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Abstract

While originally developed for continuous control problems, Proximal Policy Optimization
(PPO) has emerged as the work-horse of a variety of reinforcement learning (RL) applications,
including the fine-tuning of generative models. Unfortunately, PPO requires multiple
heuristics to enable stable convergence (e.g. value networks, clipping), and is notorious for
its sensitivity to the precise implementation of these components. In response, we take a step
back and ask what a minimalist RL algorithm for the era of generative models would look like.
We propose REBEL, an algorithm that cleanly reduces the problem of policy optimization to
regressing the relative reward between two completions to a prompt in terms of the policy,
enabling strikingly lightweight implementation. In theory, we prove that fundamental RL
algorithms like Natural Policy Gradient can be seen as variants of REBEL, which allows us
to match the strongest known theoretical guarantees in terms of convergence and sample
complexity in the RL literature. REBEL can also cleanly incorporate offline data and be
extended to handle the intransitive preferences we frequently see in practice. Empirically, we
find that REBEL provides a unified approach to language modeling and image generation with
stronger or similar performance as PPO and DPO, all while being simpler to implement and
more computationally efficient than PPO. When fine-tuning Llama-3-8B-Instruct, REBEL
achieves strong performance in AlpacaEval 2.0, MT-Bench, and Open LLM Leaderboard.

1 Introduction

The generality of the reinforcement learning (RL) paradigm is striking: from continuous control problems
(Kalashnikov et al., 2018) to, more recently, the fine-tuning of generative models (Stiennon et al., 2022; Ouyang
et al., 2022), RL has enabled concrete progress across a variety of decision-making tasks. Specifically, when
it comes to fine-tuning generative models, Proximal Policy Optimization (PPO, Schulman et al. (2017)) has
emerged as the de-facto RL algorithm of choice, from language models (LLMs) (Ziegler et al., 2020; Stiennon
et al., 2022; Ouyang et al., 2022; Touvron et al., 2023) to generative image models (Black et al., 2023; Fan
et al., 2024; Oertell et al., 2024).

If we take a step back however, it is odd that we are using an algorithm designed for optimizing two-layer
networks for continuous control tasks from scratch, even though we are now fine-tuning generative models
with billions of parameters. In the continuous control setting, the randomly initialized neural networks and the
possible stochasticity in the dynamics necessitate variance reduction through a learned value function as a
baseline (Schulman et al., 2015b), while clipping updates is important to limit distribution shift from iteration
to iteration (Kakade & Langford, 2002). This means that when applied to generative model fine-tuning, we
need to store four models in memory simultaneously (the policy, the reference policy, the critic, and the
reward model), each with billions of parameters. Furthermore, we often add a KL regularization to the base
model for fine-tuning, making explicit clipping unnecessary nor advisable, as pointed out by Ahmadian et al.
(2024). Even outside of the generative modeling context, PPO is notorious for the wide range of performances
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Figure 1: We present REBEL: a simple and scalable RL algorithm that performs policy optimization via
iteratively regressing the difference in rewards in terms of the policy, allowing us to eliminate much of
the complexity (e.g. value functions, clipping) of algorithms like PPO (Schulman et al., 2017). We apply
REBEL to problems in both image generation and language modeling and find that despite its conceptual and
implementation-level simplicity, REBEL is able to match or sometimes outperform the performance of PPO
while out-performing purely offline techniques like DPO (Rafailov et al., 2023). REBEL also achieves strong
performance on common benchmarks such as AlpacaEval when fine-tuning a Llama-3-8B model.

measured, with differences being attributed to seemingly inconsequential implementation details (Henderson
et al., 2019; Engstrom et al., 2020). This begs the question: are there simpler algorithms that better scale to
modern RL applications?

Our answer is REBEL: an algorithm that reduces the problem of RL to solving a sequence of squared loss
regression problems on iteratively collected datasets. Each regression problem directly uses the policy to
predict the difference in rewards. This allows us to eliminate the complexity of using value functions, avoids
heuristics like clipping, and scales easily to problems in both language modeling and image generation. Our
key insight is that a regressor that can predict the difference in rewards between trajectories in a dataset
implicitly captures an improved policy.

Rather than being a mere heuristic, REBEL comes with strong guarantees in theory and can be seen as a strict
generalization of classical techniques (e.g., NPG) in reinforcement learning. Furthermore, REBEL cleanly
incorporates offline datasets when available, can be extended to robustly handle intransitive preferences (Swamy
et al., 2024), empirically out-performs techniques like PPO and DPO (Rafailov et al., 2023) in language
generation, and has a faster convergence with a similar asymptotic performance in image generation. When
fine-tuning a Llama-3-8B model, REBEL also demonstrates very competitive performance on the following
benchmarks simultaneously: AlpacaEval 2.0 (length-controlled win-rate 30.1%), MT-bench (average 8.16),
and Open LLM Leaderboard (average 68.2), without additional information such as online GPT4 queries.
Implementation of REBEL can be found at https://github.com/ZhaolinGao/REBEL

2 REBEL: REgression to RElative REward Based RL

We consider the contextual bandit formulation (Langford & Zhang, 2007) of RL which has been used to
formalize the generation process of models like LLMs (Rafailov et al., 2023; Ramamurthy et al., 2022; Chang
et al., 2023) and Diffusion Models (Black et al., 2023; Fan et al., 2024; Oertell et al., 2024) due to the
determinism of the transitions. More explicitly, in the deterministic transition setting, explicit states are not
required as they are isomorphic to the sequence of actions. Furthermore, the entire sequence of actions can be
considered as a single “arm” in a bandit problem with an action space that scales exponentially in size with the
horizon of the problem.

We denote by (𝑥, 𝑦) a (prompt, response) pair, where 𝑥 ∈ X is the prompt and 𝑦 ∈ Y is the response (e.g. a
sequence of tokens, or in general a sequence of actions). We assume access to a reward function 𝑟 (𝑥, 𝑦) from
which we can query for reward signals (the exact form of 𝑟 does not need to be known). Querying 𝑟 at (𝑥, 𝑦)
will return a scalar 𝑟 (𝑥, 𝑦), measuring the quality of the prompt completion. Such a reward function could be a
pre-defined metric (e.g., Rouge score against human responses) or a learned model from an offline human

https://github.com/ZhaolinGao/REBEL
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Algorithm 1 REgression to RElative REward Based RL (REBEL)
1: Input: Reward 𝑟 , policy class Π = {𝜋𝜃 : 𝜃 ∈ Θ}, base distribution 𝜇, learning rate 𝜂
2: Initialize policy 𝜋𝜃0 .
3: for 𝑡 = 0 to 𝑇 − 1 do
4: // Base distribution 𝜇 can either be an offline dataset or 𝜋𝑡.
5: Collect dataset D𝑡 = {𝑥, 𝑦, 𝑦′} where 𝑥 ∼ 𝜌, 𝑦 ∼ 𝜋𝑡 (·|𝑥), 𝑦′ ∼ 𝜇(·|𝑥).
6: Solve square loss regression problem:

𝜃𝑡+1 = argmin
𝜃∈Θ

∑︁
(𝑥,𝑦,𝑦′ ) ∈D𝑡

(
1
𝜂

(
ln

𝜋𝜃 (𝑦 |𝑥)
𝜋𝜃𝑡 (𝑦 |𝑥)

− ln
𝜋𝜃 (𝑦′ |𝑥)
𝜋𝜃𝑡 (𝑦′ |𝑥)

)
− (𝑟 (𝑥, 𝑦) − 𝑟 (𝑥, 𝑦′))

)2
. (1)

7: end for

demonstration or preference data (e.g. the RLHF paradigm (Christiano et al., 2017; Ziegler et al., 2020)), as
we focus on in our experiments.

Denote by 𝜋 ∈ X ↦→ Δ(𝑌 ) a policy (e.g. an LLM) that maps from a prompt 𝑥 to a distribution over the response
space Y. We use 𝜌 to denote the distribution over prompts (i.e. initial states / contexts) 𝑥 and 𝜋𝜃 (𝑦 |𝑥) to
denote a policy with parameter 𝜃. At times, we interchangeably use 𝜋𝑡 and 𝜋𝜃𝑡 when it is clear from the context.
We emphasize that while we focus on the bandit formulation for notational simplicity, the algorithms proposed
here can be applied to any deterministic MDP where 𝑥 is the initial state and the trajectory 𝑦 consists of the
sequence of actions.

At each iteration of all algorithms, our goal will be to solve the following KL-constrained RL problem:

𝜋𝑡+1 = argmax
𝜋∈Π

E𝑥,𝑦∼𝜋 ( · |𝑥 )𝑟 (𝑥, 𝑦) −
1
𝜂
E𝑥KL (𝜋(·|𝑥) | |𝜋𝑡 (·|𝑥)) . (2)

Intuitively, this can be thought of asking for the optimizer to fine-tune the policy 𝜋𝑡+1 according to 𝑟 while
staying close in terms of action distribution to some baseline policy 𝜋𝑡 .

2.1 Deriving REBEL: REgression to RElative REward Based RL

From Ziebart et al. (2008), we know that there exists a closed-form solution to the above minimum relative
entropy problem (Eq. 2, Grünwald & Dawid (2004)):

∀𝑥, 𝑦 : 𝜋𝑡+1 (𝑦 |𝑥) =
𝜋𝑡 (𝑦 |𝑥) exp(𝜂𝑟 (𝑥, 𝑦))

𝑍 (𝑥) ; 𝑍 (𝑥) =
∑︁
𝑦

𝜋𝑡 (𝑦 |𝑥) exp(𝜂𝑟 (𝑥, 𝑦)). (3)

As observed by Rafailov et al. (2023), we can invert Eq. 3 and write the reward in terms of the policy:

∀𝑥, 𝑦 : 𝑟 (𝑥, 𝑦) = 1
𝜂

(
ln(𝑍 (𝑥)) + ln

(
𝜋𝑡+1 (𝑦 |𝑥)
𝜋𝑡 (𝑦 |𝑥)

))
. (4)

As soon as X and Y become large, we can no longer guarantee the above expression holds exactly at all (𝑥, 𝑦)
and therefore need to turn our attention to choosing a policy such that Eq. 4 is approximately true. We propose
using a simple square loss objective between the two sides of Eq. 4 to measure the goodness of a policy,

i.e. reducing RL to a regression problem:
(
𝑟 (𝑥, 𝑦) − 1

𝜂

(
ln(𝑍 (𝑥)) + ln

(
𝜋𝑡+1 (𝑦 |𝑥 )
𝜋𝑡 (𝑦 |𝑥 )

)))2
. Unfortunately, this loss

function includes the partition function 𝑍 (𝑥), which can be challenging to approximate over large input / output
domains. However, observe that 𝑍 (𝑥) only depends on 𝑥 and not 𝑦. Thus, if we have access to paired samples,
i.e. (𝑥, 𝑦) and (𝑥, 𝑦′), we can instead regress the difference in rewards to eliminate this term:(

(𝑟 (𝑥, 𝑦) − 𝑟 (𝑥, 𝑦′)) − 1
𝜂

(
ln

(
𝜋𝑡+1 (𝑦 |𝑥)
𝜋𝑡 (𝑦 |𝑥)

)
− ln

(
𝜋𝑡+1 (𝑦′ |𝑥)
𝜋𝑡 (𝑦′ |𝑥)

)))2
. (5)
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Of course, we need to evaluate this loss function on some distribution of samples. In particular, we propose
using an on-policy dataset D𝑡 = {𝑥, 𝑦, 𝑦′} with 𝑥 ∼ 𝜌, 𝑦 ∼ 𝜋𝑡 (·|𝑥), 𝑦′ ∼ 𝜇(·|𝑥), where 𝜇 is some base
distribution. The base distribution 𝜇 can either be a fixed offline dataset (e.g. the instruction fine-tuning
dataset) or 𝜋𝑡 itself. Thus, the choice of base distribution 𝜇 determines whether REBEL is hybrid or fully online.
Putting it all together, we arrive at our core REBEL objective in Eq. 1. Critically, observe that if we were able to
perfectly solve this regression problem, we would indeed recover the optimal solution to the KL-constrained
RL problem we outlined in Eq. 2.

2.2 Extending REBEL to Stochastic MDPs

In this section, we demonstrate that REBEL can be applied to any stochastic MDP as long as we have the ability
to reset to the initial states. Let 𝑥 denote the initial state 𝑠0 of the MDP and 𝑦 represent a sequence of states
and actions (𝑎0, 𝑠1, 𝑎1, ..., 𝑎𝐻−1, 𝑠𝐻 ) where 𝐻 is the sequence length and 𝑎ℎ ∼ 𝜋𝜃 (·|𝑠ℎ). The probability of
trajectory 𝑦 given 𝑥 is 𝜋𝜃 (𝑦 |𝑥) =

∏
ℎ 𝜋𝜃 (𝑎ℎ |𝑠ℎ)𝑃(𝑠ℎ+1 |𝑠ℎ, 𝑎ℎ) where 𝑃 is the transition probability. As in a

policy gradient, observe that the transition probability cancels out since REBEL always uses probability ratios:
𝜋𝜃 (𝑦 |𝑥)/𝜋𝜃𝑡 (𝑦 |𝑥) =

∏
ℎ 𝜋𝜃 (𝑎ℎ |𝑠ℎ)/𝜋𝜃𝑡 (𝑎ℎ |𝑠ℎ). By resetting to the initial state 𝑠0, we can generate another

trajectory 𝑦′ from 𝜋𝜃 with length 𝐻′, leading to the following objective:

𝜃𝑡+1 = argmin
𝜃

∑︁
(𝑥,𝑦,𝑦′ ) ∈D𝑡

(
1
𝜂

(∑︁
ℎ

ln
𝜋𝜃 (𝑎ℎ |𝑠ℎ)
𝜋𝜃𝑡 (𝑎ℎ |𝑠ℎ)

−
∑︁
ℎ′

ln
𝜋𝜃 (𝑎′ℎ′ |𝑠

′
ℎ′ )

𝜋𝜃𝑡 (𝑎′ℎ′ |𝑠
′
ℎ′ )

)
− (𝑟 (𝑥, 𝑦) − 𝑟 (𝑥, 𝑦′))

)2

where 𝑠0 = 𝑠′0 = 𝑥. We emphasize again that we only require resetting to the initial states. We leave the
experimental validation of REBEL in stochastic MDPs to future work, but note that similar to REINFORCE, the
trajectory-level rewards can be high-variance, perhaps introducing the need for critic-based variance reduction
(Konda & Tsitsiklis, 1999; Mnih et al., 2016; Haarnoja et al., 2018).

3 Understanding REBEL as an Adaptive Policy Gradient

In this section, we interpret REBEL as an adaptive policy gradient method to illuminate relationship to past
techniques. For concision, we postpone an in-depth discussion of related work to Appendix A.

3.1 Adaptive Gradient Algorithms for Policy Optimization

Mirror Descent. If X and Y are small discrete spaces, we can use the closed-form expression for the minimum
relative entropy problem (Eq. 3). This is equivalent to the classic Mirror Descent (MD) algorithm with KL as
the Bregman divergence. Both NPG and PPO are approximations of MD.

Natural Policy Gradient. WhenY andX are large, we use a parameterized policy denoted as 𝜋𝜃 with parameter
𝜃. Natural Policy Gradient (NPG, Kakade (2001)) approximates the KL in Equation 2 via its second-order Taylor
expansion, whose Hessian is known as the Fisher Information Matrix (FIM, Bagnell & Schneider (2003)), 𝐹𝑡 ,
i.e. 𝐹𝑡 = E𝑥,𝑦∼𝜋𝜃𝑡 ( · |𝑥 )

[
∇ ln 𝜋𝜃𝑡 (𝑦 |𝑥)∇ ln 𝜋𝜃𝑡 (𝑦 |𝑥)⊤

]
. Thus, E𝑥KL(𝜋𝜃 (·|𝑥) | |𝜋𝜃𝑡 (·|𝑥)) ≈ (𝜃 − 𝜃𝑡 )⊤𝐹𝑡 (𝜃 − 𝜃𝑡 ).

The NPG update can be formulated as:

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝐹
†
𝑡

(
E𝑥,𝑦∼𝜋𝜃𝑡 ( · |𝑥 )∇ ln 𝜋𝜃𝑡 (𝑦 |𝑥)𝑟 (𝑥, 𝑦)

)
(6)

where 𝐹
†
𝑡 is pseudo-inverse of 𝐹𝑡 . As mentioned above, this update procedure can be understood as performing

gradient updates in the local geometry induced by the Fisher information matrix, which ensures that we are
taking small steps in policy space rather than in parameter space. NPG, unfortunately, does not scale to modern
settings due to need of inverting the FIM at each iteration.

Proximal Policy Optimization. Proximal Policy Optimization (PPO, Schulman et al. (2017)) takes a more
direct route than NPG and uses clipped updates

𝜃𝑡+1 := argmax
𝜃

E𝑥,𝑦∼𝜋𝜃𝑡 ( · |𝑥 )clip
(
𝜋𝜃 (𝑦 |𝑥)
𝜋𝜃𝑡 (𝑦 |𝑥)

; 1 − 𝜖, 1 + 𝜖

)
𝑟 (𝑥, 𝑦). (7)
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While the clipping operator can set the gradient to be zero at samples (𝑥, 𝑦) where 𝜋𝜃𝑡+1 (𝑦 |𝑥) is much larger
or smaller than 𝜋𝜃𝑡 (𝑦 |𝑥), it cannot actually guarantee 𝜋𝜃𝑡+1 staying close to 𝜋𝜃𝑡 , a phenomenon empirically
observed in prior work (Hsu et al., 2020). Furthermore, hard clipping is not adaptive – it treats all (𝑥, 𝑦) equally
and clips whenever the ratio is outside of a fixed range. In contrast, constraining the KL divergence to the prior
policy allows one to vary the ratio 𝜋(𝑦 |𝑥)/𝜋𝑡 (𝑦 |𝑥) at different (𝑥, 𝑦), as long as the total KL divergence across
the state space is small. Lastly, clipping reduces the effective size of a batch of training examples and thus
wastes training samples.

3.2 Connections between REBEL and MD / NPG

Exact REBEL is Mirror Descent. First, to build intuition, we interpret our algorithm’s behavior under the
assumption that the least square regression optimization returns the exact Bayes Optimal solution (i.e., our
learned predictor achieves zero prediction error everywhere):

∀𝑥, 𝑦, 𝑦′ :
1
𝜂

(
ln

𝜋𝜃𝑡+1 (𝑦 |𝑥)
𝜋𝜃𝑡 (𝑦 |𝑥)

− ln
𝜋𝜃𝑡+1 (𝑦′ |𝑥)
𝜋𝜃𝑡 (𝑦′ |𝑥)

)
= 𝑟 (𝑥, 𝑦) − 𝑟 (𝑥, 𝑦′) (8)

Conditioned on Eq. 8 being true, a few lines of algebraic manipulation reveal that there must exist a function
𝑐(𝑥) which is independent of 𝑦, such that ∀𝑥, 𝑦 : 1

𝜂
ln 𝜋𝜃𝑡+1 (𝑦 |𝑥 )

𝜋𝜃𝑡 (𝑦 |𝑥 )
= 𝑟 (𝑥, 𝑦) + 𝑐(𝑥). Taking an exp on both sides

and re-arrange terms, we get ∀𝑥, 𝑦 : 𝜋𝜃𝑡+1 (𝑦 |𝑥) ∝ 𝜋𝜃𝑡 (𝑦 |𝑥) exp (𝜂𝑟 (𝑥, 𝑦)). In other words, under the strong
assumption that least square regression returns a point-wise accurate estimator (i.e., Eq. 8), we see the REBEL
recovers the exact MD update, which gives it (a) a fast 1/𝑇 convergence rate (Shani et al., 2020; Agarwal et al.,
2021a), (b) conservativity, i.e., max𝑥 KL(𝜋𝑡+1 (·|𝑥) | |𝜋𝑡 (·|𝑥)) is bounded as long as max𝑥,𝑦 |𝑟 (𝑥, 𝑦) | is bounded,
and (c) monotonic policy improvement via the NPG standard analysis (Agarwal et al., 2021a).

NPG is Approximate REBEL with Gauss-Newton Updates. We provide another interpretation of REBEL by
showing that NPG (Eq. 6) can be understood as a special case of REBEL where the least square problem in
Eq. 1 is approximately solved via a single iteration of the Gauss-Newton algorithm. We start by approximating
our predictor 1

𝜂
ln 𝜋𝜃 (𝑦 |𝑥)/𝜋𝜃𝑡 (𝑦 |𝑥) by its first order Taylor expansion at 𝜃𝑡 : 1

𝜂

(
ln 𝜋𝜃 (𝑦 |𝑥) − ln 𝜋𝜃𝑡 (𝑦 |𝑥)

)
≈

1
𝜂
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥)⊤ (𝜃 − 𝜃𝑡 ), where ≈ indicates that we ignore higher order terms in the expansion. Define

𝛿 := 𝜃 − 𝜃𝑡 and replace 1
𝜂

(
ln 𝜋𝜃 (𝑦 |𝑥) − ln 𝜋𝜃𝑡 (𝑦 |𝑥)

)
by its first order approximation in Eq. 1. Then, we have :

min
𝛿
E𝑥∼𝜌,𝑦∼𝜋𝜃𝑡 ( · |𝑥 ) ,𝑦′∼𝜇 ( · |𝑥 )

(
1
𝜂

(
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥) − ∇𝜃 ln 𝜋𝜃𝑡 (𝑦′ |𝑥)

)⊤
𝛿 − (𝑟 (𝑥, 𝑦) − 𝑟 (𝑥, 𝑦′))

)2
(9)

Further simplifying notation, we denote the uniform mixture of 𝜋𝑡 and 𝜇 as 𝜋𝑚𝑖𝑥 (·|𝑥) :=
(𝜋𝑡 (·|𝑥) + 𝜇(·|𝑥))/2 and the Fisher information matrix 𝐹𝑡 averaged under said mixture as
𝐹𝑡 = E𝑥∼𝜌,𝑦∼𝜋𝑚𝑖𝑥 ( · |𝑥 )

[
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥)

(
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥)

)⊤]
. Solving the above least squares problem to

obtain a minimum norm solution, we have the following result.

Claim 1. The minimum norm minimizer 𝛿★ of the least squares problem in Eq. 9 recovers an advantage-based
NPG update: 𝛿★ := 𝜂𝐹

†
𝑡

(
E𝑥∼𝜌,𝑦∼𝜋𝑚𝑖𝑥 ( · |𝑥 )∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥) [𝐴𝜋𝑡 (𝑥, 𝑦)]

)
where 𝐹

†
𝑡 is pseudo-inverse of 𝐹𝑡 , and

the advantage is defined as 𝐴𝜋𝑡 (𝑥, 𝑦) := 𝑟 (𝑥, 𝑦) − E𝑦′∼𝜋𝑡 ( · |𝑥 )𝑟 (𝑥, 𝑦).

The proof of this claim is deferred to Appendix B.

The implicit variance reduction effect of REBELWe show that regressing to relative rewards has a variance
reduction effect by extending the previous derivation on REBEL with Gauss-Newton update to the setting
of finite data D = {𝑥𝑛, 𝑦𝑛, 𝑦′𝑛}𝑁𝑛=1. Denote the unbiased estimate of the Fisher information matrix as
�̂�𝑡 =

1
𝑁

∑𝑁
𝑛=1

[
∇𝜃 ln 𝜋𝜃𝑡 (𝑦𝑛 |𝑥𝑛)

(
∇𝜃 ln 𝜋𝜃𝑡 (𝑦𝑛 |𝑥𝑛)

)⊤]
and have the following claim.

Claim 2. The minimum norm minimizer 𝛿★ in Eq. 9 under finite setting has the form 𝛿★ :=
𝜂�̂�

†
𝑡

1
2𝑁

∑
𝑛

(
∇ ln 𝜋𝜃𝑡 (𝑦𝑛 |𝑥𝑛) (𝑟 (𝑥𝑛, 𝑦𝑛) − 𝑟 (𝑥𝑛, 𝑦′𝑛)) + ∇ ln 𝜋𝜃𝑡 (𝑦′𝑛 |𝑥𝑛) (𝑟 (𝑥𝑛, 𝑦′𝑛) − 𝑟 (𝑥𝑛, 𝑦𝑛))

)
where �̂�

†
𝑡 is

pseudo-inverse of �̂�𝑡 .
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Model size Algorithm Winrate (↑) RM Score (↑) KL(𝜋 | |𝜋𝑟𝑒 𝑓 ) (↓)

1.4B

SFT 24.9 (±2.73) -0.51 (±0.05) -
DPO 42.7 (±1.79) 0.10 (±0.02) 29.6 (±0.63)

Iterative DPO 47.2 (±1.34) 1.73 (±0.05) 29.7 (±0.57)
PPO 51.7 (±1.42) 1.74 (±0.04) 29.3 (±0.61)
REBEL 55.1 (±1.35) 1.84 (±0.04) 32.6 (±0.59)

2.8B

SFT 28.2 (±2.31) -0.38 (±0.06) -
DPO 53.7 (±1.63) 2.40 (±0.02) 64.3 (±1.25)

Iterative DPO 63.1 (±1.41) 2.37 (±0.03) 28.1 (±0.51)
PPO 67.4 (±1.30) 2.37 (±0.03) 27.2 (±0.55)
REBEL 70.2 (±1.32) 2.44 (±0.02) 29.0 (±0.60)

Model size Algorithm Winrate (↑)

6.9B

SFT 45.2 (±2.49)
DPO 68.4 (±2.01)

REINFORCE 70.7∗

PPO 77.6‡

RLOO (𝑘 = 2) 74.2∗

RLOO (𝑘 = 4) 77.9∗

REBEL 78.1 (±1.74)

* directly obtained from Ahmadian et al. (2024)
‡ directly obtained from Huang et al. (2024)

Table 1: Results on TL;DR Summarization. Results are averaged over three seed and the standard deviations
across seeds are in parentheses. The best-performing method for each size and metric is highlighted in bold
and the second best is underlined. REBEL outperforms all baselines on winrate.

The proof of this claim is deferred to Appendix C. Looking at the gradient formulation
∇ ln 𝜋𝜃𝑡 (𝑦𝑛 |𝑥𝑛)

(
𝑟 (𝑥𝑛, 𝑦𝑛) − 𝑟 (𝑥𝑛, 𝑦′𝑛)

)
in 𝛿★, we see that 𝑟 (𝑥𝑛, 𝑦′𝑛) serves as a baseline for variance re-

duction. Interestingly, this gradient formulation is equivalent to RLOO (REINFORCE with leave-one-out)
(Kool et al., 2019). However, different from RLOO, we pre-condition this variance reduced policy gradient
formulation via the Fisher information matrix, leading to better performance.

A REBELWith a Cause. Our algorithm REBEL addresses the limitations of NPG (scalability) and PPO (lack of
conservativity or adaptivity) from above. First, unlike NPG, it does not rely on the Fisher Information Matrix
at all and can easily scale to modern LLM applications, yet can be interpreted as a generalization of NPG.
Second, in contrast to PPO, it doesn’t have unjustified heuristics and thus enjoys strong convergence and regret
guarantees just like NPG. Building on Swamy et al. (2024), we show how to extend REBEL to preference-based
settings without assuming transitivity in Appendix D. We relax the point-wise out-of-distribution generalization
assumption in this section via a reduction-based analysis in Appendix E.

4 Experiments

Our implementation of REBEL closely follows the psuedocode in Algorithm 1. In each iteration, REBEL collects
a dataset D𝑡 = {𝑥, 𝑦, 𝑦′}, where 𝑥 ∼ 𝜌, 𝑦 ∼ 𝜋𝑡 (·|𝑥), 𝑦′ ∼ 𝜇(·|𝑥). Subsequently, REBEL optimizes the least
squares regression problem in Eq. 1 through gradient descent with AdamW (Loshchilov & Hutter, 2017). We
choose 𝜇 = 𝜋𝑡 such that both 𝑦 and 𝑦′ are generated by the current policy. We empirically assess REBEL’s
performance on both natural language generation and text-guided image generation. Additional experiment
details are in Appendix I.

4.1 Summarization

Task. We use the TL;DR dataset (Stiennon et al., 2020) where 𝑥 is a forum post from Reddit and 𝑦 is a
summary generated by the policy. The dataset comprises human reference summaries and preference data. We
compare REBEL with baseline RL algorithms, REINFORCE (Williams, 1992), REINFORCE Leave-One-Out
(RLOO) (Kool et al., 2019), PPO, DPO, and Iterative DPO (Guo et al., 2024). The implementation detail of the
baseline methods is provided in Appendix I.1.3. Following prior work (Stiennon et al., 2020; Rafailov et al.,
2023; Ahmadian et al., 2024), we train DPO on the preference dataset, while conducting online RL (RLOO,
PPO, Iterative DPO, REBEL) on the human reference dataset. We include results with three different model
sizes: 1.4B, 2.8B, and 6.9B based on the pre-trained models from Pythia (Biderman et al., 2023).

Evaluation. We evaluate each method by its balance between reward model score and KL-divergence with the
SFT policy, testing the effectiveness of the algorithm in optimizing the regularized RL objective. To evaluate
the quality of the generation, we compute the winrate (Rafailov et al., 2023) against human references using
GPT4 (OpenAI, 2023a). The winrate is computed from a randomly sampled subset (10%) of the test set with
600 samples. We report the average results over three seeds.
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Quality Analysis. Table 1 presents a comparison between REBEL and baseline methods. Notably, REBEL
outperforms all the baselines on RM score with 1.4B and 2.8B parameters with a slightly larger KL than
PPO. In addition, REBEL achieves the highest winrate under GPT4 when evaluated against human references,
indicating the benefit of regressing the relative rewards. An ablation analysis on parameter 𝜂 is in Appendix K
and the trade-off between the reward model score and KL-divergence is discussed in Appendix L.
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Figure 2: Plot of runtime and memory usage.
Baselines on the left-hand side of the dashed line
have lower winrates. Methods on the right-hand side
of the dashed line have similar winrates to REBEL.

Runtime & Memory Analysis. We analyze the runtime
and peak memory usage for 2.8B models with REIN-
FORCE, RLOO, PPO, DPO, Iterative DPO, and REBEL.
The runtime includes both the generation time and the
time required for policy updates. Both runtime and peak
memory usage are measured on A6000 GPUs using the
same hyperparameters detailed in Appendix I.1.4 for a
batch of 512 prompts. The measurements are averaged
over 100 batches. Methods are ascendingly ordered by
winrate. To the right of the dashed line, PPO, RLOO
(𝑘 = 4), and REBEL have the highest winrates, which are
comparable among them.

While DPO and REINFORCE are more time and
memory-efficient, their performance does not match
up to REBEL, as shown in Table 1. RLOO (𝑘 = 2) and
Iterative DPO have similar runtime and memory usage
as REBEL since we set 𝜇 = 𝜋𝑡 , making REBEL also generate twice per prompt. However, both methods have
worse performance than REBEL. Compared to PPO and RLOO (𝑘 = 4), REBEL demonstrates shorter runtimes
and lower peak memory usage. PPO is slow and requires more memory since it needs to update two networks
(the policy network and the value network). RLOO (𝑘 = 4) requires four generations per prompt which makes
it slow and less memory efficient. In summary, compared to the two baselines (PPO and RLOO (𝑘 = 4)) that
achieve similar winrates as REBEL, REBEL is more computationally tractable and simpler to implement.

4.2 General Chat

Task. We consider a general chat scenario where 𝑥 is a prompt from the user and 𝑦 is a response. To
demonstrate the robustness of our method, we apply REBEL on two entirely different sets of models and
datasets. For the first set, we adapt the setting from Zhu et al. (2023a), using OpenChat-3.5 (Wang et al.,
2024) as the base model, Starling-RM-7B-alpha (Zhu et al., 2023a) as the reward model, and the Nectar
dataset (Zhu et al., 2023a). For the second set, we use Meta-Llama-3-8B-Instruct (Meta, 2024) as the
base model, FsfairX-LLaMA3-RM-v0.1 (Xiong et al., 2024a) as the reward model, and the UltraFeedback
dataset (Cui et al., 2023). We compare with Starling-LM-7B-alpha, which uses the same setup as the first set,
and the current state-of-the-art chat models.

Evaluation. Following previous works, we use AlpacaEval 2.0 (Dubois et al., 2024a), MT-Bench (Zheng et al.,
2023), and MMLU (Hendrycks et al., 2021) as metrics. AlpacaEval 2.0 uses prompts from AlpacaFarm (Dubois
et al., 2024b) to compare model responses against a reference response generated by GPT-4-Turbo. We report
the winrate over the reference responses. MT-Bench consists of 80 open-ended questions on various topics.
Answers are scored directly by GPT-4. MMLU evaluates models across diverse subjects, measuring accuracy
to assess real-world language understanding and generation capabilities.

Quality Analysis. The results between models trained with REBEL and baseline methods are shown in
Table 2. Under the same setup, REBEL-OpenChat-3.5 outperforms Starling-LM-7B-alpha which is trained with
APA (Zhu et al., 2023c) on all three metrics, demonstrating the effectiveness of REBEL under chat setting and
its superior performance over APA. REBEL-Llama-3 outperforms several state-of-the-art models including
GPT-3.5-Turbo, Genimi Pro, and Claude 2 on MT-Bench and AlpacaEval 2.0 with only 8B parameters. Similar
values on MMLU as base models indicate we preserve the basic capability of the pre-trained model during the
RL fine-tuning process. We include a the full Open LLM leaderboard (Beeching et al., 2023) evaluation suite
in Appendix N and a breakdown of MT-Bench in Appendix O.
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Model MMLU (5-shot) MT-Bench AlpacaEval 2.0
1st Turn 2nd Turn Average LC Win Rate Win Rate

Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) 59.2 7.78 7.25 7.51 17.1 14.7
OpenChat-3.5 (Wang et al., 2024) 63.6 8.03 7.35 7.69 12.2 11.7

Starling-LM-7B-alpha (Zhu et al., 2023a) 63.4 8.18 6.69 7.43 14.7 14.2
Meta-Llama-3-8B-Instruct (Meta, 2024) 65.8 8.31 7.89 8.10 22.9 22.6

GPT-3.5-Turbo (OpenAI, 2023b) 70.0 - - 7.94 18.1 9.6
Gemini Pro (Google, 2024) 71.8 - - - 24.4 18.2
Claude 2 (Anthropic, 2023) 78.5 - - 8.06 28.2 17.2

GPT-4 (OpenAI, 2023a) 86.4 - - 8.96 35.3 22.1

REBEL-OpenChat-3.5 63.7(+0.1) 8.54(+0.51) 7.58(+0.23) 8.06(+0.37) 17.3(+5.1) 12.8(+1.1)
REBEL-Llama-3 65.8(+0.0) 8.63(+0.32) 7.69(−0.20) 8.16(+0.06) 30.1(+7.2) 32.6(+10.0)

Table 2: Results on General Chat. The values in parentheses denote the improvement from the respective
base models. The colors group the base model with the respective REBEL finetuned model.

4.3 Image Generation

Task. We also consider the setting of image generation, where, given a consistency model (Song et al., 2023a)
and a target reward function, we seek to train the consistency model to output images that garner a higher
reward. We use 45 common animals as generation prompts similar to Black et al. (2023); Oertell et al. (2024)
and the latent consistency model (Luo et al., 2023) distillation of the Dreamshaper v7 model, a finetune of
stable diffusion (Rombach et al., 2021). We compare REBEL to a clipped, policy gradient objective (Black et al.,
2023; Fan et al., 2024; Oertell et al., 2024) with the aim to optimize aesthetic quality to obtain a high reward
from the LAION aesthetic score predictor (Schuhmann, 2022). This baseline does not use critics or GAE for
advantage estimates. However, the clipping objective is clearly motivated by PPO, and thus, we simply name
this baseline as PPO.

Evaluation. We evaluate on the reward under the LAION aesthetic reward model for an equal number of
reward queries/samples generated and an equal number of gradient updates. The aesthetic predictor is trained
to predict human-labeled scores of images on a scale of 1 to 10. Images that tend to have the highest reward
are artwork. Following Agarwal et al. (2021b), we report inter-quartile means (IQM) with 95% confidence
intervals (CIs) across three seeds for both REBEL and PPO. The CIs were calculated with percentile bootstrap
with stratified sampling over three random seeds.
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Figure 3: Learning curves as a function
of reward queries to the LAION aesthetic
predictor. The colored areas represent 95%
CIs.

Quality Analysis. Figure 3 shows REBEL optimizes the con-
sistency model faster during the beginning of training and
eventually achieves a performance similar to that of PPO. For
our experiments, we tuned both batch size and learning rate for
our algorithms, testing batch sizes of [4, 8, 16] per GPU and
learning rates [1e−4, 3e−4, 6e−4, 1e−3]. The main difference
in implementation between PPO and REBEL is the replacement
of the clipped PPO objective with our regression objective. To
maximize LAION-predicted aesthetic quality, both REBEL and
PPO transform a model that produces plain images into one that
produces artistic drawings. We found across multiple seeds that
REBEL produced lush backgrounds when compared to PPO’s
generations. Please see Appendix J.3 for more examples of
generated images.

5 Conclusion

We propose REBEL, an RL algorithm that reduces the problem of RL to solving a sequence of relative reward
regression problems on iteratively collected datasets. In contrast to policy gradient approaches that require
additional networks and heuristics like clipping to ensure optimization stability, it suffices for REBEL to merely
drive down error on a least squares problem, making it strikingly simple to implement and scale. In theory,
REBEL matches the best guarantees we have for RL algorithms in the agnostic setting, while in practice, REBEL
is able to match and sometimes outperform methods that are far more complex to implement or expensive to
run across both language modeling and guided image generation tasks.
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A Related Work

Policy Gradients. Policy gradient (PG) methods (Nemirovskĳ & Yudin, 1983; Williams, 1992; Konda &
Tsitsiklis, 1999; Kakade, 2001; Schulman et al., 2017) are a prominent class of RL algorithms due to their
direct, gradient-based policy optimization, robustness to model misspecification (Agarwal et al., 2020), and
scalability to modern AI applications from fine-tuning LLMs (Stiennon et al., 2022) to optimizing text-to-image
generators (Oertell et al., 2024).

Broadly speaking, we can taxonomize PG methods into two families. The first family is based on REINFORCE
(Williams, 1992) and often includes variance reduction techniques (Kool et al., 2019; Richter et al., 2020; Zhu
et al., 2023b). While prior work by Ahmadian et al. (2024) has shown that REINFORCE-based approaches
can outperform more complex RL algorithms like PPO on LLM fine-tuning tasks like TL;DR, we find that
a properly optimized version of PPO still out-performs a REINFORCE baseline. The second family is
adaptive PG techniques that precondition the policy gradient (usually with the inverse of the Fisher Information
Matrix) to ensure it is covariant to re-parameterizations of the policy, which include NPG (Kakade, 2001;
Bagnell & Schneider, 2003) and its practical approximations like TRPO (Schulman et al., 2015a) and PPO
(Schulman et al., 2017). Intuitively, the preconditioning ensures that we make small changes in terms of action
distributions, rather than in terms of the actual policy parameters, leading to faster and more stable convergence.
Unfortunately, computing and then inverting the Fisher Information Matrix is computationally intensive and
therefore we often resort to approximations in practice, as done in TRPO. However, these approximations are
still difficult to apply to large-scale generative models, necessitating even coarser approximations like PPO. In
contrast, REBEL does not need any such approximations to be implemented at scale, giving us a much closer
connection between theory and practice.

Reward Regression. The heart of REBEL is a novel reduction from RL to iterative squared loss regression.
While using regression to fit either the reward (Peters & Schaal, 2007) or the value (Peng et al., 2019) targets
which are then used to extract a policy have previously been explored, our method instead takes a page from
DPO (Rafailov et al., 2023; Zhou et al., 2023b) and inverse RL methods (Jacq et al., 2019; Watson et al., 2023)
to implicitly parameterize the reward regressor in terms of the policy. This collapses the two-stage procedure
of prior methods into a single step.

Preference Fine-Tuning (PFT) of Generative Models. RL has attracted renewed interest due to its central
role in “aligning” language models – i.e., adapting their distribution of prompt completions towards the set of
responses preferred by human raters.

One family of techniques for PFT, often referred to as Reinforcement Learning from Human Feedback (RLHF)
involves first fitting a reward model (i.e. a classifier) to the human preference data and then using this model
to provide reward values to a downstream RL algorithm (often PPO) (Christiano et al., 2017; Ziegler et al.,
2020). LLMs fine-tuned by this procedure include GPT-N (OpenAI, 2023a), Claude-N (Anthropic, 2024),
and Llama-N (Meta, 2024). Similar approaches have proved beneficial for tasks like summarization (Stiennon
et al., 2022), question answering (Nakano et al., 2022), text-to-image generation (Lee et al., 2023), and
instruction following (Ouyang et al., 2022).

Another family of techniques for PFT essentially treats the problem as supervised learning and uses a variety of
ranking loss functions. It includes DPO (Rafailov et al., 2023), IPO (Azar et al., 2023), and KTO (Ethayarajh
et al., 2023). These techniques are simpler to implement as they remove components like an explicit reward
model, value network, and on-policy training from the standard RLHF setup. However, recent work finds their
performance to be lesser than that of on-policy methods (Lambert et al., 2024; Tajwar et al., 2024), which
agrees with our findings. This is perhaps caused by their lack of interaction during training, leading to the
well-known covariate shift/compounding error issue (Ross et al., 2011; Swamy et al., 2021) and the associated
lower levels of performance.

The third family of PFT techniques combines elements from the previous two: it involves running an offline
algorithm iteratively, collecting on-policy preference feedback from either a supervisor model (Rosset et al.,
2024; Xiong et al., 2024b; Guo et al., 2024) or from a preference model fit on human data (Calandriello et al.,
2024). All of these approaches can be considered instantiations of the general SPO reduction proposed by
Swamy et al. (2024), which itself can be thought of as a preference-based variant of DAgger (Ross et al., 2011).



RLJ | RLBRew Workshop @ RLC 2024

Recent work by Tajwar et al. (2024) confirms the empirical strength of these techniques. Our approach fits
best into this family of techniques – we also iteratively update our model by solving a sequence of supervised
learning problems over on-policy datasets. However, REBEL comes with several key differentiating factors
from the prior work. Online versions of DPO or IPO (Xiong et al., 2024b; Tajwar et al., 2024; Guo et al., 2024;
Calandriello et al., 2024; Munos et al., 2023) essentially use a reward / preference model to generate binary
win-loss labels while REBEL actually uses the output of the reward model as a regression target, as in Rosset
et al. (2024); Mao et al. (2024); Wu et al. (2024), taking advantage of this more nuanced feedback. In contrast
to Rosset et al. (2024), we are able to prove policy performance bounds without assuming we perfectly solve
the regression problem at each iteration. Unlike Mao et al. (2024) that regularize to the initial policy 𝜋0 during
updates, we perform conservative updates by regularizing 𝜋𝑡+1 to 𝜋𝑡 . When doing the former, it is difficult to
prove convergence or monotonic improvement as the current policy can just bounce around a ball centered at
𝜋0, a well-known issue in the theory of approximate policy iteration (Kakade & Langford, 2002; Munos, 2003).
In contrast, by incorporating the prior policy’s probabilities into our regression problem, we are able to prove
stronger guarantees for REBEL. Unlike Wu et al. (2024), by using paired samples, we do not need to resort to
heuristic approximations of the partition function. Furthermore, we can run REBEL with datasets consisting of a
mixture of on-policy and off-policy data with strong guarantees, enabling hybrid training, as previously explored
in the RL (Song et al., 2023b; Ball et al., 2023; Zhou et al., 2023a) and inverse RL (Ren et al., 2024) literature.
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B Proof of Claim 1

We prove claim 1 in this section. We start from deriving the Fisher information matrix.

𝐹𝑡 :=
1
𝜂2E𝑥,𝑦∼𝜋𝑡 ,𝑦′∼𝜇

(
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥) − ∇𝜃 ln 𝜋𝜃𝑡 (𝑦′ |𝑥)

) (
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥) − ∇𝜃 ln 𝜋𝜃𝑡 (𝑦′ |𝑥)

)⊤
=

2
𝜂2E𝑥,𝑦∼𝜋𝑚𝑖𝑥

∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥)∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥)⊤

where the last equality uses the fact that cross terms from completing the square are zero. Now recall Eq. 9
which is an ordinarly least square regression problem. The minimum norm solution of the least square
regression problem is:

𝛿 = (𝜂/2)�̃�†
𝑡

(
E𝑥,𝑦∼𝜋𝑡 ,𝑦′∼𝜇

(
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥) − ∇𝜃 ln 𝜋𝜃𝑡 (𝑦′ |𝑥)

)
(𝑟 (𝑥, 𝑦) − 𝑟 (𝑥, 𝑦′))

)
= (𝜂/2)�̃�†

𝑡

(
E𝑥,𝑦∼𝜋𝑡

[
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥)𝑟 (𝑥, 𝑦)

]
+ E𝑥,𝑦′∼𝜇

[
∇𝜃 ln 𝜋𝜃𝑡 (𝑦′ |𝑥)𝑟 (𝑥, 𝑦′)

]
− E𝑥,𝑦∼𝜋𝑡 ,𝑦′∼𝜇∇𝜃 ln 𝜋𝜃𝑡 (𝑦′ |𝑥)𝑟 (𝑥, 𝑦)

)
= (𝜂/2)�̃�†

𝑡

(
E𝑥,𝑦∼𝜋𝑡

[
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥) [𝑟 (𝑥, 𝑦) − E𝑦′∼𝜋𝑡 ( · |𝑥 )𝑟 (𝑥, 𝑦′)

]
+ E𝑥,𝑦∼𝜇

[
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥) [𝑟 (𝑥, 𝑦) − E𝑦′∼𝜋𝑡 ( · |𝑥 )𝑟 (𝑥, 𝑦′)

] )
= (𝜂)�̃�†

𝑡

(
E𝑥,𝑦∼(𝜋𝑡+𝜇)/2

[
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥) [𝐴𝜋𝑡 (𝑥, 𝑦)

] )
where we again use the fact that E𝑦∼𝜋𝜃𝑡 ( · |𝑥 )∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥)𝑔(𝑥) = 0 for any function 𝑔(𝑥), and we define
Advantage 𝐴𝜋 (𝑥, 𝑦) := 𝑟 (𝑥, 𝑦) − E𝑦′∼𝜋 ( · |𝑥 )𝑟 (𝑥, 𝑦′).
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C Proof of Claim 2

We prove claim 2 in this section. We start by approximating our predictor 1
𝜂

ln 𝜋𝜃 (𝑦 |𝑥)/𝜋𝜃𝑡 (𝑦 |𝑥) by its first
order Taylor expansion at 𝜃𝑡 : 1

𝜂

(
ln 𝜋𝜃 (𝑦 |𝑥) − ln 𝜋𝜃𝑡 (𝑦 |𝑥)

)
≈ 1

𝜂
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥)⊤ (𝜃 − 𝜃𝑡 ), where ≈ indicates that

we ignore higher order terms in the expansion. Setting 𝛿 := 𝜃 − 𝜃𝑡 and replace 1
𝜂

(
ln 𝜋𝜃 (𝑦 |𝑥) − ln 𝜋𝜃𝑡 (𝑦 |𝑥)

)
by

its first order approximation in Eq. 1, we arrive at:

min
𝛿

∑︁
(𝑥,𝑦,𝑦′ ) ∈D𝑡

(
1
𝜂

(
∇𝜃 ln 𝜋𝜃𝑡 (𝑦 |𝑥) − ∇𝜃 ln 𝜋𝜃𝑡 (𝑦′ |𝑥)

)⊤
𝛿 − (𝑟 (𝑥, 𝑦) − 𝑟 (𝑥, 𝑦′))

)2
(10)

under finite setting.

Following the previous derivation, we have the unbiased estimate of Fisher information matrix under the finite
setting as:

�̂�𝑡 :=
2

𝜂2𝑁

∑︁
𝑥𝑛 ,𝑦𝑛∼𝜋𝑚𝑖𝑥

∇𝜃 ln 𝜋𝜃𝑡 (𝑦𝑛 |𝑥𝑛)∇𝜃 ln 𝜋𝜃𝑡 (𝑦𝑛 |𝑥𝑛)⊤

Since Eq. 10 is an ordinarly least square regression problem. The minimum norm solution of the least square
regression problem is:

𝛿 = (𝜂/2) ˜̂𝐹†
𝑡

1
𝑁

∑︁
𝑛

(
∇𝜃 ln 𝜋𝜃𝑡 (𝑦𝑛 |𝑥𝑛) − ∇𝜃 ln 𝜋𝜃𝑡 (𝑦′𝑛 |𝑥𝑛)

) (
𝑟 (𝑥𝑛, 𝑦𝑛) − 𝑟 (𝑥𝑛, 𝑦′𝑛)

)
= 𝜂 ˜̂𝐹†

𝑡

1
2𝑁

∑︁
𝑛

(
∇ ln 𝜋𝜃𝑡 (𝑦𝑛 |𝑥𝑛) (𝑟 (𝑥𝑛, 𝑦𝑛) − 𝑟 (𝑥𝑛, 𝑦′𝑛)) + ∇ ln 𝜋𝜃𝑡 (𝑦′𝑛 |𝑥𝑛) (𝑟 (𝑥𝑛, 𝑦′𝑛) − 𝑟 (𝑥𝑛, 𝑦𝑛))

)
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D Extending REBEL to General Preferences

In the above discussion, we assume we are given access to a ground-truth reward function. However, in the
generative model fine-tuning applications of RL, we often need to learn from human preferences, rather than
rewards. This shift introduces a complication: not all preferences can be rationalized by an underlying utility
function. In particular, intransitive preferences which are well-known to result from aggregation of different
sub-populations or users evaluating different pairs of items on the basis of different features (May, 1954;
Tversky, 1969; Gardner, 1970) cannot be accurately captured by a single reward model. To see this, note that if
we have 𝑎 ≻ 𝑏, 𝑏 ≻ 𝑐, and 𝑐 ≻ 𝑎, it is impossible to have a reward model that simultaneously sets 𝑟 (𝑎) > 𝑟 (𝑏),
𝑟 (𝑏) > 𝑟 (𝑐), and 𝑟 (𝑐) > 𝑟 (𝑎). As we increase the space of possible choices to that of all possible prompt
completions, the probability of such intransitivities sharply increases (Dudík et al., 2015), as reflected in the
high levels of annotator disagreement in LLM fine-tuning datasets (Touvron et al., 2023). Thus, rather than
assuming access to a reward model, in such settings, we assume access to a preference model (Munos et al.,
2023; Swamy et al., 2024; Rosset et al., 2024; Ye et al., 2024).

D.1 A Game-Theoretic Perspective on Learning from Preferences

More specifically, for any tuple (𝑥, 𝑦, 𝑦′), we assume we have access to P(𝑦 ≻ 𝑦′ |𝑥): the probability that 𝑦 is
preferred to 𝑦′. We then define our preference model 𝑙 as

𝑙 (𝑥, 𝑦, 𝑦′) ≜ 2 · P(𝑦 ≻ 𝑦′ |𝑥) − 1. (11)

Observe that 𝑙 (𝑥, 𝑦, 𝑦′) ∈ [−1, 1] is skew-symmetric, i.e., 𝑙 (𝑥, 𝑦, 𝑦) = 0, 𝑙 (𝑥, 𝑦, 𝑦′) + 𝑙 (𝑥, 𝑦′, 𝑦) = 0 for all
𝑥 ∈ X, 𝑦, 𝑦′ ∈ Y. If the learner can only receive a binary feedback 𝑜 ∈ {0, 1} indicating the preference between
𝑦 and 𝑦′, we assume 𝑜 is sampled from a Bernoulli distribution with mean P(𝑦 ≻ 𝑦′ |𝑥), where 𝑜 = 1 means
that 𝑦 is preferred over 𝑦′ and 0 otherwise.

Given access to such a preference model, a solution concept to the preference aggregation problem with deep
roots in the social choice theory literature (Kreweras, 1965; Fishburn, 1984; Kramer, 1973; Simpson, 1969)
and the dueling bandit literature (Yue et al., 2012; Dudík et al., 2015) is that of a minimax winner (MW) 𝜋MW:
the Nash Equilibrium strategy of the symmetric two-player zero-sum game with 𝑙 as a payoff function. In
particular, due to the skew-symmetric property of 𝑙, Swamy et al. (2024) proved that there exists a policy 𝜋MW
such that

max
𝜋
E𝑥∼𝜌,𝑦∼𝜋 ( · |𝑥 ) ,𝑦′∼𝜋MW ( · |𝑥 ) [𝑙 (𝑥, 𝑦, 𝑦′)] = min

𝜋
E𝑥∼𝜌,𝑦∼𝜋MW ( · |𝑥 ) ,𝑦′∼𝜋 ( · |𝑥 ) [𝑙 (𝑥, 𝑦, 𝑦′)] .

This implies that (𝜋MW, 𝜋MW) is a Nash Equilibrium (Wang et al., 2023; Munos et al., 2023; Swamy et al.,
2024; Ye et al., 2024). As is standard in game solving, our objective is to obtain an 𝜖-approximate MW �̂�

measured by the duality gap (DG):

DG(�̂�) := max
𝜋
E𝑥∼𝜌,𝑦∼𝜋 ( · |𝑥 ) ,𝑦′∼𝜋 ( · |𝑥 ) [𝑙 (𝑥, 𝑦, 𝑦′)] − min

𝜋
E𝑥∼𝜌,𝑦∼𝜋 ( · |𝑥 ) ,𝑦′∼𝜋 ( · |𝑥 ) [𝑙 (𝑥, 𝑦, 𝑦′)] ≤ 𝜖 .

In the following discussion, we will use 𝑙 (𝑥, 𝑦, 𝜋) to denote E𝑦′∼𝜋 ( · |𝑥 ) [𝑙 (𝑥, 𝑦, 𝑦′)] and 𝑙 (𝜋, 𝜋′) to denote
E𝑥∼𝜌,𝑦∼𝜋 ( · |𝑥 ) ,𝑦′∼𝜋′ ( · |𝑥 ) [𝑙 (𝑥, 𝑦, 𝑦′)] for notational convenience.

D.2 Self-Play Preference Optimization (SPO) with REBEL as Base Learner

We can straightforwardly extend REBEL to the general preference setting via an instantiation of the Self-Play
Preference Optimization (SPO) reduction of Swamy et al. (2024). In short, Swamy et al. (2024) prove that
rather than performing adversarial training, we are able to perform a simple and stable self-play procedure
while retaining strong theoretical guarantees. Practically, this corresponds to sampling at leas two completions
from the current policy, querying a learned preference / supervisor model on each pair, and using the winrate
for each completion as its reward. We will now describe how we can adapt REBEL to this mode of feedback.
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Assuming that we can query the preference oracle 𝑙 (𝑥, 𝑦, 𝑦′) at will, we can modify the least square objective
Eq. (1) to

𝜃𝑡+1 := argmin
𝜃

∑︁
𝑥,𝑦,𝑦′ ,𝑦′′∈D𝑡

(
1
𝜂

(
ln

𝜋𝜃 (𝑦 |𝑥)
𝜋𝜃𝑡 (𝑦 |𝑥)

− ln
𝜋𝜃 (𝑦′ |𝑥)
𝜋𝜃𝑡 (𝑦′ |𝑥)

)
− (𝑙 (𝑥, 𝑦, 𝑦′′) − 𝑙 (𝑥, 𝑦′, 𝑦′′))

)2

where 𝑥 ∼ 𝜌, 𝑦 ∼ 𝜋𝑡 (·|𝑥), 𝑦′′ ∼ 𝜋𝑡 (·|𝑥), 𝑦′ ∼ 𝜇(·|𝑥). When the exact value of 𝑙 (𝑥, 𝑦, 𝑦′) is unavailable but only
a binary preference feedback 𝑜𝑦,𝑦′ ∈ {0, 1} sampling from Bernoulli with mean 𝑙 (𝑥, 𝑦, 𝑦′) is available, we can
just replace 𝑙 (𝑥, 𝑦, 𝑦′′) − 𝑙 (𝑥, 𝑦′, 𝑦′′) by 𝑜𝑦,𝑦′ − 𝑜𝑦′ ,𝑦′′ . It is easy to see that the Bayes optimal of the above
least square regression problem is equal to:

E𝑦′′∼𝜋𝑡 ( · |𝑥 ) 𝑙 (𝑥, 𝑦, 𝑦′′) − E𝑦′′∼𝜋𝑡 ( · |𝑥 ) 𝑙 (𝑥, 𝑦′, 𝑦′′) = 𝑙 (𝑥, 𝑦, 𝜋𝑡 ) − 𝑙 (𝑥, 𝑦′, 𝜋𝑡 ).

Swamy et al. (2024) define an iteration-dependent reward 𝑟𝑡 (𝑥, 𝑦) := E𝑦′′∼𝜋𝑡 ( · |𝑥 ) 𝑙 (𝑥, 𝑦, 𝑦′′) = 𝑙 (𝑥, 𝑦, 𝜋𝑡 ). Thus,
the above regression problem can be understood as an extension of REBEL to the setting where the reward
function changes at each iteration 𝑡. Swamy et al. (2024) shows that running the exact MD (Eq. 3) with this
iteration-dependent reward function 𝑟𝑡 leads to fast convergence to an approximate Minimax Winner, a property
that we will use to provide the regret bound of REBEL in the general preference setting while accounting for
nonzero mean squared error.



RLJ | RLBRew Workshop @ RLC 2024

E Theoretical Analysis

In Section 3, we interpret REBEL as exact MD and show its convergence by assuming that least square regression
always returns a predictor that is accurate everywhere. While such an explanation is simple and has also been
used in prior work (Calandriello et al., 2024; Rosset et al., 2024), point-wise out-of-distribution generalization
is an extremely strong condition and is significantly beyond what a standard supervised learning method can
promise. In this section, we substantially relax this condition via a reduction-based analysis. Formally, we
assume the following generalization condition holds on the regressors we find.
Assumption 1 (Regression generalization bounds). Over 𝑇 iterations, assume that for all 𝑡, we have the
following for some 𝜖:

E𝑥∼𝜌,𝑦∼𝜋𝑡 ( · |𝑥 ) ,𝑦′∼𝜇 ( · |𝑥 )

(
1
𝜂

(
ln

𝜋𝜃𝑡+1 (𝑦 |𝑥)
𝜋𝜃𝑡 (𝑦 |𝑥)

− ln
𝜋𝜃𝑡+1 (𝑦′ |𝑥)
𝜋𝜃𝑡 (𝑦′ |𝑥)

)
− (𝑟 (𝑥, 𝑦) − 𝑟 (𝑥, 𝑦′))

)2
≤ 𝜖,

Empirical support for this assumption is provided in Appendix F.

Data Coverage. Recall that the base distribution 𝜇 can be some behavior policy, which in RLHF can be a
human labeler, a supervised fine-tuned policy (SFT), or just the current learned policy (i.e., on-policy). Given a
test policy 𝜋, we denote by 𝐶𝜇→𝜋 the concentrability coefficient, i.e. 𝐶𝜇→𝜋 = max𝑥,𝑦

𝜋 (𝑦 |𝑥 )
𝜇 (𝑦 |𝑥 ) . We say 𝜇 covers

𝜋 if 𝐶𝜇→𝜋 < +∞. Our goal is to bound the regret between our learned policies and an arbitrary comparator
𝜋∗ (e.g. the optimal policy if it is covered by 𝜇) using 𝜖 and the concentrability coefficient. The following
theorem formally states the regret bound of our algorithm.
Theorem 1. Under Assumption 1, after 𝑇 many iterations, with a proper learning rate 𝜂, among the learned
policies 𝜋1, . . . , 𝜋𝑇 , there must exist a policy �̂�, such that:

∀𝜋∗ : E𝑥∼𝜌,𝑦∼𝜋∗ ( · |𝑥 )𝑟 (𝑥, 𝑦) − E𝑥∼𝜌,𝑦∼ �̂� ( · |𝑥 )𝑟 (𝑥, 𝑦) ≤ 𝑂

(√︂
1
𝑇
+

√︁
𝐶𝜇→𝜋∗𝜖 .

)
.

The above theorem shows a reduction from RL to supervised learning — as long as supervised learning works
(i.e., 𝜖 is small), then REBEL can compete against any policy 𝜋∗ that is covered by the base data distribution
𝜇. In the regret bound, the 1/

√
𝑇 comes from Mirror Descent style update, and 𝐶𝜇→𝜋∗𝜖 captures the cost

of distribution shift: we train our regressors under distribution 𝜋𝑡 and 𝜇, but we want the learned regressor
to predict well under 𝜋∗. Similar to the NPG analysis from Agarwal et al. (2021a), we now have a slower
convergence rate 1/

√
𝑇 , due to the fact that we have approximation error from learning. Such an agnostic

regret bound — being able to compete against any policy that is covered by training distributions — is the
strongest type of agnostic learning results known in the RL literature, matching the best of what has
appeared in prior policy optimization work including PSDP (Bagnell et al., 2003), CPI (Kakade & Langford,
2002), NPG (Agarwal et al., 2021a), and PC-PG (Agarwal et al., 2020). While in this work we use the simplest
and most intuitive definition of coverage, extension to more general ones such as transfer error (Agarwal et al.,
2020; 2021a) or concentrability coefficients that incorporate the function class (e.g., Song et al. (2023b)) is
straightforward. We defer the proof of the above theorem and the detailed constants that we omitted in the 𝑂
notation to Appendix G. We include an extension of the above analysis to the general preference setting in
Appendix H.
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F Justification for Assumption 1

Intuitively, this assumption is saying that there is a function in our class of regressors that is able to accurately
fit the difference of rewards. Recall that our class of regressors is isomorphic to our policy class. Therefore,
as long as our class of policies is expressive, we would expect this assumption to hold with small 𝜖 . For all
domains we consider, our policy class is a flexible set of generative models (e.g. Transformer-based LLMs or
diffusion models). Thus, we believe it is reasonable to believe this assumption holds in practice – see Figure 6
in Appendix M for empirical evidence of this point and Example 1 for more discussion.

More formally, the above assumption bounds the standard in-distribution generalization error (v.s. the
point-wise guarantee in Eq. 8) of a well-defined supervised learning problem: least squares regression. The
generalization error 𝜖 captures the possible errors from the learning process for 𝜃𝑡+1 and it could depend on
the complexity of the policy class and the number of samples used in the dataset D𝑡 . For instance, when the
the function ln 𝜋 − ln 𝜋′ induced by the log-difference of two policies (𝜋, 𝜋′) are rich enough (e.g., policies
are deep neural networks) to capture the reward difference, then 𝜖 in this assumption converges to zero as
we increase the number of training data. Note that while 𝜖 can be small, it does not imply that the learned
predictor will have a small prediction error in a point-wise manner – it almost certainly will not.
Example 1. One simple example is when 𝜋(𝑦 |𝑥) ∝ exp(𝜃⊤𝜙(𝑥, 𝑦)) for some features 𝜙(𝑥, 𝑦). In this case,
ln(𝜋(𝑦 |𝑥)/𝜋𝑡 (𝑦 |𝑥)) − ln(𝜋(𝑦′ |𝑥)/𝜋𝑡 (𝑦′ |𝑥)) = (𝜃 − 𝜃𝑡 )⊤ (𝜙(𝑥, 𝑦) − 𝜙(𝑥, 𝑦′)), which means that our regression
problem in Eq. 1 is a classic linear regression problem. When the reward 𝑟 (𝑥, 𝑦) is also linear in feature
𝜙(𝑥, 𝑦), then Eq. 1 is a well-specified linear regression problem, and 𝜖 typically scales in the rate of 𝑂 (𝑑/|D𝑡 |)
with 𝑑 being the dimension of feature 𝜙.

We can extend the above example to the case where 𝜙 is the feature corresponding to some kernel, e.g.,
RBF kernel or even Neural Tangent Kernel, which allows us to capture the case where 𝜋 is a softmax wide
neural network with the least square regression problem solved by gradient flow. The error 𝜖 again scales
poly(𝑑/|D𝑡 |), where 𝑑 is the effective dimension of the corresponding kernel.
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G Proof of Theorem 1

In this section, we provide the proof of theorem 1. For notation simplicity, throughout the proof, we denote 𝜋𝑡

for 𝜋𝜃𝑡 , and define 𝑓𝑡 (𝑥, 𝑦) := 1
𝜂

ln 𝜋𝑡+1 (𝑦 |𝑥 )
𝜋𝑡 (𝑦 |𝑥 ) .

The following lemma shows that the learned function 𝑓𝑡 can predict reward 𝑟 well under both 𝜋𝑡 and 𝜇 up to
terms that are 𝑦-independent.
Lemma 1. Consider any 𝑡 ∈ [𝑇]. Define Δ(𝑥, 𝑦) = 𝑓𝑡 (𝑥, 𝑦) − 𝑟 (𝑥, 𝑦). Define Δ𝜋𝑡 (𝑥) = E𝑦∼𝜋𝑡 ( · |𝑥 )Δ(𝑥, 𝑦) and
Δ𝜇 (𝑥) = E𝑦∼𝜇 ( · |𝑥 )Δ(𝑥, 𝑦). Under assumption 1, for all 𝑡, we have the following:

E𝑥,𝑦∼𝜋𝑡 ( · |𝑥 )
(
𝑓𝑡 (𝑥, 𝑦) − 𝑟 (𝑥, 𝑦) − Δ𝜋𝑡 (𝑥)

)2 ≤ 𝜖, (12)

E𝑥,𝑦∼𝜇 ( · |𝑥 )
(
𝑓𝑡 (𝑥, 𝑦) − 𝑟 (𝑥, 𝑦) − Δ𝜇 (𝑥)

)2 ≤ 𝜖, (13)

E𝑥
(
Δ𝜋𝑡 (𝑥) − Δ𝜇 (𝑥)

)2 ≤ 𝜖 . (14)

Proof. From assumption 1, we have:

E𝑥,𝑦1∼𝜋𝑡 ,𝑦2∼𝜇
(
𝑓𝑡 (𝑥, 𝑦1) − Δ𝜋𝑡 (𝑥) − 𝑟 (𝑥, 𝑦1) −

(
𝑓𝑡 (𝑥, 𝑦2) − Δ𝜇 (𝑥) − 𝑟 (𝑥, 𝑦2)

)
+ Δ𝜋𝑡 (𝑥) − Δ𝜇 (𝑥)

)2

= E𝑥,𝑦1∼𝜋𝑡
(
𝑓𝑡 (𝑥, 𝑦1) − Δ𝜋𝑡 (𝑥) − 𝑟 (𝑥, 𝑦1)

)2 + E𝑥,𝑦2∼𝜇
(
𝑓𝑡 (𝑥, 𝑦2) − Δ𝜇 (𝑥) − 𝑟 (𝑥, 𝑦2)

)2

− 2E𝑥,𝑦1∼𝜋𝑡 ,𝑦2∼𝜇
(
𝑓𝑡 (𝑥, 𝑦1) − Δ𝜋𝑡 (𝑥) − 𝑟 (𝑥, 𝑦1)

) (
𝑓𝑡 (𝑥, 𝑦2) − Δ𝜇 (𝑥) − 𝑟 (𝑥, 𝑦2)

)
+ 2E𝑥,𝑦1∼𝜋𝑡

(
𝑓𝑡 (𝑥, 𝑦1) − Δ𝜋𝑡 (𝑥) − 𝑟 (𝑥, 𝑦1)

)
(Δ𝜋𝑡 (𝑥) − Δ𝜇 (𝑥))

− 2E𝑥,𝑦2∼𝜋𝑡
(
𝑓𝑡 (𝑥, 𝑦2) − Δ𝜇 (𝑥) − 𝑟 (𝑥, 𝑦2)

)
(Δ𝜋𝑡 (𝑥) − Δ𝜇 (𝑥)) + E𝑥 (Δ1 (𝑥) − Δ2 (𝑥))2

= E𝑥,𝑦1∼𝜋𝑡
(
𝑓𝑡 (𝑥, 𝑦1) − Δ𝜋𝑡 (𝑥) − 𝑟 (𝑥, 𝑦1)

)2 + E𝑥,𝑦2∼𝜇
(
𝑓𝑡 (𝑥, 𝑦2) − Δ𝜇 (𝑥) − 𝑟 (𝑥, 𝑦2)

)2

+ E𝑥 (Δ𝜋𝑡 (𝑥) − Δ𝜇 (𝑥))2 ≤ 𝜖 .

In the above, we first complete the square, and then we only keep terms that are not necessarily zero. Since all
the remaining three terms are non-negative, this concludes the proof. □

By the definition of 𝑓𝑡 , we have Δ(𝑥, 𝑦) = 1
𝜂

ln 𝜋𝑡+1 (𝑦 |𝑥 )
𝜋𝑡 (𝑦 |𝑥 ) − 𝑟 (𝑥, 𝑦). Taking exp on both sides, we get:

∀𝑥, 𝑦 : 𝜋𝑡+1 (𝑦 |𝑥) = 𝜋𝑡 (𝑦 |𝑥) exp (𝜂(𝑟 (𝑥, 𝑦) + Δ(𝑥, 𝑦))) =
𝜋𝑡 (𝑦 |𝑥) exp(𝜂(𝑟 (𝑥, 𝑦) + Δ(𝑥, 𝑦) − Δ𝜇 (𝑥)))

exp(−𝜂Δ𝜇 (𝑥))

Denote 𝑔𝑡 (𝑥, 𝑦) := 𝑟 (𝑥, 𝑦) +Δ(𝑥, 𝑦) −Δ𝜇 (𝑥), and the advantage 𝐴𝑡 (𝑥, 𝑦) = 𝑔𝑡 (𝑥, 𝑦) −E𝑦′∼𝜋𝑡 ( · |𝑥 )𝑔𝑡 (𝑥, 𝑦′). We
can rewrite the above update rule as:

∀𝑥, 𝑦 : 𝜋𝑡+1 (𝑦 |𝑥) ∝ 𝜋𝑡 (𝑦 |𝑥) exp(𝜂𝐴𝑡 (𝑥, 𝑦)) (15)

In other words, the algorithm can be understood as running MD on the sequence of 𝐴𝑡 for 𝑡 = 0 to 𝑇 − 1. The
following lemma is the standard MD regret lemma.
Lemma 2. Assume max𝑥,𝑦,𝑡 |𝐴𝑡 (𝑥, 𝑦) | ≤ 𝐴 ∈ R+, and 𝜋0 (·|𝑥) is uniform over Y. Then with
𝜂 =

√︁
ln( |Y|)/(𝐴2𝑇), for the sequence of policies computed by REBEL, we have:

∀𝜋, 𝑥 :
𝑇−1∑︁
𝑡=0
E𝑦∼𝜋 ( · |𝑥 ) 𝐴𝑡 (𝑥, 𝑦) ≤ 2𝐴

√︁
ln( |Y|)𝑇.

Proof. For completeness, we provide the proof here. Start with 𝜋𝑡+1 (𝑦 |𝑥) = 𝜋𝑡 (𝑦 |𝑥) exp(𝜂𝐴𝑡 (𝑥, 𝑦))/𝑍𝑡 (𝑥)
where 𝑍𝑡 (𝑥) is the normalization constant, taking log on both sides, and add E𝑦∼𝜋 ( · |𝑥 ) , we have:

−KL(𝜋(·|𝑥) | |𝜋𝑡+1 (·|𝑥)) = −KL(𝜋(·|𝑥) | |𝜋𝑡 (·|𝑥)) + 𝜂E𝑦∼𝜋 ( · |𝑥 ) 𝐴𝑡 (𝑥, 𝑦) − E𝑦∼𝜋 ( · |𝑥 ) ln 𝑍𝑡 (𝑥).
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Rearrange terms, we get:

−KL(𝜋(·|𝑥) | |𝜋𝑡 (·|𝑥)) + KL(𝜋(·|𝑥) | |𝜋𝑡+1 (·|𝑥) = E𝑦∼𝜋 ( · |𝑥 ) [−𝜂𝐴𝑡 (𝑥, 𝑦) + ln 𝑍𝑡 (𝑥)]

For ln 𝑍𝑡 (𝑥), using the condition that 𝜂 ≤ 1/𝐴, we have 𝜂𝐴𝑡 (𝑥, 𝑦) ≤ 1, which allows us to use the inequality
exp(𝑥) ≤ 1 + 𝑥 + 𝑥2 for any 𝑥 ≤ 1, which lead to the following inequality:

ln 𝑍𝑡 (𝑥) = ln
(
E𝑦∼𝜋 ( · |𝑥 ) exp(𝜂𝐴𝑡 (𝑥, 𝑦))

)
≤ ln

(∑︁
𝑦

𝜋𝑡 (𝑦 |𝑥)
(
1 + 𝜂𝐴𝑡 (𝑥, 𝑦) + 𝜂2𝐴𝑡 (𝑥, 𝑦)2

))
≤ ln

(
1 + 0 + 𝜂2𝐴2

)
≤ 𝜂2𝐴2,

where the last inequality uses ln(1+ 𝑥) ≤ 𝑥, and we used the fact that E𝑦∼𝜋𝑡 (𝑥 ) 𝐴𝑡 (𝑥, 𝑦) = 0 due to the definition
of advantage 𝐴𝑡 . Thus, we have:

−KL(𝜋(·|𝑥) | |𝜋𝑡 (·|𝑥)) + KL(𝜋(·|𝑥) | |𝜋𝑡+1 (·|𝑥) ≤ −E𝑦∼𝜋 ( · |𝑥 ) [𝐴𝑡 (𝑥, 𝑦)] + 𝜂2𝐴2.

Sum over all iterations and do the telescoping sum, we get:
𝑇−1∑︁
𝑡=0
E𝑦∼𝜋 ( · |𝑥 ) 𝐴𝑡 (𝑥, 𝑦) ≤ KL(𝜋(·|𝑥) | |𝜋0 (·|𝑥))/𝜂 + 𝑇𝜂𝐴2 ≤ ln( |Y|)/𝜂 + 𝑇𝜂𝐴2.

With 𝜂 =
√︁

ln( |Y|)/(𝐴2𝑇), we conclude the proof. □

With the above, now we are ready to conclude the proof of the main theorem.

Proof of Theorem 1. Consider a comparator policy 𝜋∗. We start with the performance difference between 𝜋∗

and the uniform mixture policy �̄� :=
∑𝑇−1

𝑡=0 𝜋𝑡/𝑇 :

1
𝑇

𝑇−1∑︁
𝑡=0

(
E𝑥,𝑦∼𝜋∗ ( · |𝑥 )𝑟 (𝑥, 𝑦) − E𝑥,𝑦∼𝜋𝑡 ( · |𝑥 )𝑟 (𝑥, 𝑦)

)
=

1
𝑇

𝑇−1∑︁
𝑡=0
E𝑥,𝑦∼𝜋∗ ( · |𝑥 ) (𝐴𝜋𝑡 (𝑥, 𝑦)) ,

where we define the real advantage 𝐴𝜋𝑡 (𝑥, 𝑦) := 𝑟 (𝑥, 𝑦) − E𝑦∼𝜋𝑡 ( · |𝑥 )𝑟 (𝑥, 𝑦). Continue, we have:

1
𝑇

𝑇−1∑︁
𝑡=0
E𝑥,𝑦∼𝜋∗ ( · |𝑥 ) (𝐴𝜋𝑡 (𝑥, 𝑦))

=
1
𝑇

𝑇−1∑︁
𝑡=0
E𝑥,𝑦∼𝜋∗ ( · |𝑥 ) (𝐴𝑡 (𝑥, 𝑦)) +

1
𝑇

𝑇−1∑︁
𝑡=0
E𝑥,𝑦∼𝜋∗ ( · |𝑥 ) (𝐴𝜋𝑡 (𝑥, 𝑦) − 𝐴𝑡 (𝑥, 𝑦))

≤ 2𝐴
√︂

ln( |Y|)
𝑇

+ 1
𝑇

𝑇−1∑︁
𝑡=0

√︃
E𝑥E𝑦∼𝜋∗ ( · |𝑥 ) (𝐴𝜋𝑡 (𝑥, 𝑦) − 𝐴𝑡 (𝑥, 𝑦))2

where the last inequality uses Lemma 2. We now just need to bound E𝑦∼𝜋∗ ( · |𝑥 ) (𝐴𝜋𝑡 (𝑥, 𝑦) − 𝐴𝑡 (𝑥, 𝑦))2.

E𝑥E𝑦∼𝜋∗ ( · |𝑥 ) (𝐴𝜋𝑡 (𝑥, 𝑦) − 𝐴𝑡 (𝑥, 𝑦))2 = E𝑥E𝑦∼𝜇 ( · |𝑥 )
𝜋∗ (𝑦 |𝑥)
𝜇(𝑦 |𝑥) (𝐴

𝜋𝑡 (𝑥, 𝑦) − 𝐴𝑡 (𝑥, 𝑦))2

≤ 𝐶𝜋∗E𝑥,𝑦∼𝜇 ( · |𝑥 ) (𝐴𝜋𝑡 (𝑥, 𝑦) − 𝐴𝑡 (𝑥, 𝑦))2

where the last inequality uses the definition of concentrability coefficient 𝐶𝜋∗ . We now bound
E𝑥,𝑦∼𝜇 ( · |𝑥 ) (𝐴𝜋𝑡 (𝑥, 𝑦) − 𝐴𝑡 (𝑥, 𝑦))2. Recall the definiton of 𝐴𝑡 from Lemma 2.

E𝑥,𝑦∼𝜇 ( · |𝑥 ) (𝐴𝜋𝑡 (𝑥, 𝑦) − 𝐴𝑡 (𝑥, 𝑦))2

= E𝑥,𝑦∼𝜇 ( · |𝑥 ) (𝑟 (𝑥, 𝑦) − E𝑦′∼𝜋𝑡 ( · |𝑥 )𝑟 (𝑥, 𝑦′) − 𝑔𝑡 (𝑥, 𝑦) + E𝑦′∼𝜋𝑡 ( · |𝑥 )𝑔𝑡 (𝑥, 𝑦′))2

≤ 2E𝑥,𝑦∼𝜇 ( · |𝑥 ) (𝑟 (𝑥, 𝑦) − 𝑔𝑡 (𝑥, 𝑦))2 + 2E𝑥E𝑦′∼𝜋𝑡 ( · |𝑥 ) (𝑟 (𝑥, 𝑦′) − 𝑔𝑡 (𝑥, 𝑦′))2
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Recall the 𝑔𝑡 (𝑥, 𝑦) = 𝑟 (𝑥, 𝑦) + Δ(𝑥, 𝑦) − Δ𝜇 (𝑥), and from Lemma 1, we can see that

E𝑥,𝑦∼𝜇 ( · |𝑥 ) (𝑟 (𝑥, 𝑦) − 𝑔𝑡 (𝑥, 𝑦))2 = E𝑥,𝑦∼𝜇 ( · |𝑥 ) (Δ(𝑥, 𝑦) − Δ𝜇 (𝑥))2 ≤ 𝜖 .

For E𝑥E𝑦′∼𝜋𝑡 ( · |𝑥 ) (𝑟 (𝑥, 𝑦′) − 𝑔𝑡 (𝑥, 𝑦′))2, we have:

E𝑥E𝑦′∼𝜋𝑡 ( · |𝑥 ) (𝑟 (𝑥, 𝑦′) − 𝑔𝑡 (𝑥, 𝑦′))2
= E𝑥E𝑦′∼𝜋𝑡 ( · |𝑥 )

(
Δ(𝑥, 𝑦′) − Δ𝜇 (𝑥)

)2

= E𝑥E𝑦′∼𝜋𝑡 ( · |𝑥 )
(
Δ(𝑥, 𝑦′) − Δ𝜋𝑡 (𝑥) + Δ𝜋𝑡 (𝑥) − Δ𝜇 (𝑥)

)2

≤ 2E𝑥E𝑦′∼𝜋𝑡 ( · |𝑥 )
(
Δ(𝑥, 𝑦′) − Δ𝜋𝑡 (𝑥)

)2 + 2E𝑥
(
Δ𝜋𝑡 (𝑥) − Δ𝜇 (𝑥)

)2 ≤ 4𝜖,

where the last inequality uses Lemma 1 again. Combine things together, we can conclude that:

E𝑥E𝑦∼𝜋∗ ( · |𝑥 ) (𝐴𝜋𝑡 (𝑥, 𝑦) − 𝐴𝑡 (𝑥, 𝑦))2 ≤ 𝐶𝜋∗ (10𝜖).

Finally, for the regret, we can conclude:

1
𝑇

𝑇−1∑︁
𝑡=0
E𝑥,𝑦∼𝜋∗ ( · |𝑥 ) (𝐴𝜋𝑡 (𝑥, 𝑦)) ≤ 2𝐴

√︂
ln |Y|
𝑇

+ 1
𝑇

∑︁
𝑡

√︁
𝐶𝜋∗10𝜖 = 2𝐴

√︂
ln |Y|
𝑇

+
√︁
𝐶𝜋∗10𝜖 .

□
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H Extension of analysis to General Preferences

Extending the above analysis to the general preference case is straightforward except that it requires a stronger
coverage condition. This is because we want to find a Nash Equilibrium, which requires a comparison between
the learned policy against all the other policies. Results from the Markov Game literature (Cui & Du, 2022b;
Zhong et al., 2022; Cui & Du, 2022a; Xiong et al., 2023) and Cui & Du (2022b) have shown that the standard
single policy coverage condition used in single-player optimization is provably not sufficient. In particular,
they propose using a notion of unilateral concentrability for efficient learning, which can be defined as

𝐶uni,𝜇 := max
𝜋,𝑥,𝑦,𝑦′′

𝜋MW (𝑦 |𝑥)𝜋(𝑦′′ |𝑥)
𝜇(𝑦 |𝑥)𝜇(𝑦′′ |𝑥) ,

in the general preference setting. Notably, the above unilateral concentrability coefficient 𝐶uni,𝜇 is equivalent
to 𝐶𝜇 := max𝜋,𝑥,𝑦

𝜋 (𝑦 |𝑥 )
𝜇 (𝑦 |𝑥 ) since 𝐶𝜇 ≤ 𝐶uni,𝜇 ≤ 𝐶2

𝜇. Therefore in the following discussion, we will use 𝐶𝜇 as
the coverage condition. In addition, we also assume the generalization error of the regression problem is small,
Assumption 2 (Regression generalization bounds for general preference). Over 𝑇 iterations, assume that for
all 𝑡, we have:

E𝑥∼𝜌,𝑦∼𝜋𝑡 ( · |𝑥 ) ,𝑦′∼𝜇 ( · |𝑥 )

(
1
𝜂

(
ln

𝜋𝜃𝑡+1 (𝑦 |𝑥)
𝜋𝜃𝑡 (𝑦 |𝑥)

− ln
𝜋𝜃𝑡+1 (𝑦′ |𝑥)
𝜋𝜃𝑡 (𝑦′ |𝑥)

)
− (𝑙 (𝑥, 𝑦, 𝜋𝑡 ) − 𝑙 (𝑥, 𝑦′, 𝜋𝑡 ))

)2
≤ 𝜖,

for some 𝜖 .

Under the above coverage condition and generalization bound, we can show that REBEL is able to learn an
approximate Minimax Winner:
Theorem 2. With assumption 2, after 𝑇 many iterations, with a proper learning rate 𝜂, the policy �̂� =

Unif({𝜋𝑡 }𝑇𝑡=1) satisfies that:

DG(�̂�) ≤ 𝑂

(√︂
1
𝑇
+

√︁
𝐶𝜇𝜖 .

)
.

Here the 𝑂-notation hides problem-dependent constants that are independent of 𝜖, 𝐶𝜇, 𝑇 .

Note that the coverage condition here is much stronger than the single policy coverage condition in the RL
setting. We conjecture that this is the cost one has to pay by moving to the more general preference setting and
leaving the investigation of the necessarily coverage condition for future work.

H.1 Proof of Theorem 2

Recall that 𝑟𝑡 (𝑥, 𝑦) = 𝑙 (𝑥, 𝑦, 𝜋𝑡 ). Let us define Δ𝑡 (𝑥, 𝑦) := 𝑓𝑡 (𝑥, 𝑦) − 𝑟𝑡 (𝑥, 𝑦), Δ𝑡
𝜋𝑡
(𝑥) := E𝑦∼𝜋𝑡 ( · |𝑥 )Δ𝑡 (𝑥, 𝑦)

and Δ𝑡
𝜇 (𝑥) := E𝑦∼𝜇 ( · |𝑥 )Δ𝑡 (𝑥, 𝑦). Then following the same arguments in Lemma 1, we have

E𝑥∼𝜌,𝑦∼𝜋𝑡 ( · |𝑥 )
[ (
𝑓𝑡 (𝑥, 𝑦) − 𝑟𝑡 (𝑥, 𝑦) − Δ𝑡

𝜋𝑡
(𝑥)

)2
]
≤ 𝜖, (16)

E𝑥∼𝜌,𝑦∼𝜇 ( · |𝑥 )

[(
𝑓𝑡 (𝑥, 𝑦) − 𝑟𝑡 (𝑥, 𝑦) − Δ𝑡

𝜇 (𝑥)
)2

]
≤ 𝜖, (17)

E𝑥∼𝜌

[(
Δ𝑡
𝜋𝑡
(𝑥) − Δ𝑡

𝜇 (𝑥)
)2

]
≤ 𝜖 . (18)

With slight abuse of the notation, We also use 𝑔𝑡 and 𝐴𝑡 (𝑥, 𝑦) to denote 𝑟𝑡 (𝑥, 𝑦) + Δ𝑡 (𝑥, 𝑦) − Δ𝑡
𝜇 (𝑥, 𝑦) and

𝑔𝑡 (𝑥, 𝑦) − E𝑦′∼𝜋𝑡 ( · |𝑥 )𝑔𝑡 (𝑥, 𝑦′). Then following the same arguments in Lemma 2,

∀𝜋, 𝑥 :
𝑇−1∑︁
𝑡=0
E𝑦∼𝜋 ( · |𝑥 ) 𝐴𝑡 (𝑥, 𝑦) ≤ 2𝐴

√︁
ln( |Y|)𝑇. (19)
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Note that we have

max
𝜋

𝑙 (𝜋, �̂�) = max
𝜋

1
𝑇

𝑇∑︁
𝑡=1

𝑙 (𝜋, 𝜋𝑡 )

= max
𝜋

1
𝑇

𝑇∑︁
𝑡=1
E𝑥∼𝜌,𝑦∼𝜋 ( · |𝑥 ) [𝑟𝑡 (𝑥, 𝑦)] = max

𝜋

1
𝑇

𝑇∑︁
𝑡=1
E𝑥∼𝜌,𝑦∼𝜋 ( · |𝑥 ) [𝐴𝑡 , 𝜋𝑡 (𝑥, 𝑦)],

where 𝐴𝑡 , 𝜋𝑡 := 𝑟𝑡 (𝑥, 𝑦) − E𝑦∼𝜋𝑡 ( · |𝑥 ) [𝑟𝑡 (𝑥, 𝑦)]. The last step is due to the skew symmetry of 𝑙, i.e.,
E𝑦∼𝜋𝑡 ( · |𝑥 ) [𝑟𝑡 (𝑥, 𝑦)] = 𝑙 (𝑥, 𝜋𝑡 , 𝜋𝑡 ) = 0. Then by following the same arguments in the proof of Theorem 1, with
(16)(17)(18)(19), we have for any policy 𝜋,

1
𝑇

𝑇−1∑︁
𝑡=0
E𝑥∼𝜌,𝑦∼𝜋 ( · |𝑥 )

(
𝐴𝑡 , 𝜋𝑡 (𝑥, 𝑦)

)
≤ 2𝐴

√︂
ln |Y|
𝑇

+
√︁

10𝐶𝜇→𝜋𝜖 .

This implies that

max
𝜋

𝑙 (𝜋, �̂�) ≤ max
𝜋

(
2𝐴

√︂
ln |Y|
𝑇

+
√︁

10𝐶𝜇→𝜋𝜖

)
≤ 2𝐴

√︂
ln |Y|
𝑇

+
√︁

10𝐶𝜇𝜖 .

Note that due to the skew symmetry of 𝑙, we have

min
𝜋

𝑙 (�̂�, 𝜋) = min
𝜋
E𝑥∼𝜌,𝑦∼𝜋 ( · |𝑥 ) ,𝑦′∼𝜋 ( · |𝑥 ) [𝑙 (𝑥, 𝑦, 𝑦′)] = −max

𝜋
E𝑥∼𝜌,𝑦∼𝜋 ( · |𝑥 ) ,𝑦′∼𝜋 ( · |𝑥 ) [−𝑙 (𝑥, 𝑦, 𝑦′)]

= −max
𝜋
E𝑥∼𝜌,𝑦∼𝜋 ( · |𝑥 ) ,𝑦′∼𝜋 ( · |𝑥 ) [𝑙 (𝑥, 𝑦, 𝑦′)] = −max

𝜋
𝑙 (𝜋, �̂�) ≥ −2𝐴

√︂
ln |Y|
𝑇

−
√︁

10𝐶𝜇𝜖 .

Therefore we have

DG(�̂�) ≤ 4𝐴
√︂

ln |Y|
𝑇

+ 2
√︁

10𝐶𝜇𝜖 .
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I Additional Experiment Details

I.1 Summarization

I.1.1 Dataset Details

We present dataset details in Table 3. Dataset available at https://github.com/openai/
summarize-from-feedback

Table 3: Dataset split, prompts, and maximum generation length for TL;DR summarization

Dataset Train/Val/Test Prompt Generation Length

Human Reference 117K/6.45K/6.55K “TL;DR:” 53
Preference 92.9K/83.8K/- “TL;DR:” 53

I.1.2 Model Details

For SFT models, we train a Pythia 1.4B (Biderman et al., 2023)1 model for 1 epoch over the dataset with
human references as labels, and use the existing fine-tuned 2.8B2 and 6.9B3 models. For reward models, we
train a Pythia 1.4B parameter model for 1 epoch over the preference dataset and use the existing reward models
with 2.8B4 and 6.9B5 parameters. For both REBEL and baseline methods using 1.4B and 2.8B parameters,
we trained the policy and/or the critic using low-rank adapters (LoRA) (Hu et al., 2022) on top of our SFT
and/or reward model respectively. For the 6.9B models, we perform full-parameter training. The 1.4B and
2.8B models are trained on 8 A6000 GPUs for one day and two days respectively. The 6.9B model is train on 8
H100 GPUs for two days.

I.1.3 Baseline Implementation Details

For supervised fine-tuning (SFT), reward modeling training, PPO, and DPO, we follow the implementation at
https://github.com/vwxyzjn/summarize_from_feedback_details. For iterative dpo, we implement
as follows:
Algorithm 2 Iterative DPO

1: Input: Reward 𝑟 , policy class Π = {𝜋𝜃 }, parameter 𝛽
2: Initialize policy 𝜋𝜃0 .
3: for 𝑡 = 0 to 𝑇 − 1 do
4: Collect dataset D𝑡 = {𝑥, 𝑦, 𝑦′} where 𝑥 ∼ 𝜌, 𝑦 ∼ 𝜋𝑡 (·|𝑥), 𝑦′ ∼ 𝜋𝑡 (·|𝑥)
5: Solve square loss regression problem:

𝜃𝑡+1 = argmin
𝜃

∑︁
(𝑥,𝑦,𝑦′ ) ∈D𝑡

−
[
ln𝜎

(
(𝛽 ln

𝜋𝜃 (𝑦 |𝑥)
𝜋𝜃𝑡 (𝑦 |𝑥)

− 𝛽 ln
𝜋𝜃 (𝑦′ |𝑥)
𝜋𝜃𝑡 (𝑦′ |𝑥)

)𝑠𝑔𝑛 (𝑟 (𝑥, 𝑦) − 𝑟 (𝑥, 𝑦′))
)]

(20)

6: end for

where 𝑠𝑔𝑛 is a sign function. Our implementation of iterative DPO is similar to REBEL where, at each iteration,
we update with respect to 𝜋𝜃𝑡 . The major difference is that REBEL regresses toward the differences in rewards
while iterative DPO only utilizes the pairwise preference signal from the rewards.

1HuggingFace Model Card: EleutherAI/pythia-1.4b-deduped
2HuggingFace Model Card: vwxyzjn/EleutherAI_pythia-2.8b-deduped__sft__tldr
3HuggingFace Model Card: vwxyzjn/EleutherAI_pythia-6.9b-deduped__sft__tldr
4HuggingFace Model Card: vwxyzjn/EleutherAI_pythia-2.8b-deduped__reward__tldr
5HuggingFace Model Card: vwxyzjn/EleutherAI_pythia-6.9b-deduped__reward__tldr

https://github.com/openai/summarize-from-feedback
https://github.com/openai/summarize-from-feedback
https://github.com/vwxyzjn/summarize_from_feedback_details
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I.1.4 Hyperparameter Details

Parameter setting for TL;DR summarization
Setting Parameters
SFT & RM batch size: 64

learning rate: 3e-6
schedule: linear decay
train epochs: 1

PPO batch size: 512
learning rate: 3e-6
schedule: linear decay
train epochs: 1
num epochs: 4

discount factor: 1
gae 𝜆: 0.95
clip ratio: 0.2
value function coeff: 0.1
kl coefficient: 0.05

DPO batch size: 64
learning rate: 3e-6
schedule: linear decay

train epochs: 1
𝛽: 0.05

RLOO batch size: 512
learning rate: 3e-6
schedule: linear decay

train epochs: 1
kl coefficient: 0.05
K: 2 or 4

REINFORCE batch size: 512
learning rate: 3e-6
schedule: linear decay

train epochs: 1
kl coefficient: 0.05

Iterative DPO batch size: 512
learning rate: 3e-6
schedule: linear decay
train epochs: 1

num epochs: 4
𝛽: 0.05
kl coefficient: 0.05

REBEL batch size: 512
learning rate: 3e-6
schedule: linear decay
train epochs: 1

num epochs: 4
𝜂: 1.0
kl coefficient: 0.05

LoRA Adapter
Config

r: 1024
𝛼: 2048

dropout: 0.0
bias: False

Generation sampling: true
top k: 0.0
top p: 1.0

min length: 53
max new tokens: 53
temperature: 0.1
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I.1.5 Winrate Details

We are using gpt-4-0613 checkpoint for winrate computations. Below we show the prompt for winrate
evaluation and an example evaluation from GPT4.

Prompt for Winrate
Which of the following summaries does a better job of summarizing the most important points in the given forum post,
without including unimportant or irrelevant details? Judge based on accuracy, coverage, and coherence.

### Post:
{{post}}

### Summary A:
{{summarya}}

### Summary B:
{{summaryb}}

### Instructions:
FIRST provide a one-sentence comparison of the two summaries, explaining which you prefer and why. SECOND, on a
new line, state only “A” or “B” to indicate your choice. Your response should use the format:
Comparison: <one-sentence comparison and explanation >
Preferred: <“A” or “B”>

Example Evaluation from GPT4
Prompt SUBREDDIT: r/AskReddit

TITLE: How do you get someone out of your head?

POST: Hi,
I’m 22, and I have been with my girlfriend for 5 years now. We recently moved together. We’ve
always loved each other intensely.

Problem, I recently started to have feelings for an other person (a friend). This person
has had a boyfriend for now 3 years, and has absolutely no ideas. Those feelings were so strong, it
was hard to hide them. After 2 months of me being distant and really sad, my girlfriend forced me
to say what was bothering me. I’m not a good liar, and now she knows.

We decided to give us a week alone, I went to my parents.

Now, I’m completely lost. I keep on thinking about this person, and I hate that. I
would like for those feelings to go away, to leave me alone. But I can’t.

What do I do? It’s been 3 months now, and I’m just desperate.

TL;DR:

Reference
(Summary A)

long relationship; fell in love with an other person; admitted it; would like it to disappear, though it
doesn’t.

REBEL
Generation
(Summary B)

I recently started to have feelings for an other person (a friend). We decided to give us a week alone,
I keep on thinking about that person, and I hate it. What do I do?

Evaluation from
GPT4

Comparison: Summary A is too brief and rather disjointed, while Summary B more accurately
conveys the emotional conflict portrayed in the forum post in a coherent manner.
Preferred: B
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I.2 General Chat

I.2.1 Dataset Details

We present dataset details in Table 4.

Table 4: Dataset details for General Chat

Dataset Size Prompt Length Generation Length
Nectar6 183k 1024 1024

UltraFeedback7 64k 1024 1024

I.2.2 Model Details

For both OpenChat-3.58 and Meta-Llama-3-8B-Instruct9, we only train the last four layers in the model while
keep other layers frozen. For both Starling-RM-7B-alpha10 and FsfairX-LLaMA3-RM-v0.111, we directly use
the reward scores without any normalizations. We filter out prompts that are longer than 1, 024 tokens (2.3%)
to fit the input length. Both experiments are trained on 8 H100 GPUs for four days.

I.2.3 Hyperparameter Details

Parameter setting for General Chat
Setting Parameters
Setup 1
Base model: OpenChat-3.5
Reward Model: Starling-RM-7B-alpha
Dataset: Nectar

batch size: 32
learning rate: 1e-7
schedule: linear decay
train epochs: 1
num epochs: 4
𝜂: 1.0
kl coefficient: 0.05

Setup 2
Base model: Meta-Llama-3-8B-Instruct
Reward Model: FsfairX-LLaMA3-RM-v0.1
Dataset: UltraFeedback

batch size: 32
learning rate: 1e-7
schedule: linear decay
train epochs: 1
num epochs: 4
𝜂: 1.0
kl coefficient: 0.05

6HuggingFace Dataset Card: berkeley-nest/Nectar
7HuggingFace Dataset Card: openbmb/UltraFeedback
8HuggingFace Model Card: openchat/openchat_3.5
9HuggingFace Model Card: meta-llama/Meta-Llama-3-8B-Instruct
10HuggingFace Model Card: berkeley-nest/Starling-RM-7B-alpha
11HuggingFace Model Card: sfairXC/FsfairX-LLaMA3-RM-v0.1



RLJ | RLBRew Workshop @ RLC 2024

I.3 Image Generation

I.3.1 Dataset Details

Generation prompts: cat, dog, horse, monkey, rabbit, zebra, spider, bird, sheep, deer, cow, goat, lion, tiger,
bear, raccoon, fox, wolf, lizard, beetle, ant, butterfly, fish, shark, whale, dolphin, squirrel, mouse, rat, snake,
turtle, frog, chicken, duck, goose, bee, pig, turkey, fly, llama, camel, bat, gorilla, hedgehog, kangaroo.

I.3.2 Model Details

We use the latent consistency model (Luo et al., 2023) distillation of the Dreamshaper v7 model 12 for our
experiments. Experiments are conducted on 4 A6000 GPUs with each run requiring 10 hours.

I.3.3 Hyperparameter Details

Parameter setting for Consistency Models
Setting Parameters
PPO advantage clip maximum: 10

batches per epoch: 10
clip range: 1e-4
learning rate: 1e-4
gradient accumulation steps: 8
max gradient norm: 5
number of epochs: 100
horizon: 8
number of sample inner epochs: 2
sample batch size (per GPU): 8
rolling statistics buffer size: 32
rolling statistics min count: 16
train batch size (per GPU): 2
LoRA rank: 8
Lora 𝛼: 8

REBEL advantage clip maximum: 10
batches per epoch: 10
learning rate: 3e-4
𝜂: 1
gradient accumulation steps: 8
max gradient norm: 5
number of epochs: 100
horizon: 8
number of sample inner epochs: 1
sample batch size (per GPU): 8
rolling statistics buffer size: 32
rolling statistics min count: 16
train batch size (per GPU): 1
LoRA rank: 8
Lora 𝛼: 8

12Huggingface model card: SimianLuo/LCM_Dreamshaper_v7
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J Example Generations

J.1 Summarization Generations from a 2.8B model

Prompt SUBREDDIT: r/relationships

TITLE: Me [18 M] with my college friend [19 F] about 1 month, I wanna hang out with
her but I don’t have a car.

POST: This is the link for an earlier thread I posted about her

She basically doesn’t have any friends and will spend all her spring break at home play-
ing video games. I wanna hang out with her, but both of us don’t have a car. I live with my grandma
10 minutes away from her house. Would it be weird to ask her to spend a day with us playing video
games and eating pizza?

Another thing I could do is ask her to go see a movie with me, but I would just meet
her there since I’ll be going with a bike. Do you guys think it’s okay to do that? I also have 0
experience with girls. You can say this is the first girl in my life.

TL;DR:
Generation My college friend doesn’t have any friends and spends all her spring break at home playing video

games. I wanna hang out with her but neither of us have a car. Do you think it’s okay to ask her to
hang out?

Prompt SUBREDDIT: r/AskReddit

TITLE: Reddit, what kind of effect do you think that crime shows/movies might have in
reducing the occurrence of thought-out, "intelligent" crime?

POST: I had this thought a few days ago when watching an episode of NCIS and they
did the usual "create a super high resolution image from a very low resolution image." I got to
wondering how much of it is real and how much of it is fake (or, conversely, how much might be
under-exaggerated). Based on these types of shows/movies (bank robbery, conning, etc.) where the
bad guy nearly 100% of the time gets caught, only an idiot would think it would be a good idea
to do any of this stuff, and from my [limited] knowledge of the general criminal, I’m under the
impression that they are mainly uneducated people in dire situations (or psychopaths/mentally
unstable.. but I’m thinking mostly with regards the heist type of crime – not assault or murder) that
are driven to extreme lengths to make the "easy"/"quick" dollar. So I wondered, is it possible that
these shows/movies that show the criminal, no matter how smart and creative, almost always getting
caught could actually be (subconsciously or consciously) reducing the amount of more well thought
through crime throughout the world?

TL;DR:
Generation I had this thought recently watching NCIS episode where criminals almost always get caught, is it

possible that these crime shows/movies that show the criminal almost always getting caught could
actually be (subconsciously or consciously) reducing the crime?
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J.2 Chat Generations from REBEL-Llama-3

Prompt Hi, I’d like to play ice hockey. Can you explain how the game works?

Generation Hockey enthusiast! I’d be happy to explain the basics of ice hockey. Here’s a comprehensive overview to get
you started:

Objective:
The objective of ice hockey is to score more goals than the opposing team by using your stick to hit a puck (a
rubber disc) into the opponent’s goal.

Gameplay:
1. Game Structure: A standard ice hockey game consists of three periods, each lasting 20 minutes.
2. Teams: Each team consists of six players on the ice at a time:

• Forwards (3): Players who score goals and create scoring opportunities.
• Defensemen (2): Players who defend their goal and prevent the opposing team from scoring.
• Goalie (1): The player responsible for preventing the puck from entering the goal.

3. Gameplay Flow: The game starts with a face-off, where two players from opposing teams try to gain
control of the puck after it’s dropped onto the ice by the referee. Players can move the puck using their sticks,
skates, or by carrying it.
4. Scoring: A goal is scored when a player hits the puck into the opponent’s goal using their stick, skate, or
body.
5. Penalties: If a player breaks the rules, they can be sent to the penalty box for a set amount of time (2-5
minutes). During this time, their team must play shorthanded (with one fewer player on the ice).
6. Power Play: If the opposing team scores during a penalty, the penalized team gets a power play, where they
have a man advantage on the ice.
7. Icing: If a player shoots the puck from behind their own blue line and it crosses the opponent’s goal line
without being touched, it’s considered icing, and the opposing team is awarded a face-off in their own end zone.
8. Offside: A player cannot enter the opponent’s zone before the puck, or they’ll be called offside.

Common Penalties:

• Hooking: Using the stick to hook an opponent’s leg or body.
• Holding: Grabbing onto another player’s jersey or equipment.
• Tripping: Using a stick, leg, or body to trip an opponent.
• Interference: Interfering with an opponent who doesn’t have possession of the puck.

Equipment:

• Stick: A long, flat stick used to pass, shoot, and control the puck.
• Skates: Specialized ice skates designed for speed, agility, and stopping.
• Pads: Protective gear worn by players, including shoulder pads, elbow pads, gloves, shin guards, and

hockey pants.
• Helmet: A protective helmet worn by all players to prevent head injuries.
• Goalie Gear: Specialized equipment worn by goalies, including a large pad covering their body,

gloves, and a mask.

Basic Strategies:

• Forechecking: Applying pressure to the opponent’s defensemen to gain possession of the puck.
• Backchecking: Pressuring the opponent’s forwards to prevent them from scoring.
• Breakouts: Quickly moving the puck from your own end zone to the neutral zone to create scoring

opportunities.

This is a solid foundation to get you started. As you play more, you’ll learn more about the game’s nuances and
strategies. Have fun playing ice hockey!
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Prompt Why do people give Reddit Gold to admins?

Generation On Reddit, Reddit Gold (also known as G̈old)̈ is a virtual currency that allows users to show
appreciation for content creators, moderators, and other users who contribute positively to the
community. When someone gives Reddit Gold to an admin (or moderator), it’s often a way to
express gratitude for their efforts in maintaining the community’s quality, resolving issues, and
keeping the discussion civil.

Here are some reasons why people might give Reddit Gold to admins:
1. Appreciation for moderation: Admins work tirelessly to ensure that discussions remain
on-topic, respectful, and follow community guidelines. Giving Gold acknowledges their dedication
and hard work in maintaining a positive environment.
2. Recognition of expertise: Admins often possess in-depth knowledge about specific topics or
communities. Giving Gold shows appreciation for their expertise and willingness to share it with
others.
3. Support for community building: Admins play a crucial role in fostering engagement,
encouraging participation, and creating opportunities for users to connect with each other. Gold
gifts demonstrate support for their efforts in building a strong community.
4. Rewarding good behavior: When admins demonstrate excellent behavior, such as resolving
conflicts fairly or providing helpful guidance, users might give Gold as a way to recognize and
reward their good behavior.
5. Boosting morale: Giving Gold can be a morale booster for admins, acknowledging their value
to the community and motivating them to continue their excellent work.

It’s worth noting that Reddit Gold is not required or expected, and admins don’t receive
any direct benefits from receiving Gold. However, the gesture of appreciation can go a long way in
fostering a positive and supportive community.
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J.3 Image Generations

Example Generations of REBEL
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REBEL

PPO

7.29 7.38 7.37 7.27 7.14

6.856.176.006.29 7.06

Figure 4: Generated images using PPO and REBEL during an intermediate checkpoint. At the same number
of epochs, REBEL observes a higher reward under the reward model. This can further be seen by the more
diverse background of images generated from REBEL with less training time.
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K Ablation Analysis

𝜂 Winrate (↑) RM Score (↑) KL(𝜋 | |𝜋𝑟𝑒 𝑓 ) (↓)

0.3 55.5% 1.37 10.4
0.7 59.9% 1.60 14.2
1.0 70.2% 2.44 29.0
2.0 62.5% 1.76 16.9

Table 5: REBEL ablation of the key hyperparameter 𝜂 on summarization task and 2.8B model. The best-
performing 𝜂 for each metric is highlighted in bold.

Just like DPO, tuning REBEL is much more straightforward than PPO since the only hyperparameter REBEL
introduced is 𝜂. We investigate how sensitive REBEL is to learning rate 𝜂 in the loss. The results of ablation
on summarization task and 2.8B model is shown in Table 5 with the same setting detailed in Appendix I.1.4
except for 𝜂. REBEL achieves the best performance when 𝜂 = 1, while increasing or decreasing 𝜂 leads to
decreased performance. Our result here indicates that 𝜂 is an important hyperparameter that requires tuning for
achieving a good performance. Setting 𝜂 to 1.0 is a good starting point since, for all of our experiments from
language modeling to image generation, 𝜂 = 1 achieves the best results.

L Trade-off between Reward Model Score and KL-divergence
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Figure 5: Plot of Reward vs KL-Divergence for 2.8B REBEL and PPO for summarization. We evaluate the
models across the entire test set every 100 steps for 2,000 steps. Left: each point represents the average reward
score and KL-divergence for a specific time step; the eclipse represents the confidence interval with 2 standard
deviations. Right: we divide the KL distribution at the 2,000-step into 10 bins with equal size and average the
corresponding RM scores in each bin.

The trade-off between the reward model score and KL-divergence is shown in Figure 5. We evaluate the
2.8B REBEL and PPO every 400 gradient updates during training for 8,000 updates on summarization. The
sample complexity of each update is held constant across both algorithms for fair comparison. For the left
plot, each point represents the average divergence and score over the entire test set, and the eclipse represents
the confidence interval with 2 standard deviations. As observed previously, PPO exhibits lower divergence,
whereas REBEL shows higher divergence but is capable of achieving larger RM scores. Notably, towards the
end of the training (going to the right part of the left plot), REBEL and PPO have similar KL and RM scores.
For the right plot in Figure 5, we analyze a single checkpoint for each algorithm at the end of training. For
each algorithm, we group every generation from the test set by its KL distribution into 10 equally sized bins
and calculate the average of the corresponding RM score for each bin. We can see that REBEL achieves higher
RM scores for generations with small divergence while requiring larger divergence for generations with the
highest scores.
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M Regression Loss During Training
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MSE During Training: 6.9B Pythia Policy

Figure 6: REBEL’s reward difference prediction error throughout training of our 6.9B parameter policy on the
summarization task. The reward used for this task is unbounded with the range of values of the human labels
in the validation set being [−6.81, 7.31]. We plot both the smoothed values with a moving average and the
loss vales at each iteration.

Figure 6 shows the observed loss of Eq. 1 that we observed when finetuning the 6.9B Pythia model on
summarization. We see that REBEL minimizes the loss throughout training maintaining a relatively low mean
squared error given that our observed rewards were mostly between [−10, 10]. Note that our learned reward
model, however, is unbounded.
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N Open LLM Leaderboard Evaluations

Model MMLU GSM8K Arc Winogrande TruthfulQA HellaSwag Average(5-shot) (5-shot) (25-shot) (5-shot) (0-shot) (10-shot)

OpenChat-3.5 (Wang et al., 2024) 63.6 68.5 64.9 80.6 47.3 84.7 68.3
Starling-LM-7B-alpha (Zhu et al., 2023a) 63.4 68.0 64.9 81.1 47.3 84.8 68.2
Meta-Llama-3-8B-Instruct (Meta, 2024) 65.8 75.3 62.0 75.5 51.7 78.7 68.2

REBEL-OpenChat-3.5 63.7(+0.1) 68.8(+0.3) 64.3(−0.6) 80.4(−0.2) 48.2(+0.9) 85.0(+0.3) 68.4(+0.1)
REBEL-Llama-3 65.8(+0.0) 75.6(+0.3) 61.7(−0.3) 75.8(+0.3) 51.7(+0.0) 78.8(+0.1) 68.2(+0.0)

Table 6: Results on evaluations from Open LLM Leaderboard.

We evaluate using Huggingface Open LLM Leaderboard (Beeching et al., 2023) which consists of
MMLU (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), Arc (Clark et al., 2018), Winogrande (Sakaguchi
et al., 2019), TruthfulQA (Lin et al., 2022), and HellaSwag (Zellers et al., 2019). The prompts of the tasks
consist of zero or few-shot samples. REBEL is able to consistently enhance the performance of GSM8K and
HellaSwag under different settings and maintain the overall average as the base models.

O Breakdown of MT-Bench

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

model
REBEL-OpenChat-3.5
Starling-LM-7B-alpha      
OpenChat-3.5

Loading [MathJax]/extensions/MathMenu.js

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

model
REBEL-Llama-3
Meta-Llama-3-8B-Instruct

Loading [MathJax]/extensions/MathMenu.js
Figure 7: Breakdown of MT-Bench results over eight dimensions.

Figure 7 shows the breakdown of MT-Bench results. REBEL-OpenChat-3.5 outperforms both Starling-LM-7B-
alpha and OpenChat-3.5 on six out of eight dimensions including writing, roleplay, math, extraction, STEM,
and humanities. REBEL-Llama-3 outperforms Meta-Llama-3-8B-Instruct on roleplay, reasoning, extraction,
STEM, and humanities.


