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Abstract

We study a multi-agent imitation learning (MAIL) problem where we take the per-
spective of a learner attempting to coordinate a group of agents based on demon-
strations of an expert doing so. Most prior work in MAIL essentially reduces the
problem to matching the behavior of the expert within the support of the demon-
strations. While doing so is sufficient to drive the value gap between the learner and
the expert to zero under the assumption that agents are non-strategic, it does not
guarantee robustness to deviations by strategic agents. Intuitively, this is because
strategic deviations can depend on a counterfactual quantity: the coordinator’s
recommendations outside of the state distribution their recommendations induce.
In response, we initiate the study of an alternative objective for MAIL in Markov
Games we term the regret gap that explicitly accounts for potential deviations by
agents in the group. We first perform an in-depth exploration of the relationship
between the value and regret gaps. First, we show that while the value gap can be
efficiently minimized via a direct extension of single-agent IL algorithms, even value
equivalence can lead to an arbitrarily large regret gap. This implies that achieving
regret equivalence is harder than achieving value equivalence in MAIL. We then
provide a pair of efficient reductions to no-regret online convex optimization that
are capable of minimizing the regret gap (a) under a coverage assumption on the
expert (MALICE) or (b) with access to a queryable expert (BLADES).

1 Introduction

We consider the problem of a mediator learning to coordinate a group of strategic agents via recom-
mendations of actions to take without knowledge of their underlying utility functions (e.g. routing
a group of drivers through a road network). Given the difficulty of manually specifying the quality
of a recommendation in such situations, it is natural to provide the mediator with data of desired
coordination behavior, turning our problem into one of multi-agent imitation learning (MAIL,
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Waugh et al. (2013); Fu et al. (2017); Song et al. (2018); Vinitsky et al. (2022); Gulino et al. (2024)).
In our work, we explore the nuances of a fundamental MAIL question:

What is the right objective for the learner in a multi-agent imitation learning
problem?

We can begin to answer this question by exploring the following scenario: consider developing a
routing application to provide personalized route recommendations (σ) to a group of users with
joint policy π (e.g. the routing policy that underlies the recommendations provided in Google
Maps (Barnes et al., 2023)). As usual in imitation learning (IL), we assume we are given access to
demonstrations from an expert σE (e.g. a past iteration of the application). We can imagine two kinds
of users of our application (i.e. agents): non-strategic users who blindly follow the recommendations
of our routing application and strategic users who will deviate from our recommendations if they
have the incentive to do so under their (unknown) personal utility function (e.g. we recommend a
long route to a busy driver). We use Ji(πσ) below to denote the value of the mediator’s learned
policy σ under the ith agent’s utility.

Case 1: No Strategic Agents. In the idealized situation where all agents in the population are
perfectly obedient, we can essentially treat a MAIL problem as a single-agent IL (SAIL) problem
over joint policies. It is therefore natural to use a direct extension of the well-studied value gap
criterion from the SAIL literature (Abbeel and Ng, 2004; Ziebart et al., 2008; Swamy et al., 2021;
2022c;a;b; 2023; Ren et al., 2024) to the multi-agent setting: maxi∈[m] Ji(πσE

)− Ji(πσ). Intuitively,
driving the value gap to 0 (i.e. achieving value equivalence in the terminology of Grimm et al.
(2020)) implies that along as long as all agents blindly follow our recommendations, we have learned
a policy that performs at least as well as that of the expert from the perspective of any agent in the
population. In our running routing application example, this means that if no driver deviates from
the previous behavior, all drivers will be at least as happy as they were with the prior iteration of
the application.

Case 2: Strategic Agents. Of course for any MAIL problem where agents actually have agency,
we need to account for the fact that agents may deviate from our recommendations if it appears
beneficial to do so from their subjective perspective. Let us denote the class of deviations (i.e. policy
modifications) for agent i as Φi. Then, we can define the regret induced by the mediator’s policy
as RΦ(σ) := maxi∈[m] maxϕi∈Φi

(Ji(πσ,ϕi
)− Ji(πσ)), where ϕi is a strategic deviation of agent i and

πσ,ϕi is the joint agent policy induced by all agents other than i following σ’s recommendations.
Intuitively, regret captures the maximum incentive any agent in the population has to deviate from
the mediator’s recommendations. We can then compare this metric between the expert and learner
policies to arrive at the notion of a regret gap (Waugh et al., 2013): RΦ(σ)−RΦ(σE). Driving the
regret gap to zero (i.e. achieving regret equivalence) implies that even if agents are free to deviate,
our learned policy is at least as good as the expert’s from the perspective of an arbitrary agent in
the population. In our preceding example, this means that despite the fact that they are not forced
to follow our application’s recommendations, all agents would have no more incentive to take an
alternate route than they did under the previous iteration of the application.

A simple decomposition allows us to show that a small value gap does not in general imply a small
regret gap. Consider the performance difference between the learner’s policy under all obedient
(Ji(πσ)) and a deviating ith agent (Ji(πσ,ϕi

)). We can decompose this quantity into the following:

Ji(πσ,ϕi
)− Ji(πσ) = (Ji(πσ,ϕi

)− Ji(πσE ,ϕi
))︸ ︷︷ ︸

(I: regret gap under ϕi)

+ (Ji(πσE ,ϕi
))− Ji(πσE

))︸ ︷︷ ︸
(II: expert regret under ϕi)

+ (Ji(πσE
)− Ji(πσ))︸ ︷︷ ︸

(III: SAIL value gap)

,

where we use πσE ,ϕi
to denote agent joint behavior under expert recommendations and deviation

ϕi. Term III is the standard single-agent value gap (i.e. the performance difference under the
assumption that no agents deviate). Term II is the expert’s regret under deviation ϕi (i.e. a
quantity we cannot control). Thus, the difference between the regret gap and value gap objectives
can be boiled down to Term I: Ji(πσ,ϕi)−Ji(πσE ,ϕi). Observe that because of the state distribution
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shift induced by deviation ϕi, minimizing Term III doesn’t give us any guarantees with respect to
Term 1. This underlies our key insight: regret is hard in MAIL as it requires knowing what
the expert would have done in response to an arbitrary agent deviation. More explicitly,
our contributions are three-fold:

1. We initiate the study of the regret gap for MAIL in Markov Games. Unlike the value
gap, the regret gap captures the fact that agents in the population may choose to deviate from the
mediator’s recommendations.

2. We investigate the relationship between regret gap and the value gap. We show that
under the assumption of complete reward and deviation function classes, regret equivalence implies
value equivalence. However, value equivalence provides essentially no guarantees on the regret gap,
establishing a fundamental limitation of applying SAIL algorithms to MAIL problems.

3. We provide a pair of efficient algorithms to minimize the regret gap under certain
assumptions: MALICE (which operates under a coverage assumption) and BLADES (which requires
access to a queryable expert). We prove that both algorithms can provide O(H) bounds on the regret
gap, where H is the horizon, matching the strongest known results for the value gap in single-agent
IL. We provide a summary of our regret gap bounds in Table 1.

2 Preliminaries

We begin with the notation we will use in our paper. Throughout, we use ∆(X) denote the space
of probability distribution over a set X . We will use ℓ to denote the loss function each algorithm
optimizes, which should be thought of as a convex upper bound on the total variation distance TV,
and ℓTV when it is exactly the TV distance.

Markov Games. We use MG(H,S,A, T , {ri}m
i=1, ρ0) to denote a Markov Game (MG) between

m agents. Here, H is the horizon, S is the state space, and A = A1 × ... × Am is the joint action
space for all agents. We use T : S ×A → ∆(S) to denote the transition function. Furthermore, the
reward (utility) function for agent i ∈ [m] is denoted by ri : S × A → [−1, 1]. Lastly, we use ρ0 to
denote the initial state distribution from which the initial state s0 ∼ ρ0 is sampled.

Learning to Coordinate. Rather than considering the problem of learning individual agent
policies in the MG, we take the perspective of a mediator who is giving recommendations to each
agent to help them coordinate their behavior (e.g. a smartphone mapping application providing
directions to a set of users). At each time step, the mediator gives each agent i a private action
recommendation ai to take at the current state s. Critically, no agent observes the recommendations
the mediator provides to another agent. We can represent the mediator as a Markovian joint policy
σ ∈ Σ, where σ : S → ∆(A). We use σ(⃗a|s) to denote the probability of recommending joint action
a⃗ in state s. We use π : S → ∆(A) to denote the joint policy that agents play in response to the
mediator’s policy. When agents exactly follow the mediator’s recommendations, we denote their
joint policy as πσ.

A trajectory ξ ∼ π = {sh, a⃗h}h=1,...,H refers to a sequence of state-action pairs generated by starting
from s0 ∼ ρ0 and repeatedly sampling joint action a⃗h and next states sh+1 from π and T for
H − 1 time steps. Let dπ

h denote the state visitation distribution at timestep h following π and let
dπ = 1

H

∑H
h=1 dπ

h be the average state distribution. Let ρπ
h(sh, a⃗h) denote the occupancy measure –

i.e., probability of reaching state s and then taking action a⃗ at time step h. By definition, we know
that ∀h,

∑
s,⃗a ρπ

h(s, a⃗) = 1. Let ρπ(s, a⃗) = 1
H

∑H
h=1 ρπ

h(s, a⃗) be the average occupancy measure.

We use V π
i,h to denote the expected cumulative reward of agent i under this policy from time

step h, i.e. V π
i,h(s) = Eξ∼π[

∑H
t=h ri(st, a⃗t)|sh = s]. We define Q-value function of agent i as

Qπ
i,h(s, a⃗) = Eξ∼π[

∑H
t=h ri(st, a⃗t)|sh = s, a⃗h = a⃗]. We define advantage of an agent i to be the

difference between its Q-value on a selected action and the V-value on the state, i.e. Aπ
i,h(s, a⃗) =

Qπ
i,h(s, a⃗) − V π

i,h(s). We also define the performance of a policy π from the perspective of agent
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i as Ji(π) = Es0∼ρ0 [Eξ∼π[
∑H

t=1 ri(st, a⃗t)|s = s0]]. Observe that performance is the inner product
between the occupancy measure and the agent’s reward function, i.e. Ji(π) = H

∑
s,⃗a ρπ(s, a⃗)ri(s, a⃗).

Correlated Equilibria. We now introduce the notion of a correlated equilibrium (CE, Aumann
(1987)). First, we define a strategy deviation ϕi for the i-th agent as a map ϕi : S × Ai → Ai.
Intuitively, a strategy deviation captures how the agent responds to the current state of the world
and the recommendation of the mediator – they can either obey (in which case ϕi(s, a) = a) or
defect (in which case ϕi(s, a) ̸= a). Let Φi be the set of deviations for agent i, which is a subset of
all possible deviations. We use Φ := {Φi}m

i=1 to denote deviations for all agents. We assume that for
all i, the identity mapping ϕi(s, a) ≡ a is in ϕi. We use πσ,ϕi

to denote (ϕi ◦ πσ,i)⊙ πσ,−i: the joint
agent policy induced by mediator policy σ being over-ridden by deviation ϕi. We can now define a
CE.
Definition 2.1 (Regret and CE in General-Sum MGs). Let σ ∈ Σ be the mediator’s policy in a
Markov Game, and Φi, i ∈ [m] be the deviation classes for each agent. Then,

1. We define the regret of a mediator policy σ to be

RΦ(σ) := max
i∈[m]

max
ϕi∈Φi

(Ji(πσ,ϕi
)− Ji(πσ)), (1)

2. We say a mediator with policy σ induces an ϵ-approximate Correlated Equilibrium (CE) if

RΦ(σ) ≤ ϵ. (2)

Intuitively, regret captures the maximum utility any agent can gain by defecting from the mediator’s
recommendation. A CE is an induced joint policy where no agent has a large incentive to deviate.

3 On the Relationship between the Value Gap and the Regret Gap

As sketched above, we consider two potential objectives for the learner in MAIL:
Definition 3.1 (Value Gap). We define the value gap between the expert’s policy σE and the learner’s
policy σ ∈ Σ as

max
i∈[m]

(Ji(πσE
)− Ji(πσ)). (3)

Definition 3.2 (Regret Gap). We define the regret gap between the expert’s policy σE and the
learner’s policy σ ∈ Σ as

RΦ(σ)−RΦ(σE) = max
i∈[m]

max
ϕi∈Φi

(Ji(πσ,ϕi
)− Ji(πσ))− max

k∈[m]
max

ϕk∈Φk

(Jk(πσE ,ϕk
)− Jk(πσE

)). (4)

We say that the learner’s policy satisfies value / regret equivalence when the value / regret gap is 0.
We now explore the relationship between the value and regret gap. We use Ji(πσ, f) and RΦ(σ, f)
to denote the value/regret of policy σ under the reward function f .

3.1 Regret Equivalence + Complete Reward / Deviation Class =⇒ Value
Equivalence

First, we show that if the reward function class and deviation class are both complete, then regret
equivalence implies value equivalence. We say that the reward function class is complete when
F = {S × A → [−1, 1]} (i.e. all convex combinations of state-action indicators), and that the
deviation class is complete if for every agent i, Φi = {S × Ai → Ai} (i.e. all possible deviations).
Theorem 3.1 (Complete Classes). If the reward function class F and deviation class Φ are complete
and regret equivalence is satisfied (i.e. supf∈F (RΦ(σ, f)−RΦ(σE , f)) = 0), then value equivalence
is also satisfied: supf∈F maxi∈[m](Ji(πσE

, f)− Ji(πσ, f)) = 0. [Proof]
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Figure 1: Illustration of an Markov Game that captures why “regret is hard”. Here, σE(a1a1|s0) = 1.
Observe that s1 is un-visited when all agents obediently follow σE but is with probability 1 under
deviation ϕ1 (ϕ1(s0, a1) = ϕ1(s1, a1) = a2). This means that unless we know what the expert σE

would have recommended counter-factually in s1, we cannot minimize the regret gap.

Next, we prove that completeness of the classes is necessary for this implication to hold true.
Theorem 3.2 (Incomplete Classes). There exists an MG, an expert policy σE, and a trained policy
σ such that even though the regret equivalence is satisfied under the true reward function r, i.e.
RΦ(σ, r)−RΦ(σE , r) = 0, the value gap maxi∈[m](Ji(πσE

, r)− Ji(πσ, r)) ̸= 0. [Proof]

Together, these results tell us that with an expressive enough class of reward functions / deviations,
regret equivalence is stronger than value equivalence. We now turn our attention to the converse.

3.2 Value Equivalence ≠⇒ Regret Equivalence

We now show a surprising result: value equivalence does not directly imply a low regret gap! In the
worst case, value equivalence fails to provide any meaningful guarantees on the regret gap. This
reveals a critical distinction between SAIL and MAIL not fully addressed in the prior work.
Theorem 3.3. There exists a Markov Game, an expert policy σE, and a learner policy σ, such that
even occupancy measure of πσ exactly matches πσE

, i.e. ∀(s, a⃗), ρπσ (s, a⃗) = ρπσE (s, a⃗) (i.e. we have
value equivalence under all rewards), the regret gap RΦ(σ)−RΦ(σE) ≥ Ω(H). [Proof]

We leave the details of the proof for this theorem in Appendix G.3. As visualized in Figure 1, both
the expert and learner policies only visit the states in the lower path s2, s4, ..., s2H−2. The trained
policy perfectly matches the occupancy measure of the expert by taking identical actions in visited
states s2, s4, ..., s2H−2. However, expert demonstrations lack coverage of state s1 as it is unreachable
by executing πE . This omission becomes critical when agent 1 deviates from the original policy,
making s1 unreachable with high probability. Consequently, the trained policy may perform poorly
in s1, in stark contrast to the expert playing a CE under the true reward function.
Remark 3.1. As shown in Theorem 3.3, even if the learner has access to infinite samples on the
equilibrium path from expert demonstrations, it is possible that the learner remains unaware of the
expert’s behavior in states unvisited by the expert (but reachable by the deviated agents joint policy).
Thus, from an information theoretic perspective, it is impossible for the learner to minimize the
regret gap without knowing how the expert would behave on those states. This demonstrates the
fundamental difficulty of minimizing the regret gap, and thus, regret is ‘hard’ in MAIL.

3.3 Efficient Algorithms for Minimizing the Value Gap

Although we have shown that the value gap is a ‘weaker’ objective in some sense, in many real-
world scenarios, the agents may be non-strategic. In these scenarios, minimizing value gap can be
a reasonable learning objective. As we will demonstrate in Section 3.3, the natural multi-agent
generalization of single-agent IL algorithms can efficiently minimize the value gap—hence, value is
‘easy’ in MAIL.
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4 Efficient Algorithms for Minimizing the Regret Gap

In our following analysis, we will make a recoverability assumption: that a single-step agents deviation
could at most cost the expert a fixed constant.
Assumption 4.1 (u-recoverability). We say that an MG is u-recoverable if the expert advantage
function is bounded for all deviations, i.e. ∀s, a⃗, h, i, ϕi,

∣∣∣AπσE ,ϕi

i,h (s, a⃗)
∣∣∣ ≤ u.

Intuitively, a small value of u means that we’re not in a problem where a single agent can deviate
and a “car crash” (i.e. a joint mistake) happens that even the expert couldn’t recover from for the
rest of the episode. In the worst case, u is O(H). This assumption can be thought of natural multi-
agent generalization of the standard recoverability assumption in SAIL (Ross et al., 2011; Swamy
et al., 2021; Spencer et al., 2021) which is necessary and sufficient to avoid compounding errors while
maintaining computational efficiency.

In Section 3.2, we proved that for general MGs, J-BC and J-IRL don’t give any guarantees on the
regret gap. Fundamentally, without the ability to observe how the expert would have responded
in the counter-factual state induced by a deviation, the learner cannot ensure that they match the
expert’s regret. We now explore two different sets of assumptions that give us this ability.

4.1 Assumption 1: Full Coverage of Expert Demonstrations

In this subsection, we introduce a coverage assumption on the expert’s state distribution dπσE (s)
which states that the expert visits every state with a positive probability. We will show that this
assumption is sufficient to give a regret gap guarantee. The state coverage assumption is a common
theoretical assumption in the analysis of learning in MDPs/MGs (Erez et al., 2023) and has been
explored in SAIL (Spencer et al., 2021).
Assumption 4.2 (β-coverage). There exists a constant β > 0 such that for the expert’s policy σE,
it holds that dπσE (s) ≥ β for all s.

Intuitively, this assumption implies that in the infinite sample limit, there are no states where we
are unsure what the expert would recommend. We will first show that under Assumption 4.2, J-BC
and J-IRL get a (relatively weak) regret gap guarantee.

4.1.1 Regret Gaps of J-BC and J-IRL under Full Demonstration Coverage

We begin by analyzing joint behavioral cloning (J-BC).
Theorem 4.1 (J-BC Regret Gap Upper Bound). Under Assumption 4.1 and Assumption 4.2, if the
J-BC algorithm returns a policy σ that satisfies Es∼dπσE [ℓ(σE(s), σ(s))] ≤ ϵ, then RΦ(σ)−RΦ(σE) ≤
O

(
1
β ϵuH

)
. [Proof]

We leave the proof in Appendix G.6. It is worth to note that although the dependency of H is linear
under our recoverability assumption, we still need to pay for the term 1

β in our regret gap bound. In
general, this term can grow exponentially with the horizon, making this guarantee relatively weak.
We now prove analogous results for joint inverse reinforcement learning (J-IRL).
Theorem 4.2 (J-IRL Regret Gap Upper Bound). Under Assumption 4.2 and Assumption 4.1 and
with a complete reward function class F , if J-IRL returns a policy σ with moment-matching error

sup
f∈F

EπσE

[∑H
h=1 f(sh, a⃗h)

H

]
− Eπσ

[∑H
h=1 f(sh, a⃗h)

H

]
≤ ϵ,

then RΦ(σ)−RΦ(σE) ≤ O
(

1
β ϵuH

)
. [Proof]

We also provide Ω( 1
β ϵuH) examples that show the tightness of these bounds, presented in Ap-

pendix F. This result implies another fundamental distinction between SAIL and MAIL: in contrast
to the value gap, interactive training alone is not sufficient to effectively minimize the regret gap.
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4.1.2 MALICE: Multi-agent Aggregation of Losses to Imitate Cached Experts

Observe that the upper bounds for both J-BC and J-IRL include a dependence on the inverse of
the coverage coefficient 1

β , which can be rather large for problems with long horizons or large action
spaces. We now present an efficient algorithm that is able to avoid this dependence by extending
the ALICE algorithm (Spencer et al., 2021) to the multi-agent setting. ALICE is an interactive
algorithm that, at each round, uses importance sampling to re-weight the behavior cloning (BC)
loss based on the density ratio between the current learner policy and that of the expert. Accordingly,
ALICE requires a full demonstration coverage assumption to ensure that these importance weights
are finite. ALICE uses a no-regret algorithm to learn a policy that minimizes reweighed on-policy
error, which was proved implies a linear-in-H bound on the value gap (Spencer et al., 2021).

Algorithm 1 MALICE (Multi-agent Aggregation of Losses to Imitate Cached Experts)
1: Input: Expert demonstrations DE .
2: Initialize σ(1) ∈ Σ.
3: for n = 1 to N do
4: for i = 1 to m do
5: for ϕi ∈ Φi do
6: Sample states from st ∼ d

π
(n)
σ,ϕi .

7: end for
8: end for
9: Construct loss function ℓ(n)(σ) = ℓMALICE(σ, DE , σ(n)).

10: // Run arbitrary no-regret OCO algorithm on sequence of losses, e.g. FT(R)L:
11: σ(n+1) ← arg minσ∈Σ

∑n
j=1 ℓ(n)(σ)

12: end for
13: Return Best of σ(1:N) on validation data.

In Algorithm 1, we describe Multi-agent ALICE (MALICE), where adapt ALICE to the multi-agent
setting (i.e. minimizing the regret gap). Specifically, we modify the ALICE loss function to include
a maximum over all deviations. This gives us

ℓMALICE(σ, DE , σ̂) = max
i∈[m]

max
ϕi

Es∼dπσE

[
dπσ̂,ϕi (s)
dπσE (s) ℓ(σE(s), σ(s))

]
. (5)

Since Es∼dπE

[
d

πσ̂,ϕi (s)
dπσE (s) ℓ(σE(s), σ(s))

]
is a convex loss function, and the maximum of convex func-

tions is still a convex function, we know that ℓMALICE(σ, DE , σ̂) is a valid convex loss function with
scales in [0, 1]. As a result, we can run an (arbitrary) no-regret online convex optimization (OCO)
algorithm to efficiently optimize it, giving us an efficient reduction from regret gap minimiza-
tion to no-regret online convex optimization under demonstration coverage. We now
provide regret gap guarantees on the returned policy.

Theorem 4.3 (MALICE Regret Gap Upper Bound). Let σ be a policy such that ℓMALICE(σ, DE , σ) ≤
ϵ. Under Assumption 4.1 and Assumption 4.2, we have RΦ(σ)−RΦ(σE) ≤ O(ϵuH). [Proof]

As promised, observe that adapting the importance sampling technique of (Spencer et al., 2021)
to the multi-agent setting allows us to efficiently minimize the regret gap while avoiding an upper
bound that depends on the coverage coefficient of the expert demonstrations.

We now show that the bound in Theorem 4.3 is tight by constructing a matching lower bound.

Theorem 4.4 (MALICE Regret Gap Lower Bound). There exists a Markov Game, an expert policy
σE that satisfies Assumption 4.1, and a trained policy σ that gets error ℓTV,MALICE(σ, DE , σ) ≤ ϵ,
and RΦ(σ)−RΦ(σE) = Ω (ϵuH) . [Proof]
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4.2 Assumption 2: Access to a Queryable Expert

For many problems, full coverage of expert demonstrations is not a reasonable assumption. Thus, we
explore another natural assumption that allows us to observe expert recommendations at counter-
factual states: access to a queryable expert. In their classic DAgger algorithm, Ross et al. (2011)
showed that access to a queryable expert allows one to eliminate the covariate shift that results
from the difference between expert and learner induced state distributions. When we transition to
the multi-agent setting, we can again use access to a queryable expert to handle yet another source
of covariate shift: potential strategic deviations by agents in the population that push the learner
outside of the support of the observed expert demonstrations. We refer to our multi-agent extension
of DAgger as BLADES in Algorithm 2.

Algorithm 2 BLADES (Bend Learner, Aggregate Datasets of Expert Suggestions)
1: Input: Expert demonstrations DE .
2: Initialize learner σ(1) = arg minσ Es∼DE

ℓ(σE(s), σ(s)).
3: for n = 1 to N do
4: for i = 1 to m do
5: for ϕi ∈ Φi do
6: Sample trajectories from π

(n)
σ,ϕi

.
7: Query expert for action recommendations to construct dataset D

(n)
ϕi

= {(s, σE(s))}.
8: end for
9: end for

10: Construct loss function ℓ(n)(σ) = ℓBLADES(σ, σ(n)).
11: // Run arbitrary no-regret OCO algorithm on sequence of losses, e.g. FT(R)L:
12: σ(n+1) ← arg minσ∈Σ

∑n
j=1 ℓ(n)(σ).

13: end for
14: Return Best of σ(1:N) on validation data.

In each iteration of BLADES, we request the expert to provide recommendations under all possible
agent deviations, before training on the aggregated data. More formally, we minimize the following
sequence of loss functions:

ℓBLADES(σ, σ̂) = max
i∈[m]

max
ϕi∈Φi

E
s∼d

π̂σ̂,ϕi
[ℓ(σE(s), σ(s))]. (6)

Similar to MALICE, we know that the loss ℓBLADES is also a valid convex loss function, and thus
we can use a no-regret algorithm to efficiently minimize it. This gives us an efficient reduction
from regret gap minimization to no-regret online convex optimization with access to
a queryable expert. We now derive and upper and lower bounds on the regret gap of a policy
returned by BLADES.
Theorem 4.5 (BLADES Regret Gap Upper Bound). Under Assumption 4.1, if a policy σ satisfies
ℓBLADES(σ, σ) ≤ ϵ , then RΦ(σ)−RΦ(σE) ≤ O(ϵuH). [Proof]
Theorem 4.6 (BLADES Regret Gap Lower Bound). There exists a Markov Game, an expert policy
σE, and a trained policy σ such that σE satisfies Assumption 4.1, σ achieves error ℓTV,BLADES(σ, σ) ≤
ϵ, and RΦ(σ)−RΦ(σE) = Ω (ϵuH) . [Proof]

In short, under either a demonstration coverage assumption or with access to a queryable expert,
we are able to efficiently minimize the regret gap on a recoverable MAIL problem.



RLJ | RLBRew Workshop @ RLC 2024

References
P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Proceedings

of the twenty-first international conference on Machine learning, page 1, 2004.

R. J. Aumann. Correlated equilibrium as an expression of bayesian rationality. Econometrica:
Journal of the Econometric Society, pages 1–18, 1987.

M. Barnes, M. Abueg, O. F. Lange, M. Deeds, J. Trader, D. Molitor, M. Wulfmeier, and
S. O’Banion. Massively scalable inverse reinforcement learning in google maps. arXiv preprint
arXiv:2305.11290, 2023.

R. P. Bhattacharyya, D. J. Phillips, B. Wulfe, J. Morton, A. Kuefler, and M. J. Kochenderfer. Multi-
agent imitation learning for driving simulation. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1534–1539. IEEE, 2018.

L. Erez, T. Lancewicki, U. Sherman, T. Koren, and Y. Mansour. Regret minimization and con-
vergence to equilibria in general-sum markov games. In International Conference on Machine
Learning, pages 9343–9373. PMLR, 2023.

J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement
learning. arXiv preprint arXiv:1710.11248, 2017.

J. Fu, A. Tacchetti, J. Perolat, and Y. Bachrach. Evaluating strategic structures in multi-agent
inverse reinforcement learning. Journal of Artificial Intelligence Research, 71:925–951, 2021.

D. Goktas, A. Greenwald, S. Zhao, A. Koppel, and S. Ganesh. Generative adversarial inverse
multiagent learning. In The Twelfth International Conference on Learning Representations, 2023.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–144, 2020.

C. Grimm, A. Barreto, S. Singh, and D. Silver. The value equivalence principle for model-based
reinforcement learning. Advances in Neural Information Processing Systems, 33:5541–5552, 2020.

C. Gulino, J. Fu, W. Luo, G. Tucker, E. Bronstein, Y. Lu, J. Harb, X. Pan, Y. Wang, X. Chen,
et al. Waymax: An accelerated, data-driven simulator for large-scale autonomous driving research.
Advances in Neural Information Processing Systems, 36, 2024.

H. M. Le, Y. Yue, P. Carr, and P. Lucey. Coordinated multi-agent imitation learning. In International
Conference on Machine Learning, pages 1995–2003. PMLR, 2017.

X. Lin, S. C. Adams, and P. A. Beling. Multi-agent inverse reinforcement learning for certain
general-sum stochastic games. Journal of Artificial Intelligence Research, 66:473–502, 2019.

T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al. An algorithmic
perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):1–179, 2018.

D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

J. Ren, G. Swamy, Z. S. Wu, J. A. Bagnell, and S. Choudhury. Hybrid inverse reinforcement learning.
arXiv preprint arXiv:2402.08848, 2024.

S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pages 661–668. JMLR Workshop
and Conference Proceedings, 2010.

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to
no-regret online learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings, 2011.



RLJ | RLBRew Workshop @ RLC 2024

J. Song, H. Ren, D. Sadigh, and S. Ermon. Multi-agent generative adversarial imitation learning.
Advances in neural information processing systems, 31, 2018.

J. Spencer, S. Choudhury, A. Venkatraman, B. Ziebart, and J. A. Bagnell. Feedback in imitation
learning: The three regimes of covariate shift. arXiv preprint arXiv:2102.02872, 2021.

G. Swamy, S. Choudhury, J. A. Bagnell, and S. Wu. Of moments and matching: A game-theoretic
framework for closing the imitation gap. In International Conference on Machine Learning, pages
10022–10032. PMLR, 2021.

G. Swamy, S. Choudhury, D. Bagnell, and S. Wu. Causal imitation learning under temporally
correlated noise. In International Conference on Machine Learning, pages 20877–20890. PMLR,
2022a.

G. Swamy, S. Choudhury, J. Bagnell, and S. Z. Wu. Sequence model imitation learning with unob-
served contexts. Advances in Neural Information Processing Systems, 35:17665–17676, 2022b.

G. Swamy, N. Rajaraman, M. Peng, S. Choudhury, J. Bagnell, S. Z. Wu, J. Jiao, and K. Ram-
chandran. Minimax optimal online imitation learning via replay estimation. Advances in Neural
Information Processing Systems, 35:7077–7088, 2022c.

G. Swamy, D. Wu, S. Choudhury, D. Bagnell, and S. Wu. Inverse reinforcement learning without
reinforcement learning. In International Conference on Machine Learning, pages 33299–33318.
PMLR, 2023.

E. Vinitsky, N. Lichtlé, X. Yang, B. Amos, and J. Foerster. Nocturne: a scalable driving benchmark
for bringing multi-agent learning one step closer to the real world. Advances in Neural Information
Processing Systems, 35:3962–3974, 2022.

K. Waugh, B. D. Ziebart, and J. A. Bagnell. Computational rationalization: The inverse equilibrium
problem. arXiv preprint arXiv:1308.3506, 2013.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. Maximum entropy inverse reinforcement
learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.



RLJ | RLBRew Workshop @ RLC 2024

A Theoretical Results for the Regret Gap

Assumption Upper Bound (Matching) Lower Bound
J-BC β-Coverage O

(
1
β ϵuH

)
, Theorem 4.1 Ω

(
1
β ϵuH

)
, Theorem F.1

J-IRL β-Coverage O
(

1
β ϵuH

)
, Theorem 4.2 Ω

(
1
β ϵuH

)
, Corollary F.2

MALICE (ours) β-Coverage O (ϵuH), Theorem 4.3 Ω (ϵuH), Theorem 4.4
BLADES (ours) Queryable Expert O (ϵuH), Theorem 4.5 Ω (ϵuH), Theorem 4.6

Table 1: A summary of our results: upper and lower bounds on the regret gap (i.e. RΦ(σ)−RΦ(σE))
of various approaches to multi-agent IL. Here, β is the coverage constant in Assumption 4.2, u is the
recoverability constant in Assumption 4.1, H is the horizon length. Observe that all of our lower
and upper bounds match.

B Related Work

Single-Agent Imitation Learning. Much of the theory of imitation learning focuses on the
single-agent setting (Osa et al., 2018). Offline approaches like behavioral cloning (BC, (Pomerleau,
1988)) reduce the problem of imitation to mere supervised learning. Ignoring the covariate shift in
state distributions between the expert and learner policies can cause compounding errors (Ross and
Bagnell, 2010; Swamy et al., 2021) and associated poor performance. In response, interactive IL ap-
proaches like inverse reinforcement learning (IRL, (Abbeel and Ng, 2004; Ziebart et al., 2008)) allow
the learner to observe the consequences of their actions during the training procedure, preventing
compounding errors (Swamy et al., 2021). However, such approaches can be rather sample-inefficient
due to the need to repeatedly solve a hard RL problem (Swamy et al., 2023; Ren et al., 2024). Al-
ternative approaches include interactively querying the expert to get action labels on the learner’s
induced state distribution (DAgger, (Ross and Bagnell, 2010)) or, assuming full coverage of the
demonstrations, using importance weighting to correct for the covariate shift (ALICE, (Spencer
et al., 2021)). Our BLADES and MALICE algorithms can be seen as the regret gap analog of the value
gap-centric DAgger and ALICE algorithms, operating under the same assumptions.

Multi-Agent Imitation Learning. The concept of the regret gap was first introduced in the
exceptional work of Waugh et al. (2013), though their exploration was limited to Normal Form
Games (NFGs), in contrast to the more general Markov Games (MGs) we focus on. Fu et al. (2021)
briefly consider the regret gap in Markov Games (MGs) but do not explore its properties nor provide
algorithms for efficient minimization. Most empirical MAIL work (Song et al., 2018; Le et al., 2017;
Bhattacharyya et al., 2018; Vinitsky et al., 2022; Gulino et al., 2024) is value gap-based, while we
take a step back and ask what the right objective is for MAIL in the first place.

Inverse Game Theory. Another line of work focuses on inverse game theory in Markov Games
(Lin et al., 2019; Goktas et al., 2023), where the goal is to recover a set of utility functions that
rationalize the observed agent behavior, rather than learning to coordinate from demonstrations.
A detailed comparison between the goals of our work at that of inverse game theory provided in
Appendix H.

C Extending Single-Agent IL Algorithms to Minimize the Value Gap

Behavior Cloning (BC) and Inverse Reinforcement Learning (IRL) are two single-agent IL algorithms
aimed at minimizing the value gap. By running these algorithms over joint policies, we can apply
BC and IRL to the multi-agent setting, which we call Joint Behavior Cloning (J-BC) and Joint
Inverse Reinforcement Learning (J-IRL). Doing so results in the same value gap bounds as in the
single-agent setting.
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C.1 Multi-Agent Joint Behavior Cloning

Behavioral Cloning (BC, Pomerleau (1988)) treats the problem of imitation learning as supervised
learning and performs maximum likelihood estimation with expert states as inputs and expert actions
as labels. Unfortunately, as first analyzed by Ross and Bagnell (2010), the covariate shift between
the training (expert states) and test (learner states) distributions can lead to compounding errors –
i.e. a value gap that increases quadratically as a function of the horizon H. We note that this is
not an artifact of the particular objective used in BC – as argued by Swamy et al. (2021), the same
can be said for any offline imitation learning algorithm. J-BC extends BC to a multi-agent setting
by learning a map from the state space S to the joint action space A. By adapting the analysis of
Ross and Bagnell (2010) and Swamy et al. (2021) to the multi-agent setting, we establish a similar
compounding error result for multi-agent behavior cloning.
Theorem C.1 (J-BC Value Gap Upper Bound). If J-BC returns a policy σ that satisfies
Es∼dπσE [ℓ(σE(s), σ(s))] ≤ ϵ, then the value gap maxi∈[m](Ji(πσE

)− Ji(πσ)) ≤ O(ϵH2). [Proof]

There exists an example of MDP/MG that matches this bound, which shows that the bound is tight.
(Swamy et al., 2021)

C.2 Multi-Agent Inverse Reinforcement Learning

A popular family of online techniques for imitation learning is inverse reinforcement learning (IRL).
Intuitively, IRL can be thought of as being similar to a GAN (Goodfellow et al., 2020) but in the
space of trajectories: the generator is the learner’s policy coupled with a world model to actually
give us trajectories, while the discriminator is trained between expert and learner trajectories and
is used as a reward function for policy updates. More formally, IRL can be viewed as a two-player
zero-sum game between a reward player and a policy player (Swamy et al., 2021). In each round,
the reward player picks a reward function from F that maximizes the value gap between σE and
σ, while the policy player uses a reinforcement learning algorithm to learn a new policy in Σ that
maximizes the performance under this reward function.

Intuitively, as the learner can see policy rollouts during training procedure, they cannot be “sur-
prised” by where their policy ends up at test time, removing the covariate shift issue that lies at
the heart of compounding errors. More formally, Swamy et al. (2021) proved that value gap for
single-agent IRL algorithm is O(ϵH). We now generalize this result to the multi-agent setting. Ac-
cordingly, our policy class Σ becomes one of joint policies. We use a reward function class F that
is identical for all agents (i.e. we assume the the game is common payoff). Then, by following the
proof in Swamy et al. (2021), we prove a O(ϵH) value gap bound for multi-agent IRL algorithm.
Theorem C.2 (J-IRL Value Gap Upper Bound). If J-IRL outputs a policy σ with moment-matching
error

sup
f∈F

EπσE

[
H∑

h=1
f(sh, a⃗h)

]
− Eπσ

[
H∑

h=1
f(sh, a⃗h)

]
≤ ϵH,

then the value gap maxi∈[m](Ji(πσE
)− Ji(πσ)) ≤ O(ϵH). [Proof]

As argued by Swamy et al. (2021), satisfying the conditions for either of the above theorems can be
achieved oracle-efficiently via a reduction to no-regret online learning. We now turn our attention
to sufficient conditions for there to exist efficient algorithms for minimizing the regret gap.

D Useful Lemmas

We introduce a lemma which will be very useful in the analysis under the recoverability assumption.
It is used in the analysis in the single-agent DAgger (Ross et al., 2011) and ALICE (Spencer et al.,
2021), and we will also use it in the analysis for MAIL. It shows that if the policy achieves small
on-policy error, then, with recoverability assumption, the value gap is linear over H.
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Algorithm 3 J-IRL
1: Input: expert demonstration DE , Policy class Σ, Reward class F
2: Set σ(1) ∈ Σ
3: for n = 1 to N do
4: f (n) ← arg max J(πσE

, f)− J(Unif(πσ(1:n)), f) + R(f)
// Treat it as a single-agent RL problem over joint action space under reward
function f (n)

5: σ(n+1) ← MaxEntRL(r = f (n))
6: end for
7: Return best σ(n) on validation

Lemma D.1. [Ross et al. (2011)] For agent joint policy π1 and π2, if the advantage of π1
is bounded under the true reward function ∀i, s, a, |Aπ1

i,h(s, a⃗)| ≤ u, and π2 get on-policy error
Es∼dπ2 [ℓ(π1(s), π2(s))] ≤ ϵ, then |Ji(π1)− Ji(π2)| ≤ uϵH,∀i ∈ [m].

Proof. Via the performance difference lemma, ∀i ∈ [m], we have

|Ji(π1)− Ji(π2)| =

∣∣∣∣∣
H∑

h=1
Es∼d

π2
h

[Aπ1
i,h(s, π(s))]

∣∣∣∣∣
≤ uHEs∼dπ2 [ℓ(π1(s), π2(s))]
≤ ϵuH

(7)

For our analysis of MALICE and BLADES, we will let π1 be any deviated expert policy πσE ,ϕi
and π2

be the deviated trained policy πσ,ϕi
under the same deviation.

E Equivalence of Regret Gap and Value Gap in Single-Agent IL

For single-agent IL we will prove that the regret gap and the value gap are equivalent.
Theorem E.1 (Equivalence in Single-Agent IL). For single-agent MDP, regret gap and value gap
are equivalent to each other

J(πσE
)− J(πσ) = RΦ(σ)−RΦ(σE)

Proof. For single-agent MDP, we ignore the index i in the following proof. A strategy deviation in
single-agent MDP is equivalent to taking another policy, because there are no other agents affecting
the dynamics of the agent. We have

RΦ(σ) = max
ϕ∈Φ

(J(πσ,ϕ)− J(πσ)) = J(π∗)− J(πσ)

where π∗ is the optimal policy under the true reward function. Similarly, we have

RΦ(σE) = J(π∗)− J(πσE
)

Therefore,

RΦ(σ)−RΦ(σE) = (J(πσ,ϕ)− J(πσ))− (J(π∗)− J(πσE
)) = J(πσE

)− J(πσ)

In single-agent MDPs, the dynamics are fixed because no other agents affect the agent’s dynamics,
and therefore, the regret gap is equivalent to the value gap.
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Figure 2: Example of Ω( 1
β ϵuH) regret gap for J-BC and J-IRL

F Lower Bounds for the Regret Gap of J-BC and J-IRL

In Theorem 4.1 and Theorem 4.2, we prove that both J-BC and J-IRL can get O( 1
β ϵuH) regret gap

under Assumption 4.1 and Assumption 4.2. We can show their tightness by slightly modifying the
example in Theorem 3.3 to satisfy the assumptions.
Theorem F.1 (J-BC Regret Gap Lower Bound). There exists a Markov Game, an expert policy
σE, and learner policy σ such that σE satisfies Assumption 4.1 and Assumption 4.2, σ achieves BC
error Es∼dπσE [ℓTV(σE(s), σ(s))] ≤ ϵ, and RΦ(σ)−RΦ(σE) = Ω

(
1
β ϵuH

)
.

Proof. We prove the theorem by constructing such a Markov Game policies that can get Ω( 1
β ϵuH)

regret gap. We consider the two-player cooperative game similar to the example in Theorem 3.3.
What we need to do is to slightly modify the MG and the policy to satisfy Assumption 4.1 and
Assumption 4.2. The rewards are action free. Let u′ = ⌊u⌋, the reward function r(s3) = r(s5) =
... = r(s2u′−3) = 1, with all other states yielding a reward of 0. The transition of the MG is shown
in Figure 2. We know that the value is between [0, u′] for any policy, which means Assumption 4.1
is satisfied.

Let σE be the policy that σE(a1a1|s0) = 1− 2β, σE(a2a1|s0) = 2β, σE(a2a1|s1) = 1
2 , σE(a3a3|s1) =

1
2 . Action at all other states doesn’t matter because the transition and the reward would be the
same. σE satisfies Assumption 4.2.

Let trained policy σ be the policy that σ(a1a1|s0) = 1 − 2β, σ(a2a1|s0) = 2β, σ(a2a1|s1) =
1
2 , σ(a1a1|s1) = ϵH

2β , σ(a3a3|s1) = 1
2 −

ϵH
2β . σ and σE only differs at s1.

Behavior cloning error of σ satisfies

Es∼dπσE [ℓTV(σE(s), σ(s))] ≤ 2β · ϵH

2β
· 1

H
= ϵ

It is not hard to verify, the worst deviation for πσE
is to deviate action of agent 1 at s0 from playing

a1 to a2, and thus
RΦ(σE) = 1

2(1− 2β)(u′ − 2)

The worst deviation of πσ is to deviate action of agent 1 from playing a1 to a2 at s0 and s1.

RΦ(σ) = 1
2(1− 2β)(u′ − 2) + ϵH

2β
(u′ − 2)

Therefore, the regret gap RΦ(σ)−RΦ(σE) = ϵH
2β (u′ − 2) = Ω( 1

β ϵuH).

Corollary F.2 (J-IRL Regret Gap Lower Bound). There exists a Markov Game, an expert policy
σE, and a policy σ such that σE satisfies Assumption 4.1 and Assumption 4.2, if the trained policy
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σ gets moment-matching error

sup
f∈F

EπσE

[∑H
h=1 f(sh, a⃗h)

H

]
− Eπσ

[∑H
h=1 f(sh, a⃗h)

H

]
≤ ϵ,

and RΦ(σ)−RΦ(σE) = Ω
(

1
β ϵuH

)
.

Proof. Consider the same example in proof of Theorem F.1 with parameter ϵ′. In the example, the
only difference between the occupancy measures of two policies are ρ(s, a⃗) at state s1. Therefore,

sup
f∈F

EπσE

[∑H
h=1 f(sh, a⃗h)

H

]
− Eπσ

[∑H
h=1 f(sh, a⃗h)

H

]
= sup

f∈F

∑
s,⃗a

[ρπσE (s, a⃗)− ρπσ (s, a⃗)]f(s, a⃗)

≤
∑
s,⃗a

|ρπσE (s, a⃗)− ρπσ (s, a⃗)|

≤|ρπσE (s1, a3a3)− ρπσ (s1, a3a3)|+ |ρπσE (s1, a1a1)− ρπσ (s1, a1a1)|

= 1
H

(
2β · ϵ′H

2β
· 2

)
= 2ϵ′

(8)

Let ϵ′ = 1
2 ϵ. Then the regret gap RΦ(σ)−RΦ(σE) = ϵH

4β (u′ − 2) = Ω( 1
β ϵuH).

G Proofs

G.1 Proof of Theorem 3.1

Proof. We prove the lemma by showing that the occupancy measures of πσ and πσE
exactly match,

i.e. ρπσ (s, a⃗) = ρπσE (s, a⃗) for every (s, a⃗). Consider a cooperative reward function fs′ ,⃗a′ = −1(s =
s′, a⃗ = a⃗′).

Under fs,⃗a, we have J(πσ) = −Hρπσ (s, a⃗), J(πσE
) = −HρπσE (s, a⃗). The maximum value perfor-

mance the expert/learner can get after deviation is 0 because the reward function is non-positive.
(0 can be achieved by simply not taking a⃗ on s).

Therefore RΦ(σ) = 0− (−Hρπσ (s, a⃗)) = Hρπσ (s, a⃗), RΦ(σE) = 0− (−HρπσE (s, a⃗)) = HρπσE (s, a⃗).

Since RΦ(σ)−RΦ(σE) = 0, we know that ρπσ (s, a⃗) = ρπσE (s, a⃗). This implies that the occupancy
measure of two policies exactly matches. As a result,

sup
f∈F

max
i∈[m]

(Ji(πσE
, f)− Ji(πσ, f)) = 0

G.2 Proof of Theorem 3.2

Proof. We can construct an example in normal form games, in which there are mulitple CEs with
different pay-offs. We can let the σE plays CE1 and σ plays CE2. Therefore, although the regret
gap RΦ(σ)−RΦ(σE) = 0, the value gap maxi∈[m](Ji(πσE

)− Ji(πσ)) ̸= 0. The NFG in Figure 4 is
an example, where (a1, a1) and (a2, a2) are two CEs with different values.

G.3 Proof of Theorem 3.3

Proof. We prove the theorem by constructing such a Markov Game and policies that can get Ω(H)
regret gap. For simplicity, we construct a two-player cooperative game where the reward is identical
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for all agents. Agents can not visit the same state at different time steps. These allow us to omit
the index i in the reward function in the proof. The notation aiaj is used to represent the action
pair (ai, aj).

The transition dynamics are illustrated in Figure 1, and the rewards are action free. The reward
function r(s3) = r(s5) = ... = r(s2H−3) = 1, with all other states yielding a reward of 0. Each agent
has an action space Ai = {a1, a2, a3}.

The expert policy σE satisfies σE(a1a1|s0) = 1.σE(a3a3|s1) = 1. Action on all other states don’t
matter because the transition and the reward would be the same. The trained policy σ satisfies
σ(a1a1|s0) = 1, σ(a1a1|s1) = 1, and plays the same as the expert in all other states.

It is not hard to verify that σE plays a CE under this reward function, which means

RΦ(σE) = 0

The worst deviation for σ is to deviate action of agent 1 from playing a1 to a2 on both s0 and s1.
We get

RΦ(σ) = H − 2

Therefore, the regret gap RΦ(σ)−RΦ(σE) = H − 2 = Ω(H)

G.4 Proof of Theorem C.1

Proof. For any i, we can view multi-agent problem as a single agent MDP over the joint action space
under reward function ri. Following the proof in Ross and Bagnell (2010); Swamy et al. (2021), we
can prove Ji(πσE

)− Ji(πσ) ≤ O(ϵH2). Therefore, maxi∈[m](Ji(πσE
)− Ji(πσ)) ≤ O(ϵH2).

G.5 Proof of Theorem C.2

Proof. For any i,

Ji(πσE
)− Ji(πσ) ≤ sup

f∈F
Eξ∼πσE

[
H∑

h=1
f(sh, a⃗h)

]
− Eξ∼πσ

[
H∑

h=1
f(sh, a⃗h)

]
≤ ϵH

Therefore, maxi∈[m](Ji(πσE
)− Ji(πσ)) ≤ O(ϵH).

G.6 Proof of Theorem 4.1

Proof. With Assumption 4.2, we know that

Es∼dπσ [ℓ(σE(s), σ(s))] ≤ 1
β
Es∼dπσE [ℓ(σE(s), σ(s))] ≤ ϵ

β

By Lemma D.1, we get

Ji(πσE
)− Ji(πσ) ≤ O

(
1
β

ϵuH

)
For any deviation ϕi,

Es∼d
πσ,ϕi [TV(πσE ,ϕi

(s), πσ,ϕi
(s))] ≤ Es∼d

πσ,ϕi [TV(πσE
(s), πσ(s))] ≤ 1

β
Es∼dπσE [TV(σE(s), σ(s))] ≤ ϵ

β

By Lemma D.1, we get

Ji(πσ,ϕi
)− Ji(πσE ,ϕi

) ≤ O

(
1
β

ϵuH

)
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Therefore,

Ji(πσ,ϕi
)− Ji(πσ) = (Ji(πσ,ϕi

)− Ji(πσE ,ϕi
)) + (Ji(πσE ,ϕi

))− Ji(πσE
)) + (Ji(πσE

)− Ji(πσ))

≤ Ji(πσE ,ϕi)− Ji(πσE
) + O

(
1
β

ϵuH

) (9)

Taking the maximum over i, ϕi, we get

RΦ(σ)−RΦ(σE) ≤ O

(
1
β

ϵuH

)

G.7 Proof of Theorem 4.2

Proof. We prove it by showing that under complete reward function class F , low IRL error will
imply low BC error, and then apply Theorem 4.1.

When F = [−1, 1]|S||A|,

sup
f∈F

EπσE

[∑H
h=1 f(sh, a⃗h)

H

]
− Eπσ

[∑H
h=1 f(sh, a⃗h)

H

]
= sup

f∈F

∑
s,⃗a

[ρπσE (s, a⃗)− ρπσ (s, a⃗)]f(s, a⃗)

=
∑
s,⃗a

|ρπσE (s, a⃗)− ρπσ (s, a⃗)|

(10)

Therefore, we have
∑

s,⃗a |ρπσE (s, a⃗)− ρπσ (s, a⃗)| ≤ ϵ.∑
s,⃗a

|ρπσE (s, a⃗)− ρπσ (s, a⃗)|

=
∑
s,⃗a

|dπσE (s)σE (⃗a|s)− dπσ (s)σ(⃗a|s)|

=
∑
s,⃗a

|dπσE (s)σE (⃗a|s)− dπσE (s)σ(⃗a|s) + dπσE (s)σ(⃗a|s)− dπσ (s)σ(⃗a|s)|

≥
∑
s,⃗a

(|dπσE (s)σE (⃗a|s)− dπσE (s)σ(⃗a|s)| − |dπσE (s)σ(⃗a|s)− dπσ (s)σ(⃗a|s)|)

=Es∼dπσE [TV(σE(s), σ(s))]−
∑

s

|dπσE (s)− dπσ (s)|

=Es∼dπσE [TV(σE(s), σ(s))]−
∑

s

∣∣∣∣∣∑
a

[ρπσE (s, a⃗)− ρπσ (s, a⃗)]

∣∣∣∣∣
≥Es∼dπσE [TV(σE(s), σ(s))]−

∑
s,a

|ρπσE (s, a⃗)− ρπσ (s, a⃗)|

≥Es∼dπσE [TV(σE(s), σ(s))]− ϵ

(11)

Therefore, we get
Es∼dπσE [TV(σE(s), σ(s))] ≤ 2ϵ

Directly applying Theorem 4.1, we get RΦ(σ)−RΦ(σE) ≤ O
(

1
β ϵuH

)
.
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G.8 Proof of Theorem 4.3

Proof. From the definition of ℓMALICE, we know

ℓMALICE(σ, DE , σ) = max
i∈[m]

max
ϕi

Es∼dπσE

[
dπσ,ϕi

dπσE
ℓ(πE(s), π(s))

]
≥ max

i∈[m]
max

ϕi

Es∼dπσE

[
dπσ,ϕi

dπσE
ℓ(πEϕi

(s), πϕi
(s))

]
≥ max

i∈[m]
max

ϕi

Es∼d
πσ,ϕi

[
ℓ(πEϕi

(s), πϕi
(s))

] (12)

From Lemma D.1, we know that for all i, ϕi, we have

Ji(πσ,ϕi)− Ji(πσE ,ϕi) ≤ O(ϵuH)

And
Ji(πσE

)− Ji(πσ) ≤ O(ϵuH)
Therefore, we get

Ji(πσ,ϕi)− Ji(πσ) = (Ji(πσ,ϕi)− Ji(πσE ,ϕi)) + (Ji(πσE ,ϕi))− Ji(πσE
)) + (Ji(πσE

)− Ji(πσ))
≤ Ji(πσE ,ϕi)− Ji(πσE

) + O (ϵuH)
(13)

Taking the maximum over i, ϕi, we get

RΦ(σ)−RΦ(σE) ≤ O (uϵH)

G.9 Proof of Theorem 4.4

Proof. We prove the theorem by constructing such a Markov Game policies that MALICE can get
Ω(ϵuH) regret gap. We consider a single-agent MDP shown in Figure 3. The rewards are action
free. Let u′ = ⌊u⌋, the reward function r(s1) = r(s3) = ... = r(s2u′−3) = 1, with all other states
yielding a reward of 0. The transition of the MDP is shown in Figure 3. We know that the value is
between [0, u′] for any policy, and thus Assumption 4.1 is satisfied.

Let σE be the policy that σE(a1|s0) = 1 − β, σE(a2|s0) = β. Action at all other states doesn’t
matter because the transition and the reward would be the same. It is easy to verify that σE

satisfies Assumption 4.2.

Let trained policy σ be the policy that σ(a1|s0) = 1 − β −Hϵ, σ(a2|s0) = β + Hϵ. σ and σE only
differ at s0.

Now we verify that ℓTV,MALICE(σ, DE , σ) ≤ ϵ.

Since σ and σE only differ at state s0, and dπσ,ϕi (s0) = 1 for any i, ϕi, we have that

Es∼dπσE

[
dπσ,ϕi

dπσE
TV(σE(s), σ(s))

]
= Es∼d

πσ,ϕi [TV(σE(s), σ(s))] ≤ 1
H
·Hϵ = ϵ

Therefore,

ℓTV,MALICE(σ, DE , σ) = max
i∈[m]

max
ϕi

Es∼dπσE

[
dπσ,ϕi

dπσE
TV(σE(s), σ(s))

]
≤ ϵ

It is not hard to verify, the worst deviation for πE is to deviate action on s0 from playing a2 to a1,
and thus

RΦ(πE , r) = β(u′ − 1)
the worst deviation for πE is also to deviate action on s0 from playing a2 to a1.

RΦ(π, r) = (β + ϵH)(u′ − 1)

Therefore, the regret gap RΦ(π)−RΦ(πE) = ϵ(u′ − 1)H = Ω(ϵuH).
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s0

s1

s2

s3

s4

s5

s6

s2u′−1

s2u′

s2H−1
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a1

a2

all

all all

all

...

...

...

...

Figure 3: Example of Ω(ϵuH) regret gap for MALICE and BLADES

G.10 Proof of Theorem 4.5

Proof. From the definition of ℓBLADES, we know

ℓBLADES(σ, σ) = max
i∈[m]

max
ϕi

Es∼d
πσ,ϕi

[
ℓ(σE(s), σ(s))

]
≥ max

i∈[m]
max

ϕi

Es∼d
πσ,ϕi [ℓ(πσE ,ϕi(s), πσ,ϕi(s))]

(14)

From Lemma D.1, we know that for all i, ϕi, we have

Ji(πσ,ϕi)− Ji(πσE ,ϕi) ≤ O(ϵuH)

And
Ji(πσE

)− Ji(πσ) ≤ O(ϵuH)

Therefore, we get

Ji(πσ,ϕi
)− Ji(πσ) = (Ji(πσ,ϕi

)− Ji(πσE ,ϕi
)) + (Ji(πσE ,ϕi

))− Ji(πσE
)) + (Ji(πσE

)− Ji(πσ))
≤ Ji(πσE ,ϕi

)− Ji(πσE
) + O (ϵuH)

(15)

Taking the maximum over i, ϕi, we get

RΦ(σ)−RΦ(σE) ≤ O (ϵuH)

G.11 Proof of Theorem 4.6

Proof. Let MDP, expert policy σE and the trained policy σ be the same example in the proof of
Theorem 4.4.

Since π and πE only differ at state s0, and dπσ,ϕi (s0) = 1 for any i, ϕi, we have

Es∼d
πσ,ϕi [TV(σE(s), σ(s))] ≤ 1

H
·Hϵ = ϵ

Therefore, the trained policy π satisfies

ℓTV,BLADES(σ, σ) = max
i∈[m]

max
ϕi

Es∼d
πσ,ϕi [TV(σE(s), σ(s))] ≤ ϵ

The regret gap RΦ(σ)−RΦ(σE) = ϵ(u′ − 1)H = Ω(ϵuH).
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r a1 a2
a1 (1,1) (0,0)
a2 (0,0) (2,2)

r′ a1 a2
a1 (1,1) (0,0)
a2 (0,0) (1,1)

Figure 4: Multiple reward functions rationalize σE

H Comparison with Goktas et al. (2023)

Recent work Goktas et al. (2023) worked on similar problem as ours. We will highlight some of the
difference between two works.

First, the learning goals are different. They focus on a problem of inverse game theory, where the
goal is to recover a reward function to rationalize the expert’s behavior, i.e. the expert policy plays
an equilibrium under such a reward function. However, in our setting, instead of recovering a singe
reward function, our goal is to learn a robust policy that get similar regret performance under a
class of reward functions. We will show later that if the ultimate goal is to learn this robust policy,
simply recovering a single reward function is not enough.

Second, the solution concepts are different. they work on Nash equilibrium, while in our setting, we
focus on correlated equilibrium. We note that our algorithms also work for learning independent
policies, by restricting the policy class to be a class of independent policies.

Third, in finite demonstration setting, their objective is to find a reward function which the learned
policy plays a local NE, under the constraints that ℓ2 difference of the observations for behaviors of
two learned policy is small. We note that in general simply matching this difference is not enough to
guarantee that the learned policy play an equilibrium. From Theorem 3.3, we know that even if the
occupancy measures of two policies exactly matches, the regrets can still be significantly different
under the same reward function.

In conclusion, they work on a inverse game theory style problem where the goal is to recover a single
reward function to rationalize the agents behavior. We work on imitation learning problem, where
the goal is not recovering a single reward function but learning a policy that matches the regret
performance of the expert under a class of reward functions.

We will give examples in normal form games (NFG) to show that recovering a single reward function
is not enough to learn a policy that minimizing the regret gap for a large class of reward functions.
NFG can be viewed as an MG in which H = 1 and |S| = 1.
Lemma H.1. For an expert policy σE, there may exist multiple reward functions that rationalize
it.

Proof. We show this by an example of normal form games in Figure 4. Consider the policy to be
σE(a1a1) = 1, then the expert plays CE/NE under both reward functions r and r′, which means
both reward functions rationalize σE .

Lemma H.2. For a fixed reward function, There may exist multiple CE/NEs.

Proof. For reward function r in Figure 4, we can construct such two policies σ1, σ2. For σ1, let
σ1(a1, a1) = 1. Let σ2(a1, a1) = 4

9 , σ2(a1, a2) = σ2(a2, a1) = 2
9 , σ2(a2, a2) = 1

9 . Tt is not hard to
verify that both σ1 and σ2 play CE/NE under the reward function r.

Therefore, since there is no one-to-one mapping between the equilibria and the pay-off structures,
simply recovering a single reward function might not help recover a policy that gets small regret
gap.

For example, the true reward function is r in Figure 4, and expert policy σE satisfies σE(a1, a1) = 1.
The algorithm may recover r′ in Figure 4, and a trained policy σ that plays NE/CE under recovered
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reward function r′ would be σ(a1, a1) = σ(a1, a2) = σ(a2, a1) = σ(a2, a2) = 1
4 . However, this trained

policy σ does not play NE/CE under the true reward function r.


