ` function , default is `True `
intrinsic_rewards = irs. compute (

samples =dict(observations =obs , actions =actions ,
rewards =rwds , terminateds =terms ,
truncateds =terms , next_observations = next_obs),

sync= False)

RLJ | RLBRew Workshop @ RLC 2024

...
update the reward module
batch = replay_storage . sample ()
irs. update (samples =dict(observations = batch .obs ,

actions = batch .actions ,
rewards = batch .rewards ,
terminateds = batch . terminateds ,
truncateds = batch . truncateds ,
next_observations = batch . next_obs)

)
...

D.2 RLeXplore with Stable-Baselines3

Stable-Baselines3 (SB3) Raffin et al. (2021) is one of the most successful and popular RL frameworks
that provides a set of reliable implementations of RL algorithms in Python. SB3 provides a conve-
nient callback function that can be called at given stages of the training procedure, the following
code example demonstrates how to use RLeXplore in SB3 for on-policy RL algorithms:
class RLeXploreWithOnPolicyRL (BaseCallback):

"""
Combining RLeXplore and on - policy algorithms from SB3 .
"""
def __init__ (self , irs , verbose =0):

super (RLeXploreWithOnPolicyRL , self). __init__ (verbose)
self.irs = irs
self. buffer = None

def init_callback (self , model : BaseAlgorithm) -> None:
super (). init_callback (model)
self. buffer = self. model . rollout_buffer

def _on_step (self) -> bool :
"""
This method will be called by the model after each call to `env. step () `.

: return : (bool) If the callback returns False , training is aborted early .
"""
observations = self. locals [" obs_tensor "]
device = observations . device
actions = th. as_tensor (self. locals [" actions "], device = device)
rewards = th. as_tensor (self. locals [" rewards "], device = device)
dones = th. as_tensor (self. locals [" dones "], device = device)
next_observations = th. as_tensor (self. locals [" new_obs "], device = device)

get data from the transitions
self.irs. watch (observations , actions , rewards , dones , dones ,

next_observations)

return True

def _on_rollout_end (self) -> None:
prepare the data samples
obs = th. as_tensor (self. buffer . observations)
get the new observations
new_obs = obs. clone ()
new_obs [:-1] = obs[1:]
new_obs [-1] = th. as_tensor (self. locals [" new_obs "])
actions = th. as_tensor (self. buffer . actions)
rewards = th. as_tensor (self. buffer . rewards)
dones = th. as_tensor (self. buffer . episode_starts)
print (obs.shape , actions .shape , rewards .shape , dones .shape , obs. shape)
compute the intrinsic rewards
intrinsic_rewards = irs. compute (

samples =dict(observations =obs , actions =actions ,
rewards =rewards , terminateds =dones ,

RLJ | RLBRew Workshop @ RLC 2024

truncateds =dones , next_observations = new_obs),

More detailed code examples can be found in the attached supplementary materials.

D.3 RLeXplore with CleanRL

CleanRL Huang et al. (2022) is an open-source project focused on implementing RL algorithms with
clean, understandable, and reproducible code. It aims to make RL more accessible by providing
implementations that are simpler and more transparent than those typically found in research papers
or larger libraries. The following code example demonstrates how to use RLeXplore in CleanRL for
on-policy RL algorithms:
load the library
from rllte . xplore . reward import RE3
create the reward module
irs = RE3(envs=envs , device = device)
...
get data from the transitions
irs. watch (observations =obs[step], actions = actions [step],

rewards = rewards [step], terminateds = dones [step],
truncateds = dones [step], next_observations = next_obs
)

...
next_obs = obs. clone ()
next_obs [:-1] = obs[1:]
next_obs [-1] = next_obs
compute the intrinsic rewards
intrinsic_rewards = irs. compute (

samples =dict(observations =obs , actions =actions ,
rewards =rewards , terminateds =dones ,
truncateds =dones , next_observations = next_obs),

sync=True)
add the intrinsic rewards to the rewards
rewards += intrinsic_rewards

More detailed code examples can be found in the attached supplementary materials.

RLJ | RLBRew Workshop @ RLC 2024

E Learning Curves

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

ICM

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

Disagreement

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

E3B

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RND

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

PseudoCounts

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RIDE

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RE3

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

NGU

Baselines Observation Normalization=True Extrinsic

Figure 8: Learning curves of the baselines and RQ1 on SuperMarioBros-1-1-v3. The solid line and shaded
regions represent the mean and standard deviation computed with five random seeds, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

ICM

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

Disagreement

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

E3B

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30
Ep

iso
de

 R
ew

ar
d

RND

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

PseudoCounts

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RIDE

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RE3

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

NGU

Vanilla Min-Max RMS Extrinsic

Figure 9: Learning curves of the RQ2 on SuperMarioBros-1-1-v3. The solid line and shaded regions represent
the mean and standard deviation computed with five random seeds, respectively.

RLJ | RLBRew Workshop @ RLC 2024

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

ICM

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

Disagreement

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

E3B

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RND

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

PseudoCounts

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RIDE

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

28.5

29.0

29.5

30.0

30.5

31.0

31.5

Ep
iso

de
 R

ew
ar

d

RE3

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

NGU

Update Proportion=0.1 Update Proportion=0.5 Update Proportion=1.0 Extrinsic

Figure 10: Learning curves of the RQ3 on SuperMarioBros-1-1-v3. The solid line and shaded regions
represent the mean and standard deviation computed with five random seeds, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

ICM

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

Disagreement

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

E3B

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RND

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

PseudoCounts

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RIDE

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RE3

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

NGU

Weight Initialization=Default Weight Initialization=Orthogonal Extrinsic

Figure 11: Learning curves of the RQ4 on SuperMarioBros-1-1-v3. The solid line and shaded regions
represent the mean and standard deviation computed with five random seeds, respectively.

RLJ | RLBRew Workshop @ RLC 2024

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

ICM

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

Disagreement

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

E3B

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RND

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

PseudoCounts

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RIDE

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RE3

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

NGU

Vanilla with LSTM Extrinsic

Figure 12: Learning curves of the RQ5 on SuperMarioBros-1-1-v3. The solid line and shaded regions
represent the mean and standard deviation computed with five random seeds, respectively.

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

ICM

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

Disagreement

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

E3B

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

RND

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

PseudoCounts

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

RIDE

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

RE3

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

NGU

PPO Two-Head PPO Extrinsic

Figure 13: Learning curves of RQ6 on Procgen-1MazeHard. The solid line and shaded regions represent the
mean and standard deviation computed with five random seeds, respectively.

RLJ | RLBRew Workshop @ RLC 2024

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

ICM

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

Disagreement

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

E3B

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

RND

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

PseudoCounts

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

RIDE

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

RE3

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps (×107)

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

NGU

PPO Two-Head PPO Extrinsic

Figure 14: Learning curves of RQ6 on Procgen-AllMazeHard. The solid line and shaded regions represent
the mean and standard deviation computed with five random seeds, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

ICM

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

Disagreement

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

E3B

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RND

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

PseudoCounts

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RIDE

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

RE3

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

NGU

Figure 15: Learning curves of RQ7 on SuperMarioBrosRandomStages-v3. The solid line and shaded regions
represent the mean and standard deviation computed with five random seeds, respectively.

RLJ | RLBRew Workshop @ RLC 2024

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

SuperMarioBros-1-1-v3

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

0

10

20

30

40

Ep
iso

de
 R

ew
ar

d

SuperMarioBrosRandomStages

E3B+RND E3B+ICM E3B+RIDE RE3+RND RE3+ICM RE3+RIDE

Figure 16: Learning curves of RQ8 (global+episodic exploration) on SuperMarioBros-1-1-v3 and
SuperMarioBrosRandomStages-v3. The solid line and shaded regions represent the mean and standard
deviation computed with five random seeds, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

5

10

15

20

25

30

Ep
iso

de
 R

ew
ar

d

SuperMarioBros-1-1-v3

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×107)

2

4

6

8

10

12

Ep
iso

de
 R

ew
ar

d

SuperMarioBrosRandomStages

ICM+RND RIDE+RND ICM+RIDE

Figure 17: Learning curves of RQ8 (global+global exploration) on SuperMarioBros-1-1-v3 and
SuperMarioBrosRandomStages-v3. The solid line and shaded regions represent the mean and standard
deviation computed with five random seeds, respectively.

RLJ | RLBRew Workshop @ RLC 2024

F On-Policy RL Algorithms and Discrete Control Tasks

In this section, we demonstrate the combination of RLeXplore and on-policy RL algorithms and
its effectiveness on discrete control tasks. Specifically, we couple the PPO algorithm and intrinsic
rewards, and evalulate their performance on Montezuma’s Revenge, a hard exploration task from
the Atari benchmark (Bellemare et al., 2013). Meanwhile, we utilize the PPO implementation of
CleanRL Huang et al. (2022) to show the adaptability of RLeXplore. Table 5 illustrates the training
hyperparameters used for the experiments.

Part Hyperparameter Value
Observation downsampling (84, 84)
Stacked frames 4
Environment steps 1e+8
Episode steps 128
Number of workers 1
Environments per worker 8
Optimizer Adam

PPO Learning rate 1e-4
GAE coefficient 0.95
Action entropy coefficient 0.01
Value loss coefficient 0.5
Value clip range 0.1
Max gradient norm 0.5
Epochs per rollout 4
Batch size 256
Discount factor 0.99
Observation normalization RMS
Reward normalization RMS

Intrinsic reward Weight initialization Orthogonal
Update proportion 0.25
with LSTM False

Table 5: Training hyperparameters for Montezuma’s Revenge.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×108)

250

0

250

500

750

1000

1250

1500

1750

Ep
iso

de
 R

ew
ar

d

Montezuma's Revenge
CleanRL's PPO+RLeXplore's RND
CleanRL's PPO

Figure 18: Since only RND can achieve significant results in this task among the eight intrinsic rewards, we
only show the results of RND. The solid line and shaded regions represent the mean and standard deviation
computed with five random seeds, respectively.

RLJ | RLBRew Workshop @ RLC 2024

G Off-Policy RL Algorithms and Continuous Control Tasks

To showcase the generality of RLeXplore, we run additional experiments in settings different from
the ones in the main paper. Concretely, we couple intrinsic rewards with soft actor-critic (SAC)
Haarnoja et al. (2018), an off-policy RL algorithm, and test their performance in Ant-UMaze, a
continuous control task with sparse rewards. Table 6 illustrates the training hyperparameters used
for the experiments. We show the performance of Disagreement, RND, ICM and vanilla SAC in
Figure 19. The results indicate that intrinsically-motivated agents are able to navigate the maze
more efficiently, finding the goals more often than the vanilla agents that can only learn from the
sparse task rewards.

We only use 3 intrinsic rewards with SAC because of the episodic nature of the other intrinsic
reward methods. For example, the episodic memory in RIDE, PseudoCounts, NGU; and the episodic
ellipsoid in E3B require the replay buffer to sample entire episodes instead of random rollouts. We
aim to implement this logic in the future in our RLeXplore codebase.

Part Parameter Value
Total timesteps 1 · 106

Buffer size 1 · 106

Discount (γ) 0.99
Target smoothing coefficient (τ) 0.005
Batch size 256
Learning starts 5000
Policy learning rate 3 · 10−4

Q function learning rate 1 · 10−3

Policy frequency 2
Target network frequency 1
Noise clip 0.5
Entropy coefficient (α) 0.2
Auto-tune entropy coefficient True
Observation normalization RMS
Reward normalization RMS

Intrinsic reward Weight initialization Orthogonal
Update proportion 0.25
with LSTM False

Table 6: Training hyperparameters for Ant-Umaze.

Figure 19: Performance comparison between the three selected intrinsic rewards and the extrinsic reward.

