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Abstract

Humans use context to specify preferences over behaviors, i.e. their reward functions.
Yet, algorithms for inferring reward models from preference data do not take this
social learning view into account. Inspired by pragmatic human communication, we
study how to extract fine-grained data regarding why an example is preferred that is
useful for learning an accurate reward model. We propose to enrich binary preference
queries to ask both (1) which features of a given example are preferable in addition
to (2) comparisons between objects. We derive an approach for learning from
these feature-level preferences, both for cases where users specify which features are
reward-relevant, and when users do not. We evaluate our approach on linear bandit
settings in both vision and language-based domains. Results support the efficiency
of our approach in quickly converging to accurate rewards with less comparisons
vs. example-only labels. Finally, we validate the real-world applicability with a
behavioral experiment. Our findings suggest that incorporating pragmatic feature
preferences is a promising approach for more efficient user-aligned reward learning.

1 Introduction

Inferring user-aligned reward functions from human data is a cornerstone of efforts in value alignment
and AI safety (Fisac et al., 2020; Amodei et al., 2016; Christian, 2021; Hadfield-Menell et al., 2017).
Current efforts such as reinforcement learning (RL) from human feedback (RLHF) propose to learn
reward functions from pairwise comparisons provided by human users (Christiano et al., 2017; Griffith
et al., 2013). Motivated by the idea that pairwise comparisons are a relatively simple and easy way
for users to provide offline input for training a reward model, RLHF approaches have been used to
train more efficient robotic systems (Basu et al., 2018; Hüllermeier et al., 2008; Jain et al., 2015), and
safer language models (LMs) (Bai et al., 2022a;b). Unfortunately, because such feedback is provided
over object pairs, valuable information regarding fine-grained components of the reward, i.e. which
features of the examples matter and why, are lost Basu et al. (2018).

As a simple example, consider taking up the task of mushroom foraging introduced by Sumers et al.
(2022) (Fig. 1). How might we learn which mushrooms are good? A pairwise comparison between
two examples may tell us that one mushroom is better (that is, more delicious) than the other,
but not the reason why (green mushrooms tend to be zestier). Moreover, users may not hold the
same preferences over which features of mushrooms are important—a chef may prefer mushrooms to
taste delicious but a collector may instead prefer them to look exotic. In other words, there may be
different reward-relevant features that shape each user’s preference relation such that their underlying
reward functions are different.

If we assume the user in question is not simply acting as an oracle providing labels divorced from
the learning process, but rather as an engaged cooperative agent capable of providing descriptive
feedback, we can treat them as active teachers that can provide richer information regarding their
underlying reward function. Such pedagogical models have been found to be useful for guiding RL
agents from actions (Ho et al., 2016; Goyal et al., 2019) and language feedback (Bisk et al., 2016;
Sumers et al., 2022; Lin et al., 2022). How might we do the same for preference learning?

1



Under review for the Reinforcement Learning Conference (RLC)

Figure 1: A. An illustrative user reward function in the mushroom foraging task. Rewards are a linear
combination of color, shape, and weight features. B. Example preference queries learn a traditional
RLHF loss over example-level comparisons. C. Our approach, pragmatic feature preference queries,
make use of (1) fine-grained feature-level preferences in conjunction with example-level preferences,
and (2) language descriptions to infer reward-relevant features and augment preference data.

We propose a framework for modeling feature-level pairwise comparisons and design a joint loss to
learn rewards from both feature and example-level comparisons. Our key insight is that humans
communicate preferences pragmatically: when they describe which features of each example are
important to their preference, they are also implicitly revealing which features are not important.
For example, as shown in Figure 1, the fact that a user prefers a mushroom because of its color and
shape might implicitly reveal that they do not care about mushroom weight or that weight does not
matter for their preference. This information can be used to expand the existing comparison-level
data greatly, e.g the user should hold the same preference over these two mushrooms even if their
weights were flipped. We introduce this approach as learning from pragmatic feature preferences.

First, we formalize the relationship between preferences over examples and preferences over features
in a linear bandit setting. We propose a method to query for feature-level as well example-level
preferences, and define a joint loss for learning from such input. Second, we contribute a pragmatic
approach for making additional use of this data by performing feature-level augmentation of non-
relevant reward features from linguistic preference descriptions.

We evaluate our approach in experiments in both the mushroom foraging task (a vision-based domain)
and a flight booking task (a language-based domain) (Lin et al., 2022). We find that learning from
pragmatic feature preferences outperforms baselines that only learn from either only example-level
preferences or only pragmatic-augmented features, verifying that both elements are important for
making use of contextual information contained in preference descriptions. Importantly, we verify
in a user study that such rich queries do not significantly increase user effort with providing labels
compared to RLHF. Overall, our findings suggest that incorporating models of pragmatic human
communication are important for more efficient reward learning.

2 Preliminaries

Our primary focus is on the reward modeling problem in which we seek to learn a reward function
that aligns with a user’s unknown preference relation while observing only finitely many comparisons
from that preference relation.

We study reward modeling in contextual bandit problems Langford & Zhang (2007); Lattimore &
Szepesvári (2020), which are a middle point between k-armed bandits and full sequential decision-
making. A contextual bandit presents a challenging decision-making problem due to both the explore-
exploit dilemma and generalization, but does not introduce the complexities of credit assignment
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and long-term planning. For this reason, it is a compelling choice for studying user-aligned reward
modeling.

Contextual Bandits. A contextual bandit in its general form is a model of a decision-making
problem defined by the tuple (C, A, µ, R), where C is a set of contexts, A is a set of actions, µ ∈ ∆(C)
is a probability distribution over C, and R : C × A → R is a reward function. We note that while the
reward function is typically stochastic in most bandit problems, in the setting we study, the reward
function is deterministic. At each time-step, a context c ∈ C is sampled c ∼ µ and presented to the
decision-maker. The decision-maker then chooses an action a ∈ A and observes R(c, a) with the
goal of maximizing some measure of long term reward. We follow the conventions of Sumers et al.
(2022) and study a special case of linear contextual bandits Li et al. (2010) in which each context is
a subset of the action space that the agent is allowed to choose from in that context. For instance,
in the mushroom foraging task, each context is a collection of mushrooms the agent must choose
from. More formally, the action space is the set of n-dimensional vectors, A = Rn, and each context
is simply a subset of this space, c ⊆ A. The agent is then only allowed to choose an action contained
in the current context, and the reward function is only well-defined for cases where a ∈ c. In such
cases, it is sufficient to express the reward function as only a function of a, R : A → R.

Reward Modeling. In a contextual bandit of the kind described above, the reward modeling
problem is defined as follows. We are given as input the context set C, the action space A, and a
finite set of preference data over actions D = {(ai, a′

i, f(ai, a′
i))}m

i=1, where ai, a′
i ∈ A are each actions,

and f : A × A → {≻, ≺} is a function mapping each action pair to a preference relation. We suppose
the preference relation is unknown, and wish to learn a reward function, R : A → R that aligns with
the underlying preference relation that generated the preference data. Notice that since each context
is simply a subset of the action space, the preference relation of interest is over pairs of actions, and
the reward function we wish to learn is also a function of action, rather than a context-action pair.
Following previous work in IRL (Sumers et al. (2022)), we assume that rewards R̂ (e.g. tastiness of
a mushroom) are a linear combination of feature rewards r̂ (e.g. tastiness of a green mushroom),
such that: R̂(a) = θ⊺(r̂(aj)), where aj is the value associated with a specific feature (e.g. green), and
θ⊺ is a linear weight vector on feature rewards. The traditional goal is then to learn a θ such that
R̂θ(a1) ≥ R̂θ(a2) if and only if f(a1, a2) =⪰.

We propose to consider pairwise feature preferences over different settings of an individual feature
of each action. For instance, consider two actions comprised of three features, a1 = ⟨0, −1, 2⟩ and
a2 = ⟨1, 0, 0⟩. We refer to the j-th feature of action a2 as aj

2. We then let ϕ : R × R → {≻, ≺}
express a feature preference relation, indicating whether the value of the j-th feature of one action
is preferred to another. For example, consider two actions a1 = ⟨1, 0, 20⟩, and a2 = ⟨5, 2, 12⟩ each
describing a mushroom. Suppose the first feature (a1

1 = 1, a1
2 = 5) captures the zestiness of the

mushroom. A user that dislikes zesty might be thought of as maintaining the feature preference
relation ϕ(a1

1, a2
1) = ≻. As shorthand, we denote such outcomes as a1

1 ≻ϕ a2
1.

Our assumption is that an individual’s preference about the features of an object will inform their
overall preferences regarding that object. Our primary hypothesis is that decomposing a preference
relation about a pair of objects into preferences about the features of those objects allows for more
effective reward modeling. It is worth noting that there are situations where the assumptions
introduced thus far don’t hold, such as when it is impossible to decompose an example-based reward
into its constituent feature-based rewards. Such situations may arise in scenarios where humans
do not hold preferences over features of an object independent of the object itself (for example, a
human may prefer a football to a basketball, and otherwise does not care about individual features
of balls such as bounciness, color, size, etc.). In our experiments, we study some deviations from
these assumptions, and acknowledge that a full analysis of how our method accommodates these
more general settings is an important direction for future work.
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3 Approach: Pragmatic Feature Preferences

To address the reward modeling problem, our primary assumption is that any individual’s preference
relation about elements of a given domain is tightly coupled with how that individual represent
elements from that domain. For example, suppose an individual were to prefer a zesty mushroom
to a mild mushroom—if zestiness is a primary determining factor in a person’s preference about
mushrooms, it is likely that zestiness is directly represented by that person, too. This assumption
unlocks two key elements.

Element 1: Feature-level comparisons. First, we can solicit extra preference information from
users as feature-level comparisons, rather than solely at the example-level. In the mushroom case,
this means we can simply ask whether someone prefers spicy to non-spicy foods, rather than ask
which of the two mushrooms they prefer. We formalize this below by forming a joint loss term that
balances between feature-level comparisons and example-level comparisons.

Element 2: Pragmatic data augmentation. Second, we can infer which features are unimportant
to the user’s preference in order to significantly expand the available labeled preference data. For
instance, if we ask a user to point out which features are most significant for deciding between two
mushrooms and they respond with “spice level" and “color", we suggest it is natural to infer that
the other mushroom features are unimportant for the given comparison, and consequently we can
synthesize new training data where the unimportant feature values are swapped while preserving the
object-level preference relation. We provide more concrete details below.

3.1 Feature-level queries: Enriched Loss

First, we enrich the preference data collected by not only capturing example-level comparisons, but
also feature-level comparisons. For example, in the mushroom domain introduced by Sumers et al.
(2022), each mushroom is associated with some features such as its size and color. In such a case,
we can ask users: (1) Do you prefer mushroom A or mushroom B?, and (2) Do you prefer the size
of mushroom A or mushroom B? Do you prefer the color of mushroom A or mushroom B? These
fine-grained queries are intended to extract additional information per-example pair that can be used
to train a reward model.

RLHF Loss. More formally, we adopt the standard conventions of RLHF in which the learned
reward model, R̂, is chosen to minimize the cross-entropy between the reward model’s predicted
preference labels and the actual labels provided by the user, following the Bradley-Terry model which
states humans are noisily rational in identifying the correct example (Bradley, 1976) :

rlhf-loss(R̂, D) = −
∑

(a1,a2,f)∈D

(
1

f
a1,a2

log P̂ (a1 ≻ a2) + 1
f
a2,a1

log P̂ (a1 ≺ a2)
)

.

where 1f
ai,aj

expresses the indicator function on whether ai ≻f aj , and P̂ (a1 ≻ a2) is the learned
reward function’s inferred preference over (a1, a2) as defined by the ratio:

P̂ (a1 ≻ a2) = exp(R̂(a1))
exp(R̂(a1)) + exp(R̂(a2))

. (1)

Feature-Pairwise Loss. We propose to enrich this loss with a feature-level loss following the same
convention. That is, given two actions, a1 and a2, where the first actions features are all preferred to
the second,

feat-loss(r̂, D) = −
∑

(a1,a2,ϕ∈D)

n∑
j=1

(
1

ϕ

aj
1,aj

2
log P̂ (aj

1 ≻ aj
2) + 1

ϕ

aj
2,aj

1
log P̂ (aj

1 ≺ aj
2)

)
.
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Again, 1ϕ

aj
1,ak

2
denotes the indicator function on whether aj

1 ≻ϕ ak
2 , and P̂ (aj

1 ≻ aj
2) is the ratio for

the learned reward function’s output of feature j:

P̂ (aj
1 ≻ aj

2) = exp(r̂(aj
1))

exp(r̂(aj
1)) + exp(r̂(aj

2))
. (2)

Again, we note that this is where we exploit the linearity assumption—we assume that all reward
models of interest can compute a per-feature reward, r̂(aj

i ), for any action ai and feature j.

Our overall loss is then simply a weighted sum of the two,

loss(R̂, D) = (1 − β)rlhf-loss(R̂, D) + βfeat-loss(r̂, D),

with β ∈ [0, 1] a hyperparameter that trades off between the strength of the feature pairwise loss
(feat-loss) and the example pairwise loss (rlhf-loss).

3.2 Pragmatic Data Augmentation

The second consequence of asking a user for their feature preferences is that we can also ask them to
describe features that are important for determining their overall preference. By doing so, we can
isolate which features contribute to their preference between the two examples, and thus also infer
which features are irrelevant for determining their preference.1 One immediate benefit of knowing
which features are irrelevant to a user in forming a specific preference is that we can expand the
available labeled preference data by synthesizing new data points where the preference label remains
the same, but the irrelevant features are modified.

Concretely, when we query a user for their choice between a1 and a2, we further ask a user to describe,
in language, what features are important for making this decision. We then infer that any feature
not mentioned is irrelevant for determining preference, and synthesize a new data point for each
possible swap of the irrelevant features’ values.

For example, consider a simple case where each action is characterized by only two features, and
we query a user on the pair a1 = ⟨0, 1⟩ and a2 = ⟨10, 2⟩. Suppose the user prefers a1 to a2, and
indicates that the first feature was most important for determining their preference (perhaps this
captures the potential poison content of a mushroom). Then, we synthesize a single new data point
by keeping the preference label, but swapping the irrelevant features. So, we construct a◦

1 = ⟨0, 2⟩ and
a◦

2 = ⟨10, 1⟩, and assert that a◦
1 ≻f a◦

2. Naturally, with only two features the amount of synthesized
data is minimal, but as the number of total features increases, the opportunity for this approach to
improve training speed increases as well.

Pseudocode for carrying out this pragmatics-inspired preference augmentation is given in Algorithm 1.
The mask function is assumed to set the inferred irrelevant features to a special character, “∅", and
feat-combos constructs the set of all combinations of indices of the features set to ∅. We then use
the notation i⃗ to refer to a vector of indices, and a◦

1[ i⃗ ] = a2[ i⃗ ] as shorthand to refer to assigning
each feature with an index contained in i⃗ to its value in a2. It is worth noting that there is an
important subtlety to how we approach this data augmentation that depends on how we implement
feat-combos. In the first method of implementation, we construct all possible combinations of new
data where the irrelevant features take on any possible value. In the second, we only construct
combinations that can result from swapping the feature-values that are seen in the specific datapoint.
These two methods each make different assumptions about the underlying pragmatic inference: the
first method assumes that the features inferred to be irrelevant are irrelevant in general, whereas
the second method assumes that the features are inferred to be irrelevant in this specific context,
for these specific values. We make this second assumption as it is a more cautious approach to
data-augmentation, but note that exploring the general difference between the two methods could be
a useful direction.

1We refrain from also asking users about which features are irrelevant, both due to the redundance of the query,
and the potential for a high number of irrelevant features. However, non-pragmatic feature preference queries can
learn from a full set of feature preference labels if available.
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Algorithm 1 Pragmatic Feature Preference Augmentation
Input: D the preference dataset.
Output: D′ the augmented preference dataset.

1: Init: D′ = D
2: for (a1, a2, f(a1, a2), mask) ∈ D do
3: a◦

1, a◦
2 = mask(a1, a2, f(a1, a2))

4: for i⃗ ∈ feat-combos(a◦
1, a◦

2) do
5: a◦

1[ i⃗ ] = a2[ i⃗ ]
6: a◦

2[ i⃗ ] = a1[ i⃗ ]
7: f◦ = f(a1, a2)
8: D′ = D′ ∪ {(a◦

1, a◦
2, f◦)}

return D′

4 Experiments

To validate our approach empirically, we conduct experiments in two domains: a vision-based
mushroom foraging task and a language-based flight booking task. We begin with experiments that
simulate user preference responses based on some known ground truth reward functions to study the
learning efficiency of feature preferences in the mushroom task, which is a domain that allows for
direct control over the reward functions and their feature densities. Second, we conduct experiments
with real language descriptions collected in the flight booking task to explore the benefits of our
pragmatic framework with linguistic data.

Evaluation. Our goal is to learn accurate reward models that assign high rewards to actions that
better satisfy a user’s true reward function. To measure the success of learned models, we evaluate
the probability of the ground truth best examples (Basu et al., 2018). The higher the probability
assigned to the ground truth (i.e. the example that maximizes the true reward), the more accurate
the learned reward parameters are. We report results on five independently trained seeds.

Implementation details. We implement all reward models as linear networks (single layer, no
activations). Each feature predictor in the joint model is trained independently without sharing
parameters, and their resulting outputs are concatenated and fed through a final layer for reward
prediction. We swept possible β values and found 0.5 consistently achieved the best performance.

4.1 Understanding reward sparsity’s impact on learning efficiency

We begin by testing the hypothesis that given perfect user labels, i.e. an oracle user that answers
both example and feature preference queries along with providing reward-relevant features according
to the ground truth, feature preference queries will learn more accurate rewards from less examples
compared to baselines. In particular, we study how the two distinct elements of our approach—feature
preferences and our pragmatic augmentation framework—are impacted by the sparsity of reward
features. That is, we explore how the percentage of task-relevant reward features that characterize
the ground truth preference relation will impact the quality of the learned reward given a fixed
budget of example pairs.

Task 1: mushroom foraging. To disentangle these two factors, we make use of a highly-controlled
task where we can design different types of ground truth preference relations in terms of the types of
reward functions used to represent these preferences. Inspired by Sumers et al. (2022), we create
a vision-based task where users play the role of a mushroom forager in charge of teaching which
mushrooms are preferred. Mushrooms are parameterized by six possible discrete features: texture,
color, shape, height, weight and smell with three possible values for each feature (e.g. stinky, pleasant,
and neutral for smell).
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Figure 2: Results with simulated preference labels on the mushroom foraging task. Prag FP
outperforms other methods, converging to a more accurate learned reward given fewer seen examples.
This effect is especially prominent as the reward-relevant features become more sparse. Confidence
bounds depict standard error across five independent seeds.
We generate reward functions of three different kinds, each characterized by a parameter vector
θGT ∈ {−2, −1, 0, 1, 2}6: (1) dense (100%) (all six features are reward-relevant), (2) sparse (17%)
(only a single feature is reward-relevant), and (3) sparse (50%) (three features are reward-relevant).
For each reward type, we generate two different rewards functions by randomly sampling the subset
of features that are task-relevant, then randomly sampling their values.

User queries consist of a task, a reward function, and a randomly sampled comparison (see Figure 1.)
For each query, we change the type of labels collected for learning: (1) comparison (RLHF, baseline)
queries use example-level comparisons only, (2) feature preference (FP, ablation) queries use feature-
level in additional to example-level comparisons, (3) pragmatic comparison queries (Prag RLHF,
ablation) use linguistic utterances describing reward-relevant features in addition to example-level
comparisons, and (4) pragmatic feature preference (Prag FP, our approach) queries combine the
pragmatics augmentation framework in conjunction with feature- and example-level preference
comparisons. Queries return 1 if A is preferred to B, and −1 otherwise.

Results. As shown in Figure 2, our results indicate that Prag FP converge to a more accurate
learned reward with less examples required compared to other approaches.

Across all three types of reward functions, we find that FP as well as Prag RLHF contribute
meaningfully to learning efficiency, particularly in low-example regimes. When we remove either
method, we see performance slightly falter when compared to combining both, highlighting their
combined value. RLHF performs the worst, indicating that valuable information is lost by modeling
the problem solely over example-level comparisons without context.

We further evaluate the quality of the learned reward model based on the sparsity of the reward
function generated. This is motivated by the belief that real-world rewards are generally feature
sparse (Bajcsy et al., 2018)—that is, users hold preferences based on a few, not many, task-relevant
features, As seen across each plot in Figure 2, the magnitude of improvement is especially apparent
in the more sparse reward features, confirming the hypothesis that pragmatics-motivated fine-grained
feedback is most advantageous when few features impact the final preference relation.

4.2 Analyzing the impact of linguistic descriptions

In the previous experiment, we simulated perfect knowledge of reward-relevant features. Now that
we have established the value of including both the pragmatics framework in conjunction with
feature-level preferences, we next explore how real linguistic descriptions impact learning.

Task 2: flight booking. To study more natural linguistic input, we require a domain where
large amounts of real human linguistic descriptions are collected. With this in mind, we use a
language-based task from Lin et al. (2022) where users play the role of a flight booker in charge of
teaching which flights are preferred. Flights are parameterized by eight possible features: arrival time
before meeting, american, delta, jetblue, southwest, longest stop, number of stops and price (airline
features are discrete whereas the rest are continuous). Reward functions are randomly generated,
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where θGT ∈ {−1, −0.5, 0, 0.5, 1}8. Importantly, Lin et al. (2022) collected a human dataset where
these reward functions are paired with human linguistic utterances generated by real users describing
their preferences over those rewards in language.2 Some example descriptions include “american or
delta prefered. more stops good, but long length of stops bad” and “i want the longest stop and
the fewest number of stops”. We randomly sample 20 reward functions and their corresponding
descriptions from the full dataset.

Figure 3: Results with real
user descriptions on the flight
booking task across 20 ran-
domly sampled reward func-
tions. Confidence bounds de-
pict standard error across five
seeds.

To make use of linguistic descriptions, we must convert unstruc-
tured linguistic utterances into structured feature maps specifying
reward-relevant features. In the simplest case, we could require the
user to specify the reward-relevant features from the full list, but
doing so requires additional human data collection and is subject
to misspecification (Peng et al., 2023). Therefore, we deployed a
language model (LM) to parse descriptions into structured feature
representations. Specifically, we prompt GPT-4 Achiam et al. (2023)
with the linguistic description and full feature space to generate a
feature map ∈ {0, 1}8 specifying reward-relevant features.

Results. As shown in Figure 3, even with messy real linguistic
data, Prag FP outperforms traditional RLHF, converging to a
more accurate reward with less examples required. We report results
evaluated over 20 sampled reward functions, each with five seeds.

We note that we did not attempt to perform high robustness
prompt engineering (Chen et al., 2023), nor explicitly study question-
answering mechanisms to elicit more accurate linguistic utterances
from users, although improvements across both axes would certainly
further improve the accuracy of the feature preference modeling.

5 Discussion

We study a new form of user query, pragmatic feature preferences, for use in learning reward models
from fine-grained human input. Our method relies on two key elements: first, that human preferences
at the feature level is valuable for learning accurate reward functions from fewer provided examples,
and second, that what humans choose to describe in language tells us important information regarding
which features are reward-relevant in their preference relation.

Conceptually, our model builds on a rich history of work in pragmatic reasoning by explicitly modeling
humans as teaching when giving feedback. While we studied our learning in an entirely offline setting,
there are exciting directions for incorporating recursive reasoning in developing models that learn to
ask the right questions for further clarifying inference of feature preferences in uncertain settings (Li
et al., 2023). Moreover, we made the assumption that given language descriptions, we can ground
the identified features from those utterances to the correct features in the state representation, an
assumption that is challenging in practice due to ambiguity in grounding ambiguous descriptions to an
agent’s perceptual state (Harnad, 1990). Lastly, the augmentation aspect of our pragmatic framework
relied on the ability to easily swap non-reward-relevant features in the comparison examples, which
may be challenging with text-based models (e.g. swapping the toxicity in outputs). Nonetheless,
we are excited about the promise of incorporating pragmatics-inspired models of human abstract
reasoning to learning more user-aligned reward models.

2The original dataset can be found at github.com/jlin816/rewards-from-language. Note, Lin et al. (2022) presented
a set of three options to users and asked for a description of the option that was most optimal under the reward
function, which we converted into two pairwise comparisons. The linguistic data was also collected over iterative
feedback rounds to study the effect of recursive reasoning, which we disregard.
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6 Impact Statement

This paper presents work on how to better learn individualized reward functions from human input.
While this work is intended to help learn more accurate user objectives, we did not discuss possible
misuse associated with malicious actors teaching models dangerous features. We will leave such
discussion open to the broader socio-technical community.
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Figure 4: Results with real user responses on the mushroom foraging task. These results corroborate
the simulated results from Figure 2. Confidence bounds depict standard error across five seeds.

A User Study

In Section 4, we evaluated our framework with simulated human preference labels. We now expand
on these results with a behavioral study conducted with real users on the same mushroom foraging
task. We are interested in addressing two questions. First, do real user labels for Prag FP queries
validate our simulated results? Second, do users exert significantly more effort when giving these
queries compared to RLHF pairwise comparisons?

Study Overview. We conducted a between-subjects online user study where participants were
asked to play the role of a mushroom forager tasked with selecting tasty mushrooms. Users were first
trained to read reward functions and calculate tastiness scores (rewards), and then given mushroom
pairs and asked to give preferences about these pairs according to provided reward functions. We
asked participants to answer three types of preference queries: RLHF queries (preferences over
mushroom examples), FP queries (preferences over mushroom features in addition to examples),
and Prag FP queries (language descriptions in addition to preferences over mushroom examples
and features). Each user answered 30 queries for the same six reward functions as in Section 4 (five
per reward). We used the responses from each query type to train a corresponding reward model.
We additionally asked participants brief survey questions (Table 1) regarding their perceived effort,
performance, and frustration after giving queries. Responses were assessed on a Likert scale Likert
(1932), with 1 being the lowest (“strongly disagree") and 7 the highest (“strongly agree"). We also
recorded participants’ total time spent on the task.

Participants. We recruited 36 participants, 12 for each query type, from Prolific, an online
crowdsourcing site. Participants were screened according the following characteristics: hold above
a 95% approval rating, speak English as a primary language, and reside primarily in the United
Kingdom or United States. We paid participants at a rate of $16 per hour and rejected responses
that were low-effort (e.g. left responses blank, repeated the same answer for all questions, etc.). Our
study passed institutional IRB review.

A.1 Learning with real human responses.

We begin by analyzing the impact of learning reward models from real human preferences, i.e. labels
that may be noisily generated from users. We conduct the same training protocol as in Section 4
using randomly sampled user responses to train reward models for each reward function. For each
reward, we report five independent seeds.

Results. As shown in Figure 4, Prag FP outperforms baselines, especially as the reward is more
sparse. These results corroborate the simulated results from above and provide meaningful evidence
that real users are able to generate both linguistic descriptions and preference responses that can be
used to accurately train reward models.
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Survey Questions
Q1. Choosing the best mushroom was challenging.
Q2. I could accurately communicate the best mushroom.
Q3. Describing my preferences was relatively easy.
Q4. I was frustrated with providing labels.

Table 1: Post-user study survey questions. User responses are assessed on a 1 to 7 Likert scale (with
7 being “strongly agree”).

A.2 Understanding impact on user effort.

To ensure that Prag FP does not significantly negatively impact the user data collection process, we
assessed the survey responses collected from participants at the conclusion of the study. Questions
are shown in Table 1. We analyzed Likert ratings using one-tailed independent t-tests, where both
FP and Prag FP queries are compared to RLHF queries.

Results. First, participants felt they were equally able to communicate their preferences accurately
(Q2) (no significant difference for either query type (t(11) = −1.81, 0.29, p = 0.08, 0.77)). Participants
who answered Prag FP queries did not find it more challenging to describe their preferences (Q2,
t(11) = 0.16, p = 0.43), while participants who answered FP queries did find it more challenging
(t(11) = 2.31, p = 0.02)). This supports the hypothesis that allowing users to provide descriptions
of important features pragmatically is more natural than providing feedback over all features.
Importantly, providing Prag FP queries did not cause users to experience more frustration with
providing labels (Q4, t(11) = −0.87, p = 0.19) compared to FP (t(11) = −3.07, p = 0.01). Lastly,
users who provided Prag FP queries did not take significantly more time on the task (t(11) =
−0.24, p = 0.41) compared to FP queries, who did take longer (t(11) = −1.86, p = 0.03).

B Related Work

Traditional RL assumes that the reward function is given to a decision-making agent (Sutton, 1992),
a practice that is subject to value misalignment and misspecification (Amodei et al., 2016). Ergo, a
growing body of work proposes to instead infer the reward function from human data.

Learning from demonstrations (IRL). Inverse reinforcement learning (IRL) methods propose to
learn the reward function from observed actions in the environment, e.g. human demonstrations (Ng
& Russell, 2000; Abbeel & Ng, 2004; Ziebart et al., 2008). Unfortunately, such methods suffer from
identifiability issues (Ziebart et al., 2008; Sumers et al., 2022). That is, multiple reward functions
can explain the same observed behavior. Moreover, IRL suffers from strong assumptions regarding
the optimality of the demonstrator, or in other words, that the observed actions are always optimal
under the user’s true reward.

Learning from pairwise preferences (RLHF). With the rise of language models (LMs), there is
renewed interest in learning rewards from pairwise preferences, colloquially referred to as reinforcement
learning from human feedback (RLHF) (Christiano et al., 2017; Griffith et al., 2013). Motivated by
the idea that binary preference labels are less burdensome for human users to provide, RLHF has
emerged as a popular method for fine-tuning LMs (Kaufmann et al., 2023; Wu et al., 2023), although
there are open questions regarding its efficiency and accuracy of reward modeling to true human
preferences (Casper et al., 2023).

Learning from teachers (pedagogy). Unlike the above approaches which assume data is generated
by a user that is merely showing what the correct thing to do is, pragmatic approaches instead
incorporate models of users that are teaching (Ho et al., 2016; Sumers et al., 2022; Lin et al., 2022)
why this is the correct thing to do. This subtle distinction manifests in algorithms that explicitly
incorporate pedagogical models, i.e. models where human generated data is intentionally intended to
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be informative about the user’s underlying reward function (Hadfield-Menell et al., 2017; Fisac et al.,
2020).

Learning with state abstraction. There is substantial evidence to suggest much of the generaliz-
ability of human learning and planning can be attributed to abstraction, i.e. the selective filtering of
task-relevant information (Ho et al., 2019; 2022). This suggests that flexibly creating abstractions
containing task-relevant features is important to downstream generalizable learning, particularly
with limited examples (Peng et al., 2024; Bobu et al., 2023).

In this paper, we unify different streams of work in pedagogical reward learning and human abstraction
to develop a model of learning from pairwise preferences that takes into account human input that is
explicitly informative of task-relevant features. Such a framework offers two benefits: first, targeting
preference data to learn rewards at the feature-level enables more efficient learning given limited
comparisons; second, humans can provide descriptive feedback on important features in language,
offering a more natural teaching process. In the next section, we explore how both can be utilized to
learn better reward models.

C User Study

Figure 5 depicts one of the six reward functions presented in the user study. Users were trained to
read reward functions in the familiarization stage of the study, then presented six unique reward
functions to reference for queries.

Figure 5: Example reward function provided in the user study.

Figure 5 illustrate four possible mushrooms.
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Figure 6: Four example mushrooms used in the user study.
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