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Abstract
Autonomous agents operating with underspecified objectives often produce negative
side effects (NSEs) that are difficult to identify at design time. We examine how
a deployed agent can learn a penalty function associated with NSEs, from diverse
sources of information which are collected actively or passively from a user who
interacts explicitly or implicitly with the agent. Unlike prior works that learn to
avoid NSEs from a single form of feedback, our framework facilitates learning from
multiple forms of feedback during the course of agent operation. Our framework
for adaptive feedback selection enables the agent to query for feedback in formats
that maximize information gain about NSE severities, given the human’s feedback
preference model that specifies the cost and probability of receiving feedback in a
certain format. When query budget is limited, the agent prioritizes querying in
states that provide important information to learn an NSE prediction model. We
present an algorithm that clusters states and iteratively selects critical states for
querying, by updating the weights of each cluster based on the number of new NSEs
identified from feedback. Empirical evaluation on three domains show our frame-
work’s effectiveness in learning to avoid NSEs from explicit and implicit feedback.

1 Introduction

Autonomous agents in complex real-world settings often operate with underspecified or incomplete
objectives and reward functions, which can lead to negative side effects (NSEs). NSEs are the unde-
sired, unmodeled effects of agent actions on the environment (Amodei et al., 2016; Saisubramanian
et al., 2021a). For example, an indoor agent optimizing distance to goal may unintentionally break a
vase, as a negative side effect, if its model lacks details on the undesirability of its actions (Krakovna
et al., 2020). Agents typically lack prior knowledge about the NSEs of their actions.

A popular approach to overcome this concern is to learn about NSEs from human feedback (Saisubra-
manian et al., 2021a; Srivastava et al., 2023; Zhang et al., 2020b), which can be explicit (e.g., approv-
ing agent’s actions, providing demonstrations), or implicit (e.g., gaze and facial expressions) (Cui
& Niekum, 2018; Cui et al., 2021; Lakkaraju et al., 2017; Saran et al., 2021). These approaches
typically assume that a user will always provide immediate feedback in a single format throughout
the course of agent operation, either in response to an agent query or based on observed agent
trajectories (Ghosal et al., 2023; Ibarz et al., 2018; Saisubramanian et al., 2022). However, these
assumptions often do not reflect real-world interactions. In practice, the user (1) may not be able to
provide feedback when they are busy or away (Faulkner et al., 2020; Kessler Faulkner & Thomaz,
2021); and (2) may be able to provide feedback in more than one format during agent learning and
operation (Loftin et al., 2014). A recent user study conducted specifically on the side effects prob-
lem indicates that users are generally willing to engage with the agent in more than one feedback
format (Saisubramanian et al., 2021b).

For example, in the vase problem, the human may provide feedback through binary signals to
approve actions, demonstrate safe ways of performing the task, or correct agent actions. Each
format offers different level of information and requires varying human effort. However, the human
may be uncertain about the most effective format for agent learning. The key question we aim to
address in this paper is: how can an agent leverage the human’s ability to provide feedback in multiple
formats, by querying for feedback in a format that maximizes information gain?

1



RLJ | RLBRew Workshop @ RLC 2024

Figure 1: Framework for learning to avoid NSEs from diverse human feedback in critical states.

We present a framework for adaptive feedback selection (AFS) enabling the agent to request feedback
in a format that maximizes information gain, given a model of human feedback preferences. This
model specifies the cost and probability of receiving feedback in a certain format. Information gain
of a feedback is measured as the KL divergence between the feedback, sampled from underlying true
NSE distribution, and the agent’s current knowledge of NSEs.

When collecting feedback in every state is infeasible, the agent must prioritize querying in critical
states—states where human feedback is crucial for learning an association of state features and NSEs,
i.e., a predictive model of NSE severities. Querying in critical states maximizes information gain
about NSEs, compared to other states. In the vase example, states with a vase are critical states, as
they provide valuable information about state features correlating with NSEs. Prior works, however,
query for feedback in states randomly sampled or along the shortest path to the goal, which may
not lead to a faithful NSE model (Saisubramanian et al., 2021a; Zhang et al., 2020b). Our algorithm
iteratively selects critical states and the format to query in these states (Fig. 1).

We use a four-step solution approach to gather NSE information under a limited query budget:
(1) states are partitioned into clusters, with a cluster weight proportional to the number of NSEs
discovered in it; (2) a critical states set is formed by sampling from each cluster based on its
weight; (3) a feedback format that maximizes the information gain in critical states is identified,
while accounting for the cost and uncertainty in receiving a feedback, using the human feedback
preference model; and (4) cluster weights are updated and new set of critical states are sampled to
learn about NSEs, until the querying budget expires. The gathered NSE information is mapped to
a penalty function and augmented to the agent’s model to compute an NSE-minimizing policy to
complete its task. Empirical evaluation on three domains in simulation demonstrate the effectiveness
of our approach in learning to mitigate NSEs from explicit and implicit forms of feedback.

2 Problem Formulation

Consider an agent operating in an environment modeled as a Markov decision process (MDP), using
its acquired model M = ⟨S,A, T,RT ⟩. The agent optimizes the completion of its assigned task,
which is its primary objective described by reward RT . A primary policy is an optimal policy for
the agent’s primary objective. Similar to Saisubramanian et al. (2021a), we assume that the agent’s
model M has all the necessary information for the agent to successfully complete its assigned task
but lacks other superfluous details that are unrelated to the task. As the model is incomplete
in ways unrelated to the primary objective, executing the primary policy produces NSEs that are
difficult to identify at design time (Saisubramanian et al., 2021a; Zhang et al., 2020b). Similar
to Saisubramanian et al. (2021a), we define NSEs as the immediate, undesired, unmodeled effects
of an agent’s actions on the environment.

We focus on settings where the agent has no prior knowledge about the NSEs of its actions or the
underlying true NSE penalty function RN . It learns to avoid NSEs by learning a penalty function
R̂N from human feedback that is consistent with RN . The agent computes an NSE-minimizing
policy to complete its task by optimizing the reward function, R(s, a) = θ1RT (s, a) + θ2R̂N (s, a),
where θ1 and θ2 are fixed, tunable weights.
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Learning R̂N from multiple forms of feedback Unlike existing approaches that learn from
a single feedback format (Ramakrishnan et al., 2020; Saisubramanian et al., 2021a; Saran et al.,
2021), we target real-world settings where the human can provide feedback about NSEs in many
forms, and the agent can query for feedback by specifying the format, such as requesting for action
approval or demonstrations.

The human’s feedback preference model is denoted by D = ⟨F , ψ, C⟩ where,

• F is a predefined set of all feedback formats that the human can provide, for example,
demonstrations and corrections;

• ψ : F → [0, 1] is the probability of receiving feedback in a format f , denoted as ψ(f);
• C : F → R is a cost function that assigns a cost to each feedback format f , representing the

human’s time or cognitive load involved in providing that feedback.

Abstracting user feedback preferences into probabilities and costs enables generalizing the preferences
across similar tasks. We take the pragmatic stance that ψ is independent of time and state, denoting
the user’s preference about a format such as not preferring formats that require constant supervision
of agent performance. While this can be relaxed and the approach can be extended to account for
state-dependent preferences, getting an accurate state-dependent ψ could be challenging in practice.

We assume that the agent has access to the human’s feedback preference model. This model may be
provided by the user or learned by the agent via interactions with the user over time. In this paper,
we assume it is user provided. Human feedback is immediate and accurate, when available. Given
the human feedback preference model, when and in what format should the agent seek feedback to
effectively learn about NSEs?

Adaptive Feedback Selection Our framework for adaptive feedback selection (AFS) enables the
agent to query for feedback in specific formats in states that reveal important information about
NSE severities. An instance of AFS is denoted by L = ⟨M,D⟩, where M is the agent’s decision
making model and D is the user’s feedback preference model.

When the agent asks for a feedback in a particular state in a specific format f , the human may either
provide it immediately or provide no feedback, corresponding to ψ(f). We simulate the feedback for
a state-action pair using a softmax action selection. The probability of choosing an action a′ from a
set of all safe actions A∗ in state s is, Pr(a′|s) = eQ(s,a′)∑

a∈A∗
eQ(s,a) (Ghosal et al., 2023; Jeon et al., 2020).

2.1 Feedback Formats Studied
While our approach supports various implicit and explicit feedback formats, we present the following
six formats, each providing different level of detail about NSEs. We assume an action in a state
may cause mild, severe, or no NSEs (Saisubramanian et al., 2021a; Srivastava et al., 2023), and the
agent aims to collect this information using the following formats. In practice, our approach can be
applied to settings with any number of NSE categories, provided the feedback formats align with it.
Approval (App): The agent randomly selects N state-action pairs from all possible actions in
critical states and queries the human for approval or disapproval. Approved actions are labeled as
acceptable, while disapproved actions are labeled as unacceptable.
Annotated Approval (Ann. App): An extension of the Approval approach where the human
specifies the NSE severity (or category) for each disapproved action in the critical states.
Demo-Action Mismatch (DAM): The human demonstrates a safe action in each critical state,
which the agent compares with its primary policy. Mismatched actions in its primary policy are
labeled as unacceptable, and matched actions are labeled as acceptable.
Corrections (Corr): The agent performs a trajectory of its primary policy, under human super-
vision. If the agent’s action is unacceptable, then the human intervenes with an acceptable action
in that state. If all actions in a state lead to NSE, the human specifies an action with the least
NSE. When interrupted, the agent assumes all actions except the correction are unacceptable in
that state. Thus, this format only informs about acceptable and unacceptable actions.
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Annotated Corrections (Ann. Corr): An extension of Corrections approach where the human
specifies the severity of NSEs caused by the agent’s unacceptable action in the critical states.
Gaze: In this implicit feedback format, the agent compares its action outcomes with the gaze
positions of the user (Saran et al., 2021). Actions with outcomes opposite in direction to the
human’s mean gaze direction are labeled as unacceptable, and actions aligning with the mean gaze
direction are labeled as acceptable.
We use lm, lh, and la to denote labels corresponding to mild, severe and no NSEs respectively.
An acceptable action in a state is mapped to (s, a) → la, while unacceptable action is mapped to
(s, a)→ lh. Actions causing mild and severe NSE are mapped to (s, a)→ lm, (s, a)→ lh respectively.
Mapping feedback to these labels provides a consistent representation of NSE severity, allowing the
agent to learn the severity associated with each state-action pair from different feedback formats.

3 Solution Approach
Prior works focus on learning from a single feedback format, which can be inefficient due to sampling
biases (Saisubramanian et al., 2022) and the agent may benefit significantly by leveraging multiple
forms of information. Our experiments show that learning about NSEs from two formats combined
is more effective than learning from a single format, for example, DAM+Corrections outperforms
DAM alone (Fig. 5). The results also suggest that the order of the feedback formats can influence
the agent’s overall performance, demonstrating the need for a principled approach to select formats
and their order for efficient learning. Our adaptive feedback selection (AFS) framework enables the
agent to query for feedback in critical states using formats that accelerate agent learning.

3.1 Feedback Format Selection

Let there exist a true underlying NSE distribution that the human knows. Human feedback, when
available, is sampled from this true distribution. Let p denote the distribution of state-action pairs
causing NSEs, consistent with the human feedback received so far. That is, p denotes the aggregate
NSE information provided by the human so far. As the agent has no prior knowledge about NSEs,
it assumes that its actions do not cause NSEs, unless a feedback indicates otherwise. Let q denote
the agent’s current NSE distribution that is learned from p. We define the information gain of a
format f as the inverse of the Kullback-Leibler (KL) divergence between p and q, over a set of N
critical states Ω. Hence, a lower value indicates that feedback f helps the agent learn about NSEs.
We refer to this inverse KL divergence value as information divergence and is calculated as follows,

Vf = 1
N

∑
s∈Ω

DKL(p ∥ q) (1)

= 1
N

∑
s∈Ω

∑
a∈A

p(a|s) · log
(
p(a|s)
q(a|s)

)
(2)

The agent selects the most informative feedback format f∗, given its knowledge of each format’s
information gain, cost and probability of receiving it, using the following equation,

f∗ = argmax
f∈F

ψ(f)
Vf · C(f) +

√
log t

nf + ϵ
(3)

where ψ(f) is the probability of receiving a feedback in format f and C(f) is the feedback cost,
determined using the human preference model D, Vf is the information divergence of f calculated
using Eqn. 2. t denotes the current learning iteration, nf is the number of times f was received,
and ϵ is a small value added for numeric stability. This approach effectively balances the trade-off
between selecting previously used feedback formats and examining unexplored formats.

Alg. 1 outlines our NSE learning approach. The agent initializes a safe action distribution across
all states in S, based on its knowledge of NSEs (Line 1). All actions are considered safe initially
when the agent has no prior knowledge of NSEs. A set of N critical states are sampled using Alg. 2
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Algorithm 1 NSE learning approach
Require: B, Budget; D, Human preference model; N, No. of critical states to sample

1: t← 1; V ← 0; p← Agent’s distribution of safe actions
2: while B > 0 do
3: Sample N critical states using Alg. 2, Ω={s1, ..., sN}
4: Select feedback format f∗ for querying, using sampled Ω and Eqn. 3
5: if feedback received in format f∗ then
6: p← Update distribution based on the received feedback f∗

7: P ← TrainClassifier(p)
8: q ← {P(s, a),∀s ∈ Ω,∀a ∈ A}
9: Vf∗ ← 1

N

∑
s∈Ω DKL(p ∥ q)

10: nf∗ ← nf∗ + 1
11: B ← B − C(f∗); t← t+ 1
12: return NSE classifier model, P

(Line 3). Feedback format, f∗, that maximizes the information gain in these states is identified
using Eqn. 3. The agent queries the human for feedback in format f∗ (Line 4). The human provides
it with probability ψ(f∗). If feedback is received, the agent updates the distribution, p, based
on the new NSE information (Line 5-6). The agent trains an NSE prediction model, P using p
(Line 7). An NSE distribution q is derived for all the actions in the critical states, from P (Line
8). Information divergence Vf∗ is updated using Eqn. 2 and nf∗ is incremented (Lines 9-10). The
algorithm terminates when the query budget is exhausted, and outputs a model of NSEs.

3.2 Critical States Selection

To effectively learn from human feedback under a limited querying budget, the agent must identify
critical states for learning—states where human feedback is pivotal to learning a good predictive
model of NSEs. We define critical states as states in which receiving a feedback maximizes the
agent’s information gain about NSEs.

Alg. 2 outlines our approach to select critical states in each learning iteration of Alg. 1. The algorithm
begins by clustering the state space S into K clusters, based on state features (Line 2). As NSEs
do not occur at random and are correlated with state features, clustering allows the agent to group
states that potentially lead to similar NSE severity. In our experiments, we use KMeans clustering
algorithm with Jaccard distance over state features to measure the distance between states. In
practice, any clustering algorithm can be used, including manual clustering by users.

In every iteration t of Alg. 1, the agent assigns a weight wk to each cluster, proportional to the new
information about NSEs that the current informative format f∗ reveals, quantified by information
divergence. Clusters are assigned equal weights when there is no prior feedback (Line 4). The cluster
weight determines the number of states nk to be sampled from it. At least one state is sampled from
each cluster so that there is sufficient information to calculate the information gain for every cluster
(Line 5). The agent randomly samples nk states from the corresponding cluster and adds them to
the critical state set Ω (Lines 6, 7). If the total number of critical states sampled is less than the
required number due to rounding of values, then the remaining number of states Nr are sampled
from the cluster with the highest weight and added to Ω (Lines 9-11). The information gained from
sampled states in cluster k at iteration t is calculated using,

IG(k)t = 1
|Ωt−1

k |

∑
s∈Ωt−1

k

DKL(p ∥ qt−1) (4)

= 1
|Ωt−1

k |

∑
s∈Ωt−1

k

∑
a∈A

p(a|s) · log
(

p(a|s)
qt−1(a|s)

)
(5)
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Algorithm 2 Critical States Selection Approach
Require: N , Number of critical states; K, Number of clusters

1: Ω← ∅
2: Cluster states into K clusters, K = {k1, . . . , kK}
3: for each cluster k ∈ K do

4: Wk ←


1
K , if no feedback received in any iteration

IG(k)∑
k∈K

IG(k)
, if feedback received (using Eqn. 5 for IG(k))

5: nk ← max(1, ⌊Wk ·N⌋)
6: Sample nk states at random, Ωk ← Sample(k, nk)
7: Ω← Ω ∪ Ωk

8: Nr ← N − |Ω|
9: if Nr > 0 then

10: k′ ← arg maxk∈K Wk

11: Ω← Ω ∪ Sample(k′, Nr)
12: return Set of selected critical states Ω

where, the information divergence between p and qt−1 is calculated over a set of critical states
sampled at previous iteration t−1, Ωt−1

k . The NSE distribution based on the feedback received until
t is denoted by p, and qt−1 is the NSE distribution across all actions in the critical states, derived
from the prediction model learned at iteration t−1. A high information divergence value implies
that the feedback received reveals new information about NSEs, reflected via p. The cluster weights
are updated to reflect the information divergence value of that cluster.

3.3 Model Learning

The NSE severity labels, derived from the gathered feedback, are generalized to unseen situations by
training a random forest classifier (RF) model to predict NSE severity of an action in a state. Any
classifier can be used in practice. Hyperparameters for training are determined by a randomized
search in the RF parameter space, using three-fold cross validation and selecting parameters with
the least mean squared error for training and subsequently to determine the NSE severity. The label
for each state-action pair is then mapped to its corresponding penalty value, yielding R̂N (s, a). In
our experiments, the penalties for la, lm, and lh are +1, +5, and +10 respectively.

4 Experimental Setup

Baselines (i) Naive Agent Policy: The agent naively executes its primary policy without learning
about NSEs, providing an upper bound on the NSE penalty incurred. (ii) Oracle: The agent has
complete knowledge about RT and RN , providing a lower bound on the NSE penalty incurred. (iii)
Reward Inference with β Modeling (RI) (Ghosal et al., 2023): The agent selects a feedback format
that maximizes information gain according to the human’s inferred rationality β. (iv) Cost-Sensitive
Approach: The agent selects a feedback method with the least cost, according to the preference model
D. (v) Most-Probable Feedback: The agent selects a feedback format that the human is most likely
to provide, based on D. (vi) Random Critical States: The agent uses our AFS framework to learn
about the NSEs, but the states are sampled randomly from the entire state space. We implement
AFS with a learned R̂N , θ1 =1 and θ2 =1.

Metrics and Feedback Formats We evaluate the performance of various techniques on three
domains in simulation: vase, boxpushing, and Atari freeway. We optimize costs (negations of re-
wards) and compare techniques using average NSE penalty and average cost to goal, averaged over
100 trials. The learned NSE models are evaluated using F1 score and prediction accuracy. For
vase and boxpushing, we simulate explicit human feedback formats. For Atari we use both explicit
(demonstration) and implicit (gaze) feedback from the Atari-HEAD dataset (Zhang et al., 2020a).
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(a) Vase:avoidable NSE (b) Vase:unavoidable NSE (c) Boxpushing (d) ATARI Freeway

Figure 2: Average penalty incurred by the agent when feedback is selected using different techniques.

Vase This gridworld environment requires the agent to quickly reach a goal state (Krakovna et al.,
2020). A state is represented as ⟨x, y, v, c⟩ where, x and y are the agent’s coordinates, v indicates the
presence of a vase and c indicates if the floor is carpeted. The agent can move in all four directions
and each costs +1. Actions succeed with probability 0.8, and if they fail, the agent moves in one of
the other directions. Penalty for breaking a vase on a carpet (mild NSE) is +5 and for breaking a
vase not on a carpet (severe NSE) is +10. All other cases do not create NSEs. The state features
used for training are ⟨v, c⟩. Both avoidable and unavoidable NSE settings are considered.
Boxpushing In this domain, the agent aims to push the box quickly to a goal state (Saisubrama-
nian et al., 2021a). A state is represented as ⟨x, y, b, w, c⟩ where, x and y are the agent’s coordinates,
b indicates if the agent carries a box, w indicates if the box is wrapped and c indicates if the floor
is carpeted. The agent can move in all four directions, pick a box and wrap, and each costs +1.
Actions succeed with probability 0.8, otherwise, the agent moves in one of the other directions.
Penalty for pushing an unwrapped box over wooden surface (mild NSE) is +5 and over a carpeted
surface (severe NSE) is +10. Other cases have no NSE. ⟨b, w, c⟩ are used for training. NSEs in this
setting are always avoidable by wrapping the box before pushing.
Atari Freeway In this Atari game, the agent (a chicken) navigates ten cars moving at varying
speeds to reach the destination quickly while avoiding being hit. Being hit moves the agent back to
its previous position. A game state is defined by coordinates (x1, y1) and (x2, y2), i.e., the top left
and bottom right corners of the agent and cars, extracted the Atari-HEAD dataset (Zhang et al.,
2020a). Only car coordinates within a specific range of the agent are considered (Saran et al., 2021).
The agent can move up, down or stay in place, with deterministic transitions. Move actions cost +1
and colliding with a car within 5-pixel radius of the agent incurs +10.

5 Results and Discussion
Effect of feedback cost and probability Two key factors in our framework for selecting feedback
format are cost and probability. We compare the impact of optimizing these factors individually
on mitigating NSEs (Figure 2). In our experiments on vase and boxpushing domains, Demo-Action
Mismatch has the least cost and Correction has high probability of being received. The Cost-Sensitive
approach will consistently choose Demo-Action Mismatch, while the Most Probable Feedback will
always select Corrections. Our approach mitigates NSEs while balancing cost and probability, by
selecting formats based on information gain in Eqn. 3. Additional plots showing the frequency of
selecting a format using our approach, under varying budget are shown in Fig. 3 in the appendix. We
also tested a case with uniform feedback cost and uniform probability. In such cases, our framework
consistently selects the most informative format (Fig. 4 in appendix).
NSE mitigation and task completion There is a trade-off between optimizing task completion
and mitigating NSEs, especially when NSEs are unavoidable. While some techniques are better at
mitigating NSEs, they significantly impact task performance. Fig. 2 shows the average NSE penalty
of different techniques, and Table 1 shows the average total cost incurred upon task completion.
The Naive Agent policy, with lower average cumulative cost compared to other strategies, incurs the
highest NSE penalty as it operates based on RT and has no knowledge of RN . The RI policy has
better task performance but causes more NSEs when they are unavoidable. In the avoidable NSEs
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Method Vase:
avoidable NSE

Vase:
unavoidable NSE

Boxpushing:
avoidable NSE

Freeway:
avoidable NSE

Oracle 37.88 ± 1.92 53.08 ± 3.95 44.29 ± 1.05 3759.8 ± 0.0
Naive 35.62 ± 0.39 36.0 ± 2.89 39.82 ± 5.44 61661.0 ± 0.0
RI 36.51 ± 0.67 37.11 ± 1.32 42.23 ± 1.98 71716.57 ± 0.0
Ours 37.68 ± 0.33 46.94 ± 8.19 49.70 ± 1.33 1726.5 ± 0.0

Table 1: Average cost for task completion, along with standard errors.

setting, RI mitigates a smaller number of NSEs and incurs high costs, as its reward function does
not fully model the penalties for mild and severe NSEs. Additional results on mild and severe NSEs
are in A.4. Our approach better mitigates NSEs compared to baselines.

We discuss in detail our method’s effectiveness in learning an NSE prediction model in A.3 and
compare the effects of learning from single and multiple feedback types in A.2.

6 Related Works
Negative Side Effects The problem of avoiding negative side effects is gaining increasing at-
tention (Krakovna et al., 2018; Saisubramanian et al., 2021a;b; Zhang et al., 2020b; Klassen et al.,
2022; Srivastava et al., 2023). Different notions of side effects have been addressed, such as undesired
changes to the environment during operation (Krakovna et al., 2018; Saisubramanian et al., 2021a;
Saisubramanian & Zilberstein, 2021), affecting the ability to perform future tasks (Krakovna et al.,
2020), and negatively impacting the behavior of other agents in the environment (Alizadeh Alam-
dari et al., 2022; Klassen et al., 2022). Our focus is on side effects due to model incompleteness
that affect the environment but not the agent’s ability to complete its task. Our approach is akin
to Saisubramanian et al. (2021a) in learning a penalty function for NSEs from human feedback, but
we allow for learning from multiple feedback types.
Learning from Human Feedback Human feedback is a popular approach for training agents
when reward functions are unavailable (Abbeel & Ng, 2004; Ng et al., 2000; Pomerleau, 1988;
Ross et al., 2011). It has been widely used to improve the safety and reliability of agent opera-
tion (Hadfield-Menell et al., 2017; Bajcsy et al., 2017; Brown et al., 2018; Ramakrishnan et al., 2020;
Zhang et al., 2020b; Brown et al., 2020b;c; Saisubramanian et al., 2021a). Recent works explore var-
ious forms feedback for reward learning, including demonstrations (Ramachandran & Amir, 2007;
Brown & Niekum, 2018), corrections (Losey & O’Malley, 2018; Bobu et al., 2021; Cui et al., 2023),
critiques (Cui & Niekum, 2018; Saisubramanian et al., 2021a), ranking (Brown et al., 2019; 2020a),
and implicit feedback like facial expressions and gestures (Cui et al., 2021; Xu et al., 2020).

Existing literature focuses on a single form of feedback for agent learning, limiting the efficiency of
learning. Ibarz et al. (2018) and Bıyık et al. (2022) employ two feedback formats, demonstrations
and preferences, to learn a reward function. Their approach shows that it is more efficient than using
a single format. However, they assume that the order of these formats are predetermined, and the
approach does not scale well if the human is willing to provide more than two feedback formats. Re-
cently Ghosal et al. (2023) proposed a method to estimate the human’s ability in providing feedback
using the Boltzmann rationality model. Their method focuses on a single feedback setting, where
a feedback format is selected based on the rationality of the user providing feedback. Unlike their
approach, we dynamically select the most informative feedback and do not require pre-processing.

7 Summary and Future Work
We propose an adaptive feedback selection (AFS) framework to learn about negative side effects
(NSEs) from diverse forms of human feedback. Our algorithm identifies critical states for learning
about NSEs and selects the most informative feedback format, considering the cost and probability
of each format. Experimental results on three domains show our approach’s effectiveness in learning
to mitigate avoidable and unavoidable NSEs, from explicit and implicit feedback. In the future,
we aim to learn a human preference model, such as in a calibration phase and validate using user
studies.
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A Appendix

This appendix includes additional results evaluating the effect of feedback cost and probability, com-
paring the performance of single and multiple feedback approaches, and assessing the effectiveness
of our approach in learning an NSE prediction model.

A.1 Effect of feedback cost and probability

We examine the influence of cost and probability associated with different feedback formats on the
frequency at which the agent selects each format, with our AFS learning framework.

(a) Vase: avoidable NSE (b) Vase: unavoidable NSE (c) Boxpushing

Figure 3: Frequency of selecting a feedback format, with varying budget for querying.

Feedback Type Probability Cost
Corrections 0.70 8
Approval 0.50 9
Demo AM 0.60 5
Annotated Corr. 0.65 6
Annotated App. 0.60 7

Table 2: Cost and probability values for each feedback type in vase and boxpushing domains.

Figure 3 shows how frequently the agent selects each feedback format, normalized and presented
across different budget values. Table 2 shows the cost and probability values corresponding to each
feedback format used during the feedback selection process. In this case, the agent consistently
selects more informative feedback formats, such as Approval, Annotated Corrections and Annotated
Approval, across most budget values.

(a) Vase: avoidable NSE (b) Vase: unavoidable NSE (c) Boxpushing

Figure 4: Frequency of our approach selecting a feedback format, under uniform feedback cost and
probability for all formats.

When the feedback probability and costs are uniform for all the formats, the agent predominantly
selects either Approval or Annotated Approval (Figure 4). In both cases, the agent initially explores
and learns from the different feedback formats. With a higher querying budget, the agent learns
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from the most informative format in later learning iterations. While Annotated Corrections provide
information on both correct and incorrect actions in a state, this format is utilized primarily in the
early learning iterations. Approval and Annotated Approval, on the other hand, are consistently
selected in the later learning iterations, as they can provide information about every state-action
pair, not just restricted to the agent’s current policy as in corrections. This assists the agent in
learning more fine-grained information about the association of NSEs with each state-action pair.

A.2 Effect of learning from multiple feedback types

We examine the benefit of learning from more than one feedback type, by comparing the average
NSE penalties of learning from a single feedback and multiple feedback formats (Figure 5), with
varying budget for querying. In the single feedback case (Figure 5 (a-c)), Corrections format suc-
cessfully mitigates NSEs with fewer feedback across domains. However, its reliance on constant
human guidance is a limitation. While Demo-Action Mismatch requires less human guidance, it is
less effective in avoiding NSEs. The effectiveness of Demo-Action Mismatch improves significantly
depending on its position within a sequence of feedback formats (Figure 5 (d-f)). For instance, using
Demo-Action Mismatch before Corrections, in the avoidable NSE setting of vase and boxpushing
domains, results in a lower average penalty with a smaller budget. However, in the vase domain with
unavoidable NSEs, the agent performs better when Demo-Action Mismatch follows Corrections.

(a) Vase: avoidable NSE (b) Vase: unavoidable NSE (c) Boxpushing

(d) Vase: avoidable NSE (e) Vase: unavoidable NSE (f) Boxpushing

(g) Vase: avoidable NSE (h) Vase: unavoidable NSE (i) Boxpushing

Figure 5: Average penalty incurred, along with standard error, when learning from a single feedback
(a-c), and using combinations of two formats (d-i).
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On the other hand, Approval and Annotated Approval have a similar performance across domains
and require higher samples to learn the true distribution of NSEs. However, when combined with
Corrections or Annotated Corrections, the performance improves considerably (Figure 5 (g-i)). No-
tably, in the boxpushing domain, the order of these formats affect the agent’s performance — using
Corrections before Approval has a better performance compared to using Approval before Correc-
tions. Learning the underlying NSE severities demands a significantly higher number of samples
when using a combination of Approval and Annotated Approval formats. These results show that
learning from more than one feedback format is generally useful but the benefits depend on the for-
mats considered together and the order in which they are combined. Identifying the right ordering
of feedback formats manually is practically infeasible. Our AFS framework enables the agent to
learn and mitigate most NSEs effectively, by automatically selecting effective feedback formats in
every learning iteration (Figure 2).

A.3 Learning NSE model

We evaluate the effectiveness of our approach in learning to predict NSEs using F1 scores for each
NSE category and overall prediction accuracy, compared to learning from a single feedback (Table 3).
The results are averaged across three test instances in vase and boxpushing domains, and five
instances for Atari freeway. Annotated Corrections format is most effective in predicting NSEs of
different severity levels, in both the vase and boxpushing domains. Our AFS framework performs
similar to Annotated Corrections in the boxpushing and vase domains. In the Freeway environment,
Demo-Action Mismatch has a better performance in terms of the F1 score and accuracy. The F1
scores and accuracy of our approach are similar to that of Demo-Action Mismatch. However, Gaze,
a low-cost implicit feedback, has a high overall accuracy but its F1 score for severe NSE is zero. In
general, a low F1 score in this domain is a result of a highly imbalanced dataset—there are ∼300,000
states with no NSEs and ∼4000 states with severe NSE, which affects the learning process.

Domain Method Average F1 Score (↑) Average
Accuracy % (↑)No NSE Mild Severe

Vase:
avoidable NSE

Corrections 1.00 ± 0.00 0.00 ± 0.00 0.60 ± 0.07 83.00 ± 0.08
Annotated Corr. 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 100 ± 0.00
Approval 0.84 ± 0.05 0.00 ± 0.00 0.40 ± 0.00 73.90 ± 0.09
Annotated App. 0.84 ± 0.07 0.00 ± 0.00 0.40 ± 0.00 73.90 ± 0.09
Demo AM 0.82 ± 0.07 0.00 ± 0.00 0.00 ± 0.00 70.83 ± 0.15
Our approach 1.00 ± 0.00 0.85 ± 0.00 0.82 ± 0.04 95.67 ± 0.02

Vase:
unavoidable NSE

Corrections 0.97 ± 0.01 0.00 ± 0.00 0.50 ± 0.06 76.56 ± 0.08
Annotated Corr. 0.97 ± 0.01 1.00 ± 0.00 0.86 ± 0.00 96.26 ± 0.00
Approval 0.80 ± 0.04 0.00 ± 0.00 0.40 ± 0.00 69.07 ± 0.06
Annotated App. 0.80 ± 0.04 0.00 ± 0.00 0.40 ± 0.00 69.07 ± 0.06
Demo AM 0.79 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 65.33 ± 0.09
Our approach 0.97 ± 0.00 0.86 ± 0.00 0.72 ± 0.03 91.33 ± 0.02

Boxpushing:
avoidable NSE

Corrections 0.94 ± 0.00 0.00 ± 0.00 0.42 ± 0.10 70.46 ± 0.03
Annotated Corr. 0.94 ± 0.00 0.89 ± 0.00 0.89 ± 0.00 92.30 ± 0.00
Approval 0.76 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 61.57 ± 0.00
Annotated App. 0.76 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 61.57 ± 0.00
Demo AM 0.76 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 61.57 ± 0.00
Our approach 0.88 ± 0.02 0.87 ± 0.00 0.00 ± 0.00 83.71 ± 0.03

Atari Freeway:
avoidable NSE

Gaze 0.99 - 0.00 98.68
Demo AM 0.87 - 0.03 77.69
Our approach 0.84 - 0.03 71.98

Table 3: Average F1 score and prediction accuracy of different formats, with standard errors, com-
pared to our approach. All NSEs are severe in the Freeway domain.
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A.4 NSE mitigation and task completion

To assess the agent’s performance in mitigating NSEs, Table 4 presents the average number of mild
and severe NSEs encountered during policy simulation, across various domains and approaches. The
results indicate that our approach effectively mitigates both avoidable and unavoidable NSEs, as
demonstrated by the significantly lower number of mild and severe NSEs encountered in comparison
to the baseline methods.

Domain NSE Oracle Naive RI Ours
Vase:
avoidable NSE

Mild 0.09 ± 1.00 3.68 ± 3.17 1.44 ± 2.12 0.11 ± 0.02
Severe 0.03 ± 0.20 4.22 ± 3.99 0.90 ± 3.49 0.05 ± 0.03

Vase:
unavoidable NSE

Mild 1.97 ± 1.21 6.78 ± 4.20 0.82 ± 0.68 0.66 ± 0.47
Severe 1.09 ± 0.95 4.83 ± 3.48 5.14 ± 3.17 1.33 ± 0.47

Boxpushing:
avoidable NSE

Mild 0.00 ± 0.00 14.40 ± 5.32 18.61 ± 2.85 0.00 ± 0.00
Severe 0.00 ± 0.00 5.11 ± 4.05 0.51 ± 0.42 0.00 ± 0.00

Freeway:
avoidable NSE

Mild - - - -
Severe 3.60 ± 2.54 751.80±0.17 8.2 ± 2.06 6.0 ± 2.6

Table 4: Average #mild and severe NSEs, along with standard errors, with querying budget B=400.
All NSEs are severe in the Freeway domain.
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