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Abstract

Inverse reinforcement learning (IRL) is an on-policy approach to imitation learn-
ing (IL) that allows the learner to observe the consequences of their actions at
train-time. Accordingly, there are two seemingly contradictory desiderata for IRL
algorithms: (a) preventing the compounding errors that stymie offline approaches
like behavioral cloning and (b) avoiding the worst-case exploration complexity of
reinforcement learning (RL). Prior work has been able to achieve either (a) or (b)
but not both simultaneously. In our work, we first prove a negative result showing
that, without further assumptions, there are no efficient IRL algorithms that avoid
compounding errors in the worst case. We then provide a positive result: under a
novel structural condition we term reward-agnostic policy completeness, we prove
that efficient IRL algorithms do avoid compounding errors, giving us the best of
both worlds. We also propose a principled method for using sub-optimal data to
further improve the sample-efficiency of efficient IRL algorithms.

1 Introduction

Inverse reinforcement learning (IRL) is an on-policy approach to imitation learning that involves
simultaneously learning a reward function from expert demonstrations and learning a policy that
optimizes the learned reward (Ziebart et al., 2008a). IRL has been applied to a diverse set of
applications, including robotics (Ratliff et al., 2007; Abbeel & Ng, 2008; Ratliff et al., 2009; Silver
et al., 2010; Zucker et al., 2011), autonomous driving (Bronstein et al., 2022; Igl et al., 2022; Vinitsky
et al., 2022), and route finding (Ziebart et al., 2008a;b; Barnes et al., 2023).

Compared to offline imitation learning methods such as behavior cloning, IRL offers the following
advantages. First, IRL is more sample efficient, with respect to expert samples, than behavior
cloning (Swamy et al., 2021; 2022). Second, IRL offers better error scaling, with respect to the
horizon, than behavior cloning (Ross & Bagnell, 2010; Swamy et al., 2021; 2022). Unlike behavior
cloning, IRL is capable of avoiding quadratically compounding errors in the horizon (Ross & Bagnell,
2010; Swamy et al., 2021).

However, the expert sample efficiency of traditional IRL methods comes at the cost of environment
interactions. Traditional IRL methods can require an exponential number of environment interac-
tions in the worst case Swamy et al. (2023). Because the reward function and policy are learned
simultaneously, IRL requires policy optimization to be performed repeatedly, making it susceptible
to RL’s worst-case exploration complexity (Swamy et al., 2023). In order to focus the exploration
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on useful states, prior work has leveraged the expert’s state distribution for learner resets, resulting
in an exponential speedup in interaction complexity (Swamy et al., 2023).

Unfortunately, the improvement of efficient IRL’s interaction efficiency sacrifices traditional IRL’s
linear error scaling. Swamy et al. (2023)’s Moment Matching by Dynamic Programming (MMDP)
and No-Regret Moment Matching (NRMM) are exponentially faster than traditional IRL algorithms,
but they suffer from quadratically compounding errors in the horizon.

Based on the prior work, it seems that two desiderata of IRL – interaction efficiency and avoidance
of compounding errors – are contradictory, with algorithms only being able to attain one or the
other. Our key insight is that the commonly imposed assumption of expert realizability (i.e. the
expert policy is within the learner’s policy class) is insufficient to address both interaction efficiency
and error scaling. In our paper, we introduce a novel structural condition, reward-agnostic policy
completeness, under which IRL can both be efficient and avoid compounding errors.

More explicitly, our contributions are as follows:

1. We first consider the agnostic setting, where no assumptions are made about the
MDP’s structure, and present a lower bound that shows it is impossible to learn a
competitive policy with polynomial environment interaction complexity in the worst
case. In other words, efficient IRL is not possible without assuming additional structure on the
MDP.

2. We define a new structural condition, reward-agnostic policy completeness, under
which our efficient, reset-based IRL algorithm is capable of avoiding quadratically com-
pounding errors. Importantly, our analysis holds for approximate policy completeness, and the
optimal (i.e. expert) policy does not have to be in the policy class.

3. We extend our algorithm to incorporate sub-optimal data. We show that the benefits of
incorporating sub-optimal data are a function of the quantity of data and how well the sub-optimal
data covers the expert data. Our theoretical results are aligned in the intuition that suggests the
greater the overlap between sub-optimal and expert states, the more beneficial to learning the sub-
optimal data is.

2 Related Work

Prior work in reinforcement learning (RL) has examined leveraging exploration distributions to
improve learning (Kakade & Langford, 2002; Bagnell et al., 2003; Ross et al., 2011). We adapt
the Policy Search via Dynamic Programming (PSDP) algorithm of Bagnell et al. (2003) as our RL
solver and leverage its performance guarantees in our analysis. Our policy completeness error is
inspired by Agarwal et al. (2019)’s adapted analysis of Kakade & Langford (2002)’s Conservative
Policy Iteration (CPI) algorithm. Our paper also builds on work in agnostic RL. Jia et al. (2024)
analyze the conditions for which agnostic RL is statistically tractable. We use Jia et al. (2024)’s
lower bound on agnostic RL with expert feedback to show why agnostic IRL is hard.

Our work examines the issue of distribution shift due to compounding errors in IRL, which was
introduced by Ross & Bagnell (2010). Ross et al. (2011)’s DAgger algorithm is capable of avoiding
compounding errors but requires an interactive expert, which we do not assume in our setting.

We incorporate Swamy et al. (2023)’s novel approach of leveraging the expert’s state distribution
for learner resets. Our algorithm builds upon Swamy et al. (2023)’s MMDP and NRMM algorithms
by avoiding quadratically compounding error in the horizon.

Our algorithm and results are not limited to the tabular and linear MDP settings, differentiating
from some prior work in efficient imitation learning (Xu et al., 2023; Viano et al., 2024). Our work
also relates to (Shani et al., 2022), who propose a mirror descent based no-regret algorithm for
online apprenticeship learning (OAL). We similarly use a mirror descent based update to our reward
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function, but differ from Shani et al. (2022)’s work by leveraging resets to expert and sub-optimal
data to improve the interaction efficiency of our algorithm.

Poiani et al. (2024) propose a technique of incorporating sub-optimal experts as a means of addressing
the ambiguity in IRL problems, specifically the lack of uniqueness in reward functions that rationalize
the observed behavior. Our work contrasts Poiani et al. (2024)’s because we do not use sub-optimal
data in learning a reward function, instead using it to improve policy optimization training.

3 Setup and Motivation

3.1 Problem Setup

Markov Decision Process We consider a finite-horizon Markov Decision Process (MDP), M =
⟨S,A, Ph, r∗, H, µ⟩. S and A are the state space and action space, respectively. P = {Ph}H

h=1 is
the time-dependent transition function, where Ph : S × A → ∆(S). r∗ : S × A → [0, 1] is the
ground-truth reward function, which is unknown. Let R be the class of reward functions, such that
r : S × A → [0, 1] for all r ∈ R. H is the horizon, and µ ∈ ∆(S) is the starting state distribution.
Let Π = {π : S → ∆(A)} be the class of stationary policies. Let the class of non-stationary policies
be defined by ΠH = {πh : S → ∆(A)}H

h=1. A trajectory is given by τ = {(sh, ah, rh)}H
h=1, where

sh ∈ S, ah ∈ A, and rh = f(sh, ah) for some f ∈ R. The distribution over trajectories formed by
a policy is given by: ah ∼ π(· | sh), rh = Rh(sh, ah), and sh+1 ∼ Ph(· | sh, ah), for h = 1, . . . , H.
Let dπ

s0,h(s) = Pπ[sh = s | s0] and dπ
s0

(s) = 1
H

∑H
h=1 dπ

s0,h(s). Overloading notation slightly, we have
dπ

µ = Es0∼µ dπ
s0

.

We index the value function by the reward function, such that for any π ∈ ΠH and r ∈ R, V π
r,h(s) :=

Eτ∼π

[∑H
h′=h rh′ | sh = s

]
, and V π

r = Eτ∼π

∑H
h=1 r(sh, ah). We do a corresponding indexing for the

advantage function. We will overload notation such that a state-action pair can be sampled from
the visitation distributions, e.g. (s, a) ∼ dπ

µ and (s, a) ∼ ρE , as well as a state, e.g. s ∼ dπ
µ and

s ∼ ρE . Note that by definition of dπ
µ, Eτ∼π

[∑H
h=1 r(st, at)

]
= H E(s,a)∼dπ

µ
[r(s, a)].

Expert Data There exists an expert policy πE , of which a sample of its trajectories are known.
The dataset of state-action pairs sampled from the expert is DE = D1 ∪ D2 ∪ . . . ∪ DH , where
Dh = {sh, ah} ∼ dπE

µ,h and |DE | = N . Let ρh be a uniform distribution over the samples in Dh, and
ρE be a uniform distribution over the samples in DE .

Goal of IRL We adopt the formulation of Swamy et al. (2021), casting IRL as a Nash equilibrium
problem. The goal is to find a policy π such that

min
π∈Π

max
r∈R

J(πE , r)− J(π, r),

where J(π, r) = Eτ∼π

[∑T
t=0 r(st, at)

]
.

3.2 IRL in the Agnostic Setting

We first consider IRL in the agnostic setting, where no assumptions are made about the MDP’s
structure, the policy class, or the expert’s policy (i.e. we do not assume πE ∈ ΠH). We restate
Theorem 9 from Jia et al. (2024).
Theorem 3.1 (Lower Bound on Agnostic RL with Expert Feedback (Jia et al., 2024)). For any
H ∈ N and C ∈ [2H ], there exists a policy class Π with |Π| = C, expert policy πE ̸∈ Π, and a family
of MDPs M with state space S of size O(2H), binary action space, and horizon H such that any
algorithm that returns a 1/4-optimal policy must either use Ω(C) queries to a generative model or
Ω(C) queries to the expert oracle Oexp : S × A → R, which returns QπE (s, a) (i.e. the Q value of
expert policy πE).
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Theorem 3.1 presents a lower bound on agnostic RL with expert feedback. Specifically, it assumes
access to the true reward function and an expert oracle, Oexp : S ×A → R, which returns QπE (s, a)
for a given state-action pair (s, a). The lower bound in Theorem 3.1 applies in the case where the
expert oracle is replaced with a weaker expert action oracle (i.e. πE(s) : S → A) (Amortila et al.,
2022; Jia et al., 2024). In agnostic IRL, we consider the even weaker setting of having a dataset
of state-action pairs from the expert policy πE . From Theorem 3.1, we can infer that polynomial
sample complexity in the agnostic IRL setting is not possible in the worst case.

It should be noted that the classical importance sampling (IS) algorithm (Kearns et al., 1999) can
be employed to find an approximately optimal policy in the agnostic setting, but it requires an
exponential number of interactions (Agarwal et al., 2019; Jia et al., 2024).

4 Policy Complete Inverse Reinforcement Learning

Theorem 3.1 establishes a lower bound in the agnostic setting, where no assumptions are made about
the MDP or expert policy. It naturally motivates the question,

Under what conditions is it possible for efficient IRL algorithms to avoid quadratically
compounding errors?

Expert realizability was assumed by Swamy et al. (2023)’s efficient IRL algorithms but fails to avoid
compounding errors.

We introduce reward-agnostic policy completeness error to specify the conditions under which com-
pounding errors can be avoided efficiently. Policy completeness error can be thought of as measuring
the policy class’s ability to approximate the maximum possible advantage over the expert’s state
distribution under any reward function in the reward class.

Definition 4.1 (Reward-Indexed Policy Completeness Error). Given some expert state distribution
ρE, MDP M with policy class Π and reward class R, learned policy πi, and learned reward function
ri, define the reward-indexed policy completeness error of M to be

ϵπi,ri

Π := E
s∼ρE

[
max
a∈A

Aπi
ri

(s, a)
]
−max

π′∈Π
E

s∼ρE

E
a∼π′(·|s)

[
Aπi

ri
(s, a)

]
.

We first present the reward-indexed policy completeness error in Definition 4.1, where πi and ri

represent the learned policy and reward, respectively, from iteration i of a generic IRL algorithm.
Our definition of reward-indexed policy completeness error is inspired by one used in Agarwal et al.
(2019)’s adapted analysis of CPI, extended to the IRL setting. Notably, our definition is distinct in
using the expert’s state distribution rather than the learner’s.

The reward-indexed policy completeness error measures how well the policy class can approximate
the advantage of optimal actions over policy πi under reward ri. Because there do not exist strong
guarantees on how closely ri will resemble the true reward r∗ during early iterations of an IRL
algorithm, the expert policy may not be optimal under ri. We consider a maximum over all actions
to determine the maximum possible advantage over policy πi, i.e. maxa∈A Aπi

ri
(s, a). In the worst

case, where the policy class is poorly restricted under the expert’s state distribution, then ϵΠ = H,
due to the bound on the reward function.

In order to extend the definition to other policies and reward functions learned at separate iterations,
we pessimistically consider the worst case over all possible policies and rewards, leading to Definition
4.2. Note that 0 ≤ ϵπi,ri

Π ≤ ϵΠ ≤ H for any πi ∈ Π, ri ∈ R.

Definition 4.2 (Reward-Agnostic Policy Completeness Error). Given some expert state distribu-
tion ρE and MDP M with policy class Π and reward class R, define the reward-agnostic policy
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Algorithm 1 Policy Search Via Dynamic Programming (Bagnell et al., 2003)
1: Input: H, expert state distribution ρE and its time indexed components, reward function ri,

and policy class Π
2: Output: Trained policy π
3: for h = H, H − 1, . . . , 1 do
4: Optimize

πh ← argmax
π′∈Π

E
s∼ρE,h

E
a∼π′(·|s)

Aπh+1,...,πH
ri

(s, a) (1)

5: end for
6: Return π = {πh}H

h=1

completeness error of M to be

ϵΠ := max
π∈Π,r∈R

ϵπ,r
Π

= max
π∈Π,r∈R

(
E

s∼ρE

[
max
a∈A

Aπ
r (s, a)

]
−max

π′∈Π
E

s∼ρE

E
a∼π′(·|s)

[Aπ
r (s, a)]

)
.

4.1 Efficient IRL Under Approximate Policy Completeness

We present MMDP-SR (Moment Matching by Dynamic Programming: Sub-optimal Reset), an
efficient IRL algorithm that can be considered a variant of Swamy et al. (2023)’s MMDP algorithm.
MMDP-SR can incorporate sub-optimal data resets, which we describe in Section 5. We analyze its
sample complexity in the approximate policy completeness setting.

Following Swamy et al. (2021)’s classification of IRL algorithms, we propose an efficient dual variant
algorithm, where the discriminator is updated via a no-regret step, and the policy is updated via
a best-response step. We employ online mirror descent for the discriminator update, such that our
reward function is updated via

ri ← argmax
r∈R

L̂(πi−1, r) + η−1∆R(r | ri−1),

where ∆R is the Bregman divergence with respect to the negative entropy function R. L̂(π, r) is the
loss, defined by

L̂(π, r) = E
(s,a)∼ρE

r(s, a)− E
(s,a)∼dπ

µ

r(s, a),

with respect to the distribution of expert samples, ρE . Importantly, for our analysis, we assume
that the ground-truth reward function is realizable such that r∗ ∈ R. An interesting direction of
future work is extending our analysis to the case of a non-realizable reward.

We employ Bagnell et al. (2003)’s PSDP algorithm, shown in Algorithm 1, for the policy update step.
We use the distribution of expert samples, ρE , as the distribution for resets. The IRL procedure is
outlined in Algorithm 2.

4.2 Analysis in the Infinite-Sample Regime

Theorem 4.3 (Sample Complexity of Algorithm 2). Consider the case of infinite expert data sam-
ples. If πi = (πi,1, πi,2, . . . , πi,H) is the policy returned by ϵ-approximate PSDP at iteration i ∈ [n]
of Algorithm 2 and ρE = dπE

µ , then

V πE − V π ≤ H2ϵ + HϵΠ + H

√
ln |R|

n
,

where H is the horizon, n is the number of outer-loop iterations of the algorithm, and π is the
average of the learned policies, πi at each iteration i ∈ [n].
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Algorithm 2 MMDP-SR (Moment Matching by Dynamic Programming: Sub-optimal Reset)
Input: Expert state visitation distributions ρE , policy class Π, reward class R Output:

Trained policy π Set π0 ∈ Π i = 1 to N Let

L̂(π, r) = E
(s,a)∼ρE

r(s, a)− E
(s,a)∼dπ

µ

r(s, a)

Optimize
ri ← argmax

r∈R
L̂(πi−1, r) + η−1∆R(r | ri−1). (2)

Optimize
πi ← PSDP(ri)

Return πi with lowest validation error

The sample complexity of Algorithm 2 in the infinite expert sample regime is given in Theorem 4.3.
The error is comprised of three terms. The first term, H2ϵ, stems from the policy optimization error
of PSDP. It can be mitigated be improving the accuracy parameter ϵ of PSDP. Set to ϵ = 1

H , the
term is reduced to linear error in the horizon H. This error can be interpreted as representing a
tradeoff between environment interactions (i.e. computation) and error.

The second term, HϵΠ, stems from the richness of the policy class. In the worst case where the policy
class cannot approximate the maximum advantage, ϵΠ = H, resulting in quadratically compounding
errors. Unlike the policy optimization error, the policy completeness error cannot be reduced with
more environment interactions. Instead, it represents a fixed error that is a property of the MDP, the
policy class, and the reward class. Under the approximate policy completeness setting, we assume
ϵΠ = O(1), reducing the error to linear in the horizon.

Finally, the last term H
√

ln |R|
n stems from the regret of the online mirror descent update to the

reward function. Assuming approximate policy completeness, such that ϵΠ = O(1), Theorem 4.3
shows that quadratically compounding errors in the horizon can be avoided by setting a small
accuracy parameter ϵ in the PSDP procedure. The finite sample analysis of Algorithm 2 is provided
in Section 5, where we also incorporate sub-optimal data.

5 Leveraging Sub-Optimal Data in IRL

5.1 Resetting to Sub-Optimal Data

In addition to the expert dataset, we also consider the case where we have an offline dataset Doff =
{si, ai}M

i=1, where (s, a) ∼ dπb
µ and πb is some behavior policy that is not necessarily as a high-quality

as the expert πE . We measure the overlap of πb to the expert πE using the standard concentrability
coefficient: Cb =

∥∥∥d
πE
µ

d
πb
µ

∥∥∥
∞

. We will show that we can gain benefit of using Doff as long as Cb < ∞
and the number of offline data points M is large.

Let us define Dmix = DE ∪Doff and ρmix as the uniform distribution over Dmix. We will use ρmix
as the reset distribution for policy optimization. Let

ν = N

N + M
dπE

µ + M

N + M
dπb

µ .

We only incorporate sub-optimal data for the policy optimization step. Using sub-optimal data
for the reward update may lead to learning a reward function that values sub-optimal behavior as
optimal, so the reward update remains the same as (2). Instead, we incorporate the sub-optimal for
the policy optimization step, specifically resetting to the mixture of sub-optimal and expert states.
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Our replacement for policy optimization step (1) becomes

πh ← argmax
π′∈Π

E
s∼ρmix,h

E
a∼π′(·|s)

Aπh+1,...,πH
ri

(s, a). (3)

Similarly, the state distribution of the reward-agnostic policy completeness error, ϵΠ, changes from
the distribution over expert samples, ρE , to the mixed distribution, ρmix.

5.2 Analysis in the Finite-Sample Regime

Lemma 5.1 (Advantage Bound). Suppose that ϵ = 0 and reward function ri are the input parameters
to PSDP, and πi = (πi

1, πi
2, . . . , πi

H) is the output learned policy. Then, with probability at least 1−δ,

E
s∼dπE

max
a∈A

Aπi(s, a) ≤ min
{

ϵΠ + ϵΠ

√
C0

N
, Cb

(
ϵΠ + ϵΠ

√
C0

N + M

)}

where Cb =
∥∥∥d

πE
µ

d
πb
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, and C0 = 2 ln |Π||R|
δ .

Theorem 5.2 (Sample Complexity of Algorithm 2). Suppose that PSDP’s accuracy parameter is
set to ϵ = 0, meaning we assume access to infinite computations of PSDP. Then, upon termination
of Algorithm 2 with policy optimization step (3), with probability at least 1− δ, we have

V πE − V π ≤ H min
{

ϵΠ + ϵΠ

√
C0

N
, Cb

(
ϵΠ + ϵΠ

√
C0

N + M

)}
+ H

√
C

N
+ H

√
C1

n
,

where H is the horizon, N is the number of expert state-action pairs, M is the number of offline
state-action pairs, n is the number of reward updates, C0 = 2 ln |Π||R|

δ , C = ln 2|R|
δ , C1 = 2 ln |R|,

and Cb =
∥∥∥d

πE
µ

d
πb
µ

∥∥∥
∞

.

Lemma 5.1 upper bounds the advantage over the distribution induced by the expert policy. Theorem
5.2 upper bounds the sample complexity of Algorithm 2 with policy optimization step (3). The
error consists of three terms. The first term stems from the policy completeness error. The second
term stems from the statistical error of estimating the expert policy’s state distribution dπE

µ with
the distribution over samples ρE . The third term stems from the regret of the reward update.
Unlike Theorem 4.3, which considers ϵ-approximate PSDP, Theorem 5.2 examines the case of infinite
computations of PSDP such that ϵ = 0, resulting in a vanishing policy optimization error term.
Importantly, the assumption of ϵ = 0 is not necessary but rather convenient in simplifying the
analysis. Moreover, the ϵ > 0 case was presented in Theorem 4.3.

From Theorem 5.2, we observe the condition under which sub-optimal data benefits learning is when

ϵΠ + ϵΠ

√
C0

N
≤
∥∥∥∥dπE

µ

dπb
µ

∥∥∥∥
∞

(
ϵΠ + ϵΠ

√
C0

N + M

)
.

When the sub-optimal data covers the expert data well, Cb =
∥∥∥d

πE
µ

d
πb
µ

∥∥∥
∞

is small, so the sub-optimal
data may be beneficial. Considering the special case where the “sub-optimal” data is collected from
the expert policy πE , then Cb =

∥∥∥d
πE
µ

d
πE
µ

∥∥∥
∞

= 1. The advantage bound becomes equivalent to the case
of having N + M number of expert data samples. However, because we only use the expert data for
the reward update, rather than the sub-optimal data, the reward error terms remain the same.

6 Discussion

We address the seemingly contradictory goals of preventing compounding errors in IRL and avoiding
the worst-case exploration complexity of RL. We introduce a novel structural condition, reward-
agnostic policy completeness, under which both compounding errors can be avoided efficiently. We
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then present a reset-based IRL algorithm and perform a finite-sample analysis. Finally, we iden-
tify the conditions under which sub-optimal data can be beneficial to the sample-efficiency of the
algorithm.

One direction for future work is extending our analysis to RL solvers beyond PSDP, such as replacing
CPI’s reset distribution by the expert and sub-optimal data distributions. This can also include
generalizing our analysis to abstracted RL procedures. Another approach may be to empirically
demonstrate the tradeoff between the coverage and amount of sub-optimal data in terms of IRL
performance.

Broader Impact Statement

Our paper seeks to understand conditions under which efficient IRL works. Improving the efficiency
of IRL can reduce computational costs, lessening the environmental impact of training IRL agents.
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A Proofs of Section 4

A.1 Proof of Theorem 4.3

Proof. We consider the imitation gap of the expert and the average of the learned policies π,

V πE − V π = 1
n

n∑
i=1

(
E

ζ∼πE

H∑
h=1

r∗(s, a)− E
ζ∼πi

H∑
h=1

r∗(s, a)
)

= H
1
n

n∑
i=1

(
E

(s,a)∼d
πE
µ

r∗(s, a)− E
(s,a)∼d

πi
µ

r∗(s, a)
)

= H
1
n

n∑
i=1

L(πi, r∗)

≤ H
1
n

max
r∈R

n∑
i=1

L(πi, r)

≤ H
1
n

max
r∈R

n∑
i=1

L(πi, r)− L(πi, ri) + L(πi, ri)

= H
1
n

L(πi, ri) + H
1
n

max
r∈R

n∑
i=1

L(πi, r)− L(πi, ri)

Applying the regret bound of Online Mirror Descent (Theorem C.2), we have

V πE − V π ≤ H
1
n

n∑
i=1

L(πi, ri) + H

√
ln |R|

n

= H
1
n

n∑
i=1

(
1
H

H∑
h=1

E
(sh,ah)∼d

πE
h

ri(sh, ah)− 1
H

H∑
h=1

E
(sh,ah)∼d

πi
h

ri(sh, ah)
)

+ H

√
ln |R|

n

= 1
n

n∑
i=1

(
E

s∼µ
V πE

ri
− E

s∼µ
V πi

ri

)
+ H

√
ln |R|

n

= 1
n

n∑
i=1

H−1∑
h=0

(
E

(sh,ah)∼d
πE
h

Aπi

ri,h(sh, ah)
)

+ H

√
ln |R|

n
(4)

Focusing on the interior summation, we have

H−1∑
h=0

E
(sh,ah)∼d

πE
h

Aπi

h (sh, ah) ≤
H−1∑
h=0

E
sh∼d

πE
h

max
a∈A

Aπi

h (sh, a)

=
H−1∑
h=0

E
sh∼d

πE
h

max
a∈A

Aπi

h (sh, a)− ϵΠ,h + ϵΠ,h

=
H−1∑
h=0

max
π′∈Π

E
sh∼d

πE
h

E
a∼π′(·|s)

Aπi

h (sh, a) + ϵΠ,h

≤ H2ϵ + HϵΠ,h (5)

where the last line holds by PSDP’s performance guarantee (Bagnell et al., 2003).
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Applying (5) to (4), we have

V πE − V π ≤ 1
n

n∑
i=1

H−1∑
h=0

(
E

(sh,ah)∼d
πE
h

Aπi

ri,h(sh, ah)
)

+ H

√
ln |R|

n

≤ 1
n

n∑
i=1

(
H2ϵ + HϵΠ,h

)
+ H

√
ln |R|

n

≤ H2ϵ + HϵΠ + H

√
ln |R|

n

which completes the proof.

B Proofs of Section 5

B.1 Lemmas of Theorem 5.2

Lemma B.1 (Reward Regret Bound). Recall that

L̂(π, r) = E
(s,a)∼ρE

r(s, a)− E
(s,a)∼dπ

µ

r(s, a).

Suppose that we update the reward via the online mirror descent (ascent) algorithm. Since 0 ≤
r(s, a) ≤ 1 for all s, a, then supπ∈Π,r∈R L̂(π, r) ≤ 1. Applying Theorem C.2 with B = 1, the regret
is given by

Regn = sup
r∈R

1
n

n∑
i=1

L̂(πi, r)− 1
n

n∑
i=1

L̂(πi, ri)

≤
√

2 ln |R|
n

=
√

C1

n
,

where C1 = 2 ln |R| and n is the number of updates.
Lemma B.2 (Statistical Difference of Losses). With probability at least 1− δ,

L(π, r) ≤ L̂(π, r) +
√

C

N
,

where C = ln 2|R|
δ and N is the number of state-action pairs from the expert.

Proof. By definition of L and L̂, for any π ∈ Π and r ∈ R, we have∣∣∣L(π, r)− L̂(π, r)
∣∣∣ =

∣∣∣∣∣ E
(s,a)∼d

πE
µ

r(s, a)− E
(s,a)∼dπ

µ

r(s, a)−
(

E
(s,a)∼ρE

r(s, a)− E
(s,a)∼dπ

µ

r(s, a)
)∣∣∣∣∣

=

∣∣∣∣∣ E
(s,a)∼d

πE
µ

r(s, a)− E
(s,a)∼ρE

r(s, a)

∣∣∣∣∣
=

∣∣∣∣∣∣ E
(s,a)∼d

πE
µ

r(s, a)− 1
N

N∑
(si,ai)∈DE

r(si, ai)

∣∣∣∣∣∣
≤
√

1
2N

ln 2|R|
δ

≤
√

C

N
,
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where C = 4 ln 2|R|
δ . The fourth line holds by Hoeffding’s inequality and a union bound. Specifically,

we apply Corollary C.1 with c = 1, since all rewards are bounded by 0 and 1. We take a union
bound over all reward functions in the reward class R. Note that the terms involving π cancel out,
so the union bound only applies to the reward function class R. Rearranging terms gives the desired
bound.

Lemma B.3 (Loss Bound). Suppose that ϵ = 0 and reward function ri are the input parameters to
PSDP, and πi = (πi

1, πi
2, . . . , πi

H) is the output learned policy. Then, with probability at least 1− δ,

L̂(πi, ri) ≤ min
{

ϵΠ + ϵΠ

√
C0

N
, Cb

(
ϵΠ + ϵΠ

√
C0

N + M

)}
+
√

C

N
,

where Cb =
∥∥∥d

πE
µ

d
πb
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, C0 = 2 ln |Π||R|
δ , and C = ln 2|R|

δ .

Proof. By Lemma B.2, we have

L̂(πi, ri) ≤ L(πi, ri) +
√

C

N

= E
(s,a)∼d

πE
µ

[ri(s, a)]− E
(s,a)∼d

πi
µ

[ri(s, a)] +
√

C

N

= 1
H

(
V πE

ri
− V πi

ri

)
+
√

C

N

= 1
H

(
H∑

h=1
E

(sh,ah)∼d
πE
h

Aπi

ri,h(sh, ah)
)

+
√

C

N

≤ 1
H

(
H∑

h=1
E

sh∼d
πE
h

max
a∈A

Aπi

ri,h(sh, a)
)

+
√

C

N

= 1
H

(
H E

s∼dπE

max
a∈A

Aπi
ri

(s, a)
)

+
√

C

N

where C = ln 2|R|
δ . The second line holds by the definition of L(πi, ri), and the third line holds

by the definition of the reward-indexed value function. The fourth line holds by the Performance
Difference Lemma (PDL). Applying Lemma 5.1, we have

L̂(πi, ri) ≤ min
{

ϵΠ + ϵΠ

√
C0

N
, Cb

(
ϵΠ + ϵΠ

√
C0

N + M

)}
+
√

C

MN
,

where Cb =
∥∥∥d

πE
µ

d
πb
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, C0 = 2 ln |Π||R|
δ , and C = ln 2|R|

δ .

B.2 Proof of Lemma 5.1

Proof. Suppose that ϵ = 0 is the input accuracy parameter to PSDP, and the advantages are
computed under reward function ri. PSDP is guaranteed to terminate and output a policy πi =
(πi

1, πi
2, . . . , πi

H), such that

Hϵ ≥ max
π′∈Π

E
sh∼ρmix,h

E
a∼π′(·|s)

Aπi

h (sh, a)
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for all h ∈ [H] (Bagnell et al., 2003). Consequently, we have

Hϵ ≥ max
π′∈Π

E
s∼ρmix

E
a∼π′(·|s)

Aπi(s, a)

= max
π′∈Π

E
s∼ρmix

E
a∼π′(·|s)

Aπi(s, a) + ϵΠ,ri
− ϵΠ,ri

= E
s∼ρmix

max
a∈A

Aπi(s, a)− ϵΠ,ri

By definition, 0 ≤ ϵΠ,ri ≤ ϵΠ, so for any x ∈ R, x− ϵΠ,ri ≥ x− ϵΠ, so

Hϵ ≥ E
s∼ρmix

max
a∈A

Aπi(s, a)− ϵΠ.

Rearranging the terms gives us

E
s∼ρmix

max
a∈A

Aπi(s, a) ≤ Hϵ + ϵΠ (6)

= ϵΠ,

where the last line holds by our assumption that ϵ = 0.

Case 1: Jettison Offline Data We will first consider the case where offline data is useless, in
which case we will focus on the expert data.

Note that maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S and h ∈ [H]. Applying the definition of ρmix,

E
s∼ρmix

max
a∈A

Aπi(s, a) = E
s∼ρE

max
a∈A

Aπi(s, a) + E
s∼ρb

max
a∈A

Aπi(s, a).

Consequently, we know that

ϵΠ ≥ E
s∼ρE

max
a∈A

Aπi(s, a) (7)

= 1
N

N∑
si∈DE

max
a∈A

Aπi(si, a)

Because maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S and a ∈ A, we know maxa∈A Aπi(si, a) ≤ ϵΠ for all
si ∈ DE . We apply Hoeffding’s inequality (Corollary C.1) with c = ϵΠ

2 to bound the difference
between Es∼dπE maxa∈A Aπi(s, a) and Es∼ρE

maxa∈A Aπi(s, a). We apply a union bound on the
policy and reward function. As stated previously, maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S. By Hoeffding’s
inequality, with probability 1− δ, we have∣∣∣∣∣ E

s∼d
πE
µ

max
a∈A

Aπi(s, a)− E
s∼ρE

max
a∈A

Aπi(s, a)

∣∣∣∣∣ =

∣∣∣∣∣ E
s∼d

πE
µ

max
a∈A

Aπi(s, a)− 1
N

N∑
si∈DE

max
a∈A

Aπi(si, a)

∣∣∣∣∣
≤
√

ϵ2
Π

1
2N

ln |Π||R|
δ

≤ ϵΠ

√
C0

N
,

where C0 = 2 ln |Π||R|
δ . Note that the cardinality of the set of advantage functions over all possible

policies is upper bounded by the cardinalities of the policy and reward classes. Rearranging the
terms and applying (7) yields

E
s∼d

πE
µ

max
a∈A

Aπi(s, a) ≤ ϵΠ + ϵΠ

√
C0

N
.
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Case 2: Leverage Offline Data Next, we consider the case where offline data is useful, specifi-
cally where there is good coverage of the expert data.

Next, we apply Hoeffding’s inequality (Corollary C.1) to bound the difference between
Es∼ν maxa∈A Aπi(s, a) and Es∼ρmix maxa∈A Aπi(s, a). We apply a union bound on the policy and
reward function. We use c = ϵ2

Π for a similar argument to the one used in Case 1. As stated
previously, maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S. By Hoeffding’s inequality, with probability 1− δ, we
have∣∣∣∣ Es∼ν

max
a∈A

Aπi(s, a)− E
s∼ρmix

max
a∈A

Aπi(s, a)
∣∣∣∣ =

∣∣∣∣∣ Es∼ν
max
a∈A

Aπi(s, a)− 1
N + M

N+M∑
si∈Dmix

max
a∈A

Aπi(si, a)

∣∣∣∣∣
≤

√
ϵΠ

1
2(N + M) ln |Π||R|

δ

≤ ϵΠ

√
C0

N + M
,

where C0 = 2 ln |Π||R|
δ . Note that the cardinality of the set of advantage functions over all possible

policies is upper bounded by the cardinalities of the policy and reward classes. Rearranging the
terms and applying (6) yields

E
s∼ν

max
a∈A

Aπi(s, a) ≤ ϵΠ + ϵΠ

√
C0

N + M
. (8)

By linearity of expectation, and using the fact that 1 ≤ Cb <∞, we have

E
s∼dπE

max
a∈A

Aπi(s, a) = N

N + M
E

s∼dπE

max
a∈A

Aπi(s, a) + M

N + M
E

s∼dπE

max
a∈A

Aπi(s, a)

≤ N

N + M
E

s∼dπE

max
a∈A

Aπi(s, a) + Cb
M

N + M
E

s∼dπb

max
a∈A

Aπi(s, a)

≤ Cb
N

N + M
E

s∼dπE

max
a∈A

Aπi(s, a) + Cb
M

N + M
E

s∼dπb

max
a∈A

Aπi(s, a)

= Cb

(
N

N + M
E

s∼dπE

max
a∈A

Aπi(s, a) + M

N + M
E

s∼dπb

max
a∈A

Aπi(s, a)
)

≤ Cb E
s∼ν

max
a∈A

Aπi(s, a). (9)

Applying (9) to (8), we have

E
s∼dπE

max
a∈A

Aπi(s, a) ≤ Cb E
s∼ν

max
a∈A

Aπi(s, a)

≤ Cb

(
ϵΠ + ϵΠ

√
C0

N + M

)

Final Result Using the bounds from Case 1 and Case 2, we know that

E
s∼dπE

max
a∈A

Aπi(s, a) ≤ min
{

ϵΠ + ϵΠ

√
C0

N
, Cb

(
ϵΠ + ϵΠ

√
C0

N + M

)}

where Cb =
∥∥∥d

πE
µ

d
πb
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, and C0 = 2 ln |Π||R|
δ .
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B.3 Proof of Theorem 5.2

Proof. We consider the imitation gap of the expert and the averaged learned policies, π,

V πE − V π = 1
n

n∑
i=0

(
E

ζ∼πE

[
H∑

h=1
r∗(sh, ah)

]
− E

ζ∼πi

[
H∑

h=1
r∗(sh, ah)

])

= 1
n

H

n∑
i=0

(
E

(s,a)∼d
πE
µ

[r∗(s, a)]− E
(s,a)∼d

πi
µ

[r∗(s, a)]
)

= 1
n

H

n∑
i=0

L(πi, r∗)

≤ 1
n

H max
r∈R

n∑
i=0

L(πi, r)

where n is the number of updates to the reward function. The second line holds by definition of dπ
µ.

The third line holds by definition of L. Applying the Statistical Difference of Losses (Lemma B.2),
we have

V πE − V π ≤ 1
n

H max
r∈R

n∑
i=0

(
L̂(πi, r) +

√
C

N

)

= 1
n

H max
r∈R

n∑
i=0

(
L̂(πi, r)− L̂(πi, ri) + L̂(πi, ri) +

√
C

N

)

where C = ln 2|R|
δ and M is the number of state-action pairs from the expert. Applying the Reward

Regret Bound (Lemma B.1), we have

V πE − V π ≤ 1
n

H

n∑
i=0

(
L̂(πi, ri) +

√
C

N

)
+ H

√
C1

n

where C1 = 2 ln |R|. Applying the Loss Bound (Lemma B.3), we have

V πE − V π ≤ 1
n

H

n∑
i=0

(
min

{
ϵΠ + ϵΠ

√
C0

N
, Cb

(
ϵΠ + ϵΠ

√
C0

N + M

)}
+
√

C

N
,

)
+ H

√
C1

n
,

which simplifies to

V πE − V π ≤ H min
{

ϵΠ + ϵΠ

√
C0

N
, Cb

(
ϵΠ + ϵΠ

√
C0

N + M

)}
+ H

√
C

N
, +H

√
C1

n
,

where Cb =
∥∥∥d

πE
µ

d
πb
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the number

of offline state-action pairs, n is the number of reward updates, C0 = 2 ln |Π||R|
δ , C = ln 2|R|

δ , and
C1 = 2 ln |R|.

C Useful Lemmas

Theorem C.1 (Hoeffding’s Inequality). If Z1, . . . , ZM are independent with P (a ≤ Zi ≤ b) = 1
and common mean µ, then, with probability at least 1− δ,

|ZM − µ| ≤
√

c

2M
ln 2

δ

where c = 1
M

∑M
i=1(bi − ai)2.
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Lemma C.2 (Online Mirror Descent Regret). Regret is defined as

RegN = 1
N

N∑
t=1

ℓ(ŷt, zt)− inf
f∈F

1
N

N∑
t=1

ℓ(f , zt).

Given F = ∆(F ′) and ⟨f ,∇t⟩ = Ef ′∼f [ℓ(f ′, (xt, yt))], where sup∇∈D∥∇∥∞ ≤ B, let R be any

1-strongly convex function. If we use the Mirror descent algorithm with η =
√

2 supf∈F R(f)
NB2 , then,

Regn ≤
√

2B2 supf∈F R(f)
N

.

If R is the negative entropy function, then supf∈F R(f) ≤ log |F ′|.


